
this print for reference only—size & color not accurate 7.5" x 9" / Casebound / Malloy
spine bulk = 1.5625" 840 page count 50# Thor

Inside you’ll learn:

•	The	fundamentals	of	creative	computer	programming—from	procedural		
programming,	to	object-oriented	programming,	to	pure	Java™	programming

•	How	to	virtually	draw,	paint,	and	sculpt	using	computer	code	and	clearly		
explained	mathematical	concepts

•	2D	and	3D	programming	techniques,	motion	design,	and	cool	graphics	effects

•	How	to	code	your	own	pixel-level	imaging	effects,	such	as	image	contrast,	color	saturation,		
custom	gradients	and	more

•	Advanced	animation	techniques,	including	realistic	physics	and	artificial	life	simulation

If	you’re	 interested	in	creating	cutting-edge	code-based	art	and	animations,	
you’ve	come	to	the	right	place!	Processing	(available	at	http://processing.org)	is	a	
revolutionary	open	source	programming	language	and	environment	designed	
to	bridge	the	gap	between	programming	and	art,	allowing	non-programmers	
to	learn	programming	fundamentals	as	easily	as	possible,	and	empowering	
anyone	to	produce	beautiful	creations	using	math	patterns.	With	the	software	
freely	available,	Processing	provides	an	accessible	alternative	to	using	
Flash	for	creative	coding	and	computational	art—both	on	and	off	
the	Web.

This	book	is	written	especially	for	artists,	designers,	and	other	cre-
ative	professionals	and	students	exploring	code	art,	graphics	pro-
gramming,	and	computational	aesthetics.	The	book	provides	a	solid	
and	comprehensive	foundation	in	programming,	including	object-orient-
ed	principles,	and	introduces	you	to	the	easy-to-grasp	Processing	language,	

so	no	previous	coding	experience	is	necessary.	The	book	then	goes	
through	using	Processing	to	code	lines,	curves,	shapes,	and	

motion,	continuing	to	the	point	where	you’ll	have	mastered	
Processing	and	can	really	start	to	unleash	your	creativity	with	
realistic	physics,	interactivity,	and	3D!	In	the	final	chapter,	you’ll	
even	learn	how	to	extend	your	Processing	skills	by	working	directly	

with	the	powerful	Java™	programming	language—the	language	Processing	
itself	is	built	with.

GreenberG

P
r
o

C
essIn

g
Mac/PC compatible

www.friendsofed.com

ISBN-13: 978-1-59059-617-3
ISBN-10: 1-59059-617-X

9 781590 596173

90000

sHeLVIng CATegorY
1. grAPHICs ProgrAMMIng

IrA	GreenberG

Processing
Creative Coding and Computational Art

CreATe	CoDe	
ArT,	vIsuAlIzATIons,	

AnD	InTerACTIve	
APPlICATIons	WITH	THIs	

PoWerFul	yeT	sImPle	
ComPuTer	lAnGuAGe	
AnD	ProGrAmmInG	

envIronmenT.

leArn	HoW	To	
CoDe	2D	AnD	3D	

AnImATIon,	PIxel-
level	ImAGInG,	moTIon	

eFFeCTs,	AnD	PHysICs	
sImulATIons.

TAke	A	CreATIve	
AnD	Fun	APProACH	

To	leArnInG	
CreATIve	ComPuTer	

ProGrAmmInG.

Foreword	by	 keith	Peters

Processing
Creative Coding and

Computational Art

Ira Greenberg

617xFM.qxd 5/2/07 12:05 PM Page i

Processing: Creative Coding and
Computational Art

Copyright © 2007 by Ira Greenberg

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval

system, without the prior written permission of the copyright owner and the publisher.

ISBN-13: 978-1-59059-617-3

ISBN-10: 1-59059-617-X

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark

owner, with no intention of infringement of the trademark.

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or

visit www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600,
Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or

visit www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to

any person or entity with respect to any loss or damage caused or alleged to be caused directly or
indirectly by the information contained in this work.

The source code for this book is freely available to readers at www.friendsofed.com in the
Downloads section.

Credits

Lead Editor
Chris Mills

Technical Editor
Charles E. Brown

Technical Reviewers
Carole Katz, Mark Napier

Editorial Board
Steve Anglin, Ewan Buckingham, Gary Cornell,

Jason Gilmore, Jonathan Gennick, Jonathan Hassell,
James Huddleston, Chris Mills, Matthew Moodie,

Jeff Pepper, Dominic Shakeshaft, Matt Wade

Project Manager
Sofia Marchant

Copy Edit Manager
Nicole Flores

Copy Editor
Damon Larson

Assistant Production Director
Kari Brooks-Copony

Production Editor
Ellie Fountain

Compositor
Dina Quan

Artist
Milne Design Services, LLC

Proofreaders
Linda Seifert and Nancy Sixsmith

Indexer
John Collin

Interior and Cover Designer
Kurt Krames

Manufacturing Director
Tom Debolski

617xFM.qxd 5/2/07 12:05 PM Page ii

To Robin, Ian, and Sophie.

617xFM.qxd 5/2/07 12:05 PM Page iii

CONTENTS AT A GLANCE

Foreword . xv

About the Author . xvii

About the Tech Reviewers . xviii

Acknowledgments . xix

Introduction . xx

PART ONE: THEORY OF PROCESSING AND COMPUTATIONAL ART 1

Chapter 1: Code Art . 3

Chapter 2: Creative Coding . 27

Chapter 3: Code Grammar 101. 57

Chapter 4: Computer Graphics, the Fun, Easy Way 107

Chapter 5: The Processing Environment . 143

617xFM.qxd 5/2/07 12:05 PM Page iv

PART TWO: PUTTING THEORY INTO PRACTICE 171

Chapter 6: Lines . 173

Chapter 7: Curves. 241

Chapter 8: Object-Oriented Programming . 301

Chapter 9: Shapes . 339

Chapter 10: Color and Imaging . 399

Chapter 11: Motion . 481

Chapter 12: Interactivity . 563

Chapter 13: 3D . 615

PART THREE: REFERENCE . 673

Appendix A: Processing Language API . 675

Appendix B: Math Reference . 747

Index . 775

617xFM.qxd 5/2/07 12:05 PM Page v

CONTENTS

Foreword . xv

About the Author . xvii

About the Tech Reviewers . xviii

Acknowledgments . xix

Introduction . xx

PART ONE: THEORY OF PROCESSING AND COMPUTATIONAL ART 1

Chapter 1: Code Art . 3
Aesthetics + Computation . 5
Computer art history . 8
Code artists. 14

Ben Laposky, 1914–2000 . 14
John Whitney Sr., 1918–1995. 15
Herbert W. Franke, b.1927 . 15
Lillian Schwartz, b. 1927 . 15
Harold Cohen, b. 1928 . 16
Roman Verostko, b. 1929. 17
George Legrady, b. 1950 . 18
Mark Napier, b. 1961 . 18
John F. Simon Jr., b. 1963 . 19
John Maeda, b. 1966 . 19
Mary Flanagan, b. 1969 . 20
Casey Reas, b. 1970 . 21
Jared Tarbell, b. 1973 . 21
Ben Fry, b. 1975 . 22
And many more . 23

Summary . 24

617xFM.qxd 5/2/07 12:05 PM Page vi

Chapter 2: Creative Coding . 27
The origin of Processing . 30
Programming language comparisons . 31

Function-based (procedural) vs. object-oriented structure 32
Java . 36

Procedural OOP (“poop”) approach . 39
Algorithms aren’t as scary as they sound . 40
Happy coding mistakes . 44
Algorithmic tree . 45
Summary . 54

Chapter 3: Code Grammar 101. 57
Structure and abstraction . 58
Your first program . 59

Curly braces . 61
Dot syntax . 62
Naming conventions . 63

Literals . 64
Variables . 65

Strict typing . 66
Operators. 72

Relational operators . 73
Conditional operators. 74
Assignment operators. 75

Conditionals . 76
switch statement . 81

Ternary operator . 83
Arrays and loops . 83

Arrays . 83
Loops . 85

while . 85
do . . . while . 86
for . 87
Processing efficiency . 89

Functions . 96
Summary . 104

Chapter 4: Computer Graphics, the Fun, Easy Way 107
Coordinate systems . 109
Anatomy of an image . 111
The pixel . 113
Graphic formats . 115

Raster graphics . 115
Vector graphics . 116

Animation . 117

CONTENTS

vii

617xFM.qxd 5/2/07 12:05 PM Page vii

The joy of math . 119
Elementary algebra . 120

Operation order (a.k.a. operator precedence) . 121
Associative property . 121
Non-associative property . 122
Distributive property . 122

Geometry . 123
Points . 123
Lines . 123
Curves . 124

Trigonometry . 131
Interactivity . 139

Event detection . 139
Event handling . 140

Summary . 141

Chapter 5: The Processing Environment . 143
How it works . 144
Tour de Processing . 146

File menu . 150
Edit menu. 152
Sketch menu . 153
Tools menu . 155
Help menu . 157

Programming modes . 158
Basic mode . 158
Continuous mode . 159
Java mode . 162

Rendering modes. 162
JAVA2D mode . 162
P3D mode . 164
OPENGL mode . 166

Summary . 170

PART TWO: PUTTING THEORY INTO PRACTICE 171

Chapter 6: Lines . 173
It’s all about points. 174
Streamlining the sketch with a while loop . 177
Streamlining the sketch further with a for loop. 178
Creating organic form through randomization . 179
Coding a grid . 185
Creating space through fades . 191
Creating lines with pixels . 195
Processing’s line functions. 196
Joining lines . 200

CONTENTS

viii

617xFM.qxd 5/2/07 12:05 PM Page viii

Creating a table structure . 202
Vertex functions . 209
Anti-aliasing using the smooth function . 214
Applying the vertex function . 219
Creating line strips . 220
Line loops . 226
Polygons and patterns . 229

Poly Pattern I (table structure) . 231
Poly Pattern II (spiral) . 233
Poly Pattern III (polystar) . 235

Summary . 237

Chapter 7: Curves. 241
Making the transition from lines to curves . 242

Creating your first curve . 246
Creating curves using trig . 255
Creating curves using polynomials . 262
Using Processing’s curve functions . 267

arc() . 268
curve() and bezier() . 273

More curve and Bézier variations . 284
Summary . 299

Chapter 8: Object-Oriented Programming . 301
A new way of programming? . 302
BurritoRecipe class . 303

Class declaration . 308
Properties declaration . 308
Constructors . 309
Methods . 311

Advanced OOP concepts . 319
Encapsulation and data hiding . 319
Inheritance . 320

Applying inheritance . 321
Composition . 323

Interfaces. 326
Polymorphism . 329
Polymorphism with interfaces . 331

Summary . 336

Chapter 9: Shapes . 339
Patterns and principles (some encouragement) . 340
Processing’s shape functions . 340

Transforming shapes. 350
Plotting shapes . 358
Creating hybrid shapes . 365
The other shape modes . 368
Tessellation . 374

CONTENTS

ix

617xFM.qxd 5/2/07 12:05 PM Page ix

Applying OOP to shape creation . 378
Creating a neighborhood . 381

Door class . 382
Window class . 386
Roof class . 389
House class . 391

Summary . 397

Chapter 10: Color and Imaging . 399
The importance of color. 400
Color theory . 401

Controlling alpha transparency . 406
A quick review of creating transformations . 409
Pushing and popping the matrix . 409
Setting the color mode . 415
More convenient color functions . 419
Imaging . 423

Gradients . 424
Faster pixel functions . 429
Image manipulation . 432

Display window functions . 440
PImage methods. 440

Speeding things up with bitwise operations. 443
Imaging filters . 448

blend() and filter() . 452
blend() . 459

Saving a file. 467
An object-oriented approach . 468

Inheritance . 469
Gradient class . 469
Abstract class declaration . 470
Class constants. 470
Instance properties . 471
Abstract method . 471
getters/setters . 472
LinearGradient class . 472
RadialGradient class . 474

Organizing classes using multiple tabs . 478
Summary . 478

Chapter 11: Motion . 481
Animation basics . 482
Simple collision detection . 487
Accessing time . 491

Adding some simple fading . 491
Fun with physics . 492

CONTENTS

x

617xFM.qxd 5/2/07 12:05 PM Page x

Object interactions . 500
Easing . 500
Springing . 505
An alternative spring approach. 511
Soft-body dynamics . 516

Advanced motion and object collisions . 520
Vectors . 521
Normalizing a vector . 523
Applying vectors in collisions . 525
The law of reflection . 525
A better way to handle non-orthogonal collisions . 532

Asteroid shower in three stages . 535
Stage 1: Single orb . 535
Stage 2: Segmented ground plane . 541
Stage 3: Asteroid shower . 545

Inter-object collision . 552
Simple 1D collision . 552
Less simple 1D collision . 555
2D collisions . 557

Summary . 561

Chapter 12: Interactivity . 563
Interactivity simplified . 564
Mouse events . 565

Adding interface elements . 579
Creating a simple drawing application . 590
Keystroke events . 603
Summary . 613

Chapter 13: 3D . 615
Processing 3D basics . 616
3D transformation . 618
Creating a custom cube . 625
3D rotations . 635
Beyond box() and sphere() . 647

Extrusion . 650
Cube to pyramid to cone to cylinder . 657
Toroids . 662

Summary . 672

PART THREE: REFERENCE . 673

Appendix A: Processing Language API . 675
Introducing the Processing API . 676
Structure . 677

CONTENTS

xi

617xFM.qxd 5/2/07 12:05 PM Page xi

Environment . 678
Data . 678

Primitive . 679
Composite . 680
Conversion . 681
String Functions . 682
Array Functions . 682
Example 1: A Java approach . 683
Example 2: Using Processing’s append() function, the easy way 683
Example 3: Using Processing’s append() function on an array of objects 684

Control . 684
Relational Operators . 685
Iteration . 685
Example 1: Spacing rectangles the hard way . 685
Example 2: Spacing rectangles the easy way . 686
Example 3: Creating a honeycomb gradient . 687
Conditionals . 689
Logical Operators . 689

Shape . 691
2D Primitives. 692
Curves . 693
3D Primitives. 696
Attributes . 698
Vertex . 698

Input . 702
Mouse . 702
Keyboard . 705
Files . 706
Web. 707
Time & Date . 708

Output . 710
Text Area . 710
Image . 710
Files . 710

Transform. 712
Lights, Camera . 718

Lights . 719
Camera . 719
Coordinates . 719
Material Properties . 720

Color . 724
Setting . 725
Creating & Reading . 728

Image . 731
Pixels . 732
Loading & Displaying . 733

Rendering. 734

CONTENTS

xii

617xFM.qxd 5/2/07 12:05 PM Page xii

Typography . 737
PFont . 737
Loading & Displaying . 738
Attributes . 740
Metrics . 740

Math . 740
Bitwise Operators . 741
Calculation . 741
Trigonometry . 742
Random . 742

Constants . 743
Processing libraries . 743

Appendix B: Math Reference . 747
Algebra . 748

Adding negative numbers . 748
Subtracting negative numbers . 748
Multiplying negative numbers . 748
Dividing by zero . 748
Multiplying fractions. 748
Adding fractions . 749
Dividing fractions . 749
Working with negative exponents . 749
Understanding the exponential-logarithm relationship (they’re inverse). 750
Understanding the relationship between radicals and fractional exponents 750
Multiplying and dividing exponents . 750

Geometry . 751
Pythagorean theorem . 752
Distance formula. 752
Area of a triangle . 752
Area of a rectangle . 752
Area of a parallelogram . 753
Area of a trapezoid . 753
Perimeter of a rectangle . 754
Area of a circle. 754
Circumference of a circle . 754
Area of any non-intersecting polygon . 754

Trigonometry . 755
Bitwise Operations . 760

Semiconductors . 761
Color data structure . 762
Bitwise operations to the rescue . 763
Shifting bits. 763
Bitwise operators . 767
Putting it all together . 769

Index . 775

CONTENTS

xiii

617xFM.qxd 5/2/07 12:05 PM Page xiii

FOREWORD

If you are like me (and the fact that you are holding a Processing book in your hands indi-
cates there’s a fair chance that you are), then a quick flip through the pages of this book,
glancing at the many illustrations, should be enough to set your heart beating just a little bit
faster, and start seeds of ideas sprouting in your head.

Processing is a richly visual language, which is pretty obvious if you’ve performed the afore-
mentioned page flipping. It has its roots in a language called Design by Numbers, developed
by Professor John Maeda at MIT, and was in fact created by two of Maeda’s students, Ben Fry
and Casey Reas. Whereas most languages are built to create serious applications, Processing
almost seems to have been created to just have fun with. The language has been used to cre-
ate various data visualization and installation art pieces, but most often you just see people
playing with it, creating complex and beautiful pictures and animations. As a matter of fact,
you don’t even make Processing applications; you make sketches—which go in your sketch-
book. This aspect of the language has drawn many creative coders who blur the boundaries
between programming and art.

Many like to draw a comparison between Processing and Adobe (née Macromedia) Flash, a
commercial program often used to create graphically rich, often purely experimental anima-
tions using ActionScript, an easy-to-learn programming language. Indeed, many of the peo-
ple using Processing started out programming in Flash, and switched to take advantage of
the superior speed and performance, additional commands, and flexibility of Processing.
Although Flash has gained a lot over the years in terms of performance and capabilities,
Processing remains the tool of choice for many artist-coders.

Processing has grown quite a bit over the years. It’s an evolving language, added onto by var-
ious plug-ins and contributions from a dedicated community. It’s deceivingly simple, allowing
you to get started quickly, but it provides an incredible amount of depth for those who care
to peek beneath the surface.

Although there are various online resources, Processing has lacked a printed book of any
sort. This book fills that gap, and then some. In the tradition of the language, this book cov-
ers both the artistic and the programming aspects of Processing. And if you are stronger on
the art side than the code side, fear not. The author leads you into it gently, giving you just

617xFM.qxd 5/2/07 12:05 PM Page xiv

the bits you need to get started. On the other hand, when you are ready to dive in deep,
there’s more than enough material to keep you up late at night coding.

So take another flip through the book for inspiration, take a deep breath, get comfortable,
and dive in, just like I’ll be doing as soon as I finish writing this!

Keith Peters, April 2007

FOREWORD

xv

617xFM.qxd 5/2/07 12:05 PM Page xv

ABOUT THE AUTHOR

With an eclectic background combining elements of painting and
programming, Ira Greenberg has been a painter, 2D and 3D anima-
tor, print designer, web and interactive designer/developer, pro-
grammer, art director, creative director, managing director, art
professor, and now author. He holds a BFA from Cornell University
and an MFA from the University of Pennsylvania.

Ira has steadily exhibited his work, consulted within industry, and
lectured widely throughout his career. He was affiliated with the
Flywheel Gallery in Piermont, New York, and the Bowery Gallery in
New York City. He was a managing director and creative director
for H2O Associates in New York’s Silicon Alley, where he helped

build a new media division during the golden days of the dot-com boom and then bust—
barely parachuting back to safety in the ivory tower. Since then, he has been inciting students
to create inspirational new media art; lecturing; and holding residencies at numerous institu-
tions, including Seton Hall University; Monmouth University; University of California, Santa
Barbara; Kutztown University; Moravian College; Northampton Community College’s Digital
Art Institute; Lafayette College; Lehigh University; the Art Institute of Seattle; Studio Art
Centers International (in Florence, Italy); and the City and Guilds of London Art School.

Currently, Ira is Associate Professor at Miami University (Ohio), where he has a joint appoint-
ment within the School of Fine Arts and Interactive Media Studies program. He is also an
affiliate member of the Department of Computer Science and Systems Analysis. His research
interests include aesthetics and computation, expressive programming, emergent forms, net-
based art, artificial intelligence, physical computing, and computer art pedagogy (and any-
thing else that tickles his fancy). During the last few years, he has been torturing defenseless
art students with trigonometry, algorithms, and object-oriented programming, and is excited
to spread this passion to the rest of the world.

Ira lives in charming Oxford, Ohio with his wife, Robin; his son, Ian; his daughter, Sophie; their
squirrel-obsessed dog, Heidi; and their night prowler cat, Moonshadow.

Photo by Robin McLennan

617xFM.qxd 5/2/07 12:05 PM Page xvi

ABOUT THE TECH REVIEWERS

Carole Katz holds an AB in English and American Literature from Brown University. Her
career as a graphic designer and technical communicator has spanned more than 20 years,
including stints at small nonprofits, design firms, government agencies, and multinational
corporations. Beginning with PageMaker 1 and MacDraw in the mid-1980s, Carole has used
many types of software in a variety of design disciplines, including corporate identity, techni-
cal illustration, book design, and cartography. She is currently a freelance graphic designer,
and lives with her family in Oxford, Ohio.

Mark Napier, painter turned digital artist, is one of the early pioneers of Internet art.
Through such works as The Shredder, Digital Landfill, and Feed, he explores the potential of
a new medium in a worldwide public space and as an engaging interactive experience.
Drawing on his experience as a software developer, Napier explores the software interface as
an expressive form, and invites the visitor to participate in the work. His online studio,
www.potatoland.org, is an open playground of interactive artwork. Napier has created a
wide range of projects that appropriate the data of the Web, transforming content into
abstraction, text into graphics, and information into art. His works have been included in
many leading exhibitions of digital art, including the Whitney Museum of American Art
Biennial Exhibition, the Whitney’s Data Dynamics exhibition, the San Francisco Museum of
Modern Art’s (SFMOMA) 010101: Art in Technological Times, and ZKM’s (Center for Art and
Media in Karlsruhe, Germany) net_condition exhibition. He has been a recipient of grants
from Creative Capital, NYFA, and the Greenwall Foundation, and has been commissioned to
create artwork by SFMOMA, the Whitney Museum, and the Guggenheim.

617xFM.qxd 5/2/07 12:05 PM Page xvii

ACKNOWLEDGMENTS

I am very fortunate to know and work with so many kind, smart, and generous people. Here
are just a few who have helped make this book possible:

Advisors, colleagues, and reviewers: Fred Green, Andres Wanner, Paul Fishwick, Paul
Catanese, Mary Flanagan, Laura Mandell, Scott Crass, Mike Zmuda, and David Wicks for
showing an interest when it really, really mattered; technical reviewers Carole Katz, Mark
Napier, and Charles E. Brown for helping me simplify, clarify, and rectify—the book is far bet-
ter because of your combined wisdom; my wonderful colleagues and students at Miami
University, in the Department of Art and Interactive Media Studies program—especially Mike
McCollum, Jim Coyle, Bettina Fabos, Glenn Platt, Peg Faimon, and dele jegede—for tolerating
such a looooong journey and my perpetual “when the book is finished” response.

The wonderful people at friends of ED: Production editor Ellie Fountain for always respond-
ing kindly to my neurotic, 11th-hour requests; copy editor Damon Larson for his patience
and precision in helping me craft actual grammatical sentences; project manager Sofia
Marchant for keeping the book (and me) from slipping into the procrastinator’s abyss—I
couldn’t have pulled this off without you! Lead editor and heavy metal warrior Chris Mills for
believing in a first-time author and providing constant support and sage advice throughout
the entire process. I appreciate this opportunity more than you know, Chris!

The wonderful Processing community—especially Ben Fry and Casey Reas for giving me
something to actually write about. I know I am just one of many who owe you a world of
thanks for selflessly creating this amazing tool/medium/environment/language/revolution.

My incredible mentors, friends, and family: Petra T. D. Chu, for all your generosity and
support over the years; Tom Shillea, Bruce Wall, and Sherman Finch for helping plant the
“creative coding” seed; Bill Hudders for sticking around even after I put down the paintbrush;
Roger Braimon for keeping me from taking anything too seriously; Jim and Nancy for moving
700 miles to join us in a cornfield; Paula and Stu for giving me (and my Quadra 950) our first
shot; my uncles Ron and Ed and their respective wonderful families for fostering my early
interest in science and technology and the belief that I could do it “my way”; Bill and
Rae Ann, for lovingly supporting the west coast surf and burrito operations; Ellen, Sarah,
Danny, Ethan, Jack, Anne, Miles, Shelley, Connor, and Matthew for all your kindness and love
over so many years; my genius brother Eric, for keeping me humble and bailing me out on

617xFM.qxd 5/2/07 12:05 PM Page xviii

(way) more than one occasion—you’re a real hero; my parents for tolerating (and even
supporting) years of artistic indulgence and always, always being there for me; my delight-
fully mischievous and beautiful children, Ian and Sophie, for letting daddy stare at his
laptop all day and night, while having their own screen time severely limited; and most
importantly my brilliant and infinitely kind wife, Robin, for being a constant source of
encouragement and peaceful joy in my life. I love you bel!

ACKNOWLEDGMENTS

xix

617xFM.qxd 5/2/07 12:05 PM Page xix

INTRODUCTION

Welcome to Processing: Creative Coding and Computational Art. You’re well on your way to
becoming a Processing guru! All right, maybe it will take a bit more reading, but with
Processing, you’ll be cranking out creative code sooner than you think. Best of all, you’ll be
creating as you learn. Processing is the first full-featured programming language and envi-
ronment to be created by artists for artists. It grew out of the legendary MIT Media Lab, led
by two grad students, Casey Reas and Ben Fry, who wanted to find a better way to write code
that supported and even inspired the creative process. They also wanted to develop an
accessible, affordable, and powerful open source tool; so they decided to make the software
available for free.

Casey and Ben began developing Processing in the fall of 2001, releasing early alpha versions
of the software soon after. In April 2005, they released the beta version for Processing 1.0. To
date, over 125,000 people have had downloaded the Processing software, and Ben and Casey
had been awarded a Prix Ars Electronica Golden Nica, the electronic/cyber-arts version of an
Oscar. In addition, many leading universities around the world have begun including
Processing in their digital arts curriculum, including Parsons School of Design; Bandung
Institute of Technology, Indonesia; UCLA; Yale; NYU; Helsinki University; Royal Danish
Academy of Fine Arts, Copenhagen; School of the Art Institute of Chicago; Miami University
of Ohio; University of Washington; and Elisava School of Design, Barcelona (and many, many
others).

Yet, in spite of all of Processing’s phenomenal success, its story is really just beginning. As of
this writing, version 1.0 of the software is on the brink of being released, as are the first few
books on the subject. There are even people (as shocking as this sounds) who still haven’t
heard of Processing. So rest assured, it’s still not too late to claim Processing pioneer status.
Processing has a very bright future, and I’m excited to be able to introduce you to creative
coding with this amazing language.

Impetus for writing the book
If you’re anything like me (and I suspect you are since you’re reading this book), you are a
creatively driven individual—meaning that you do give a damn about how things look,

617xFM.qxd 5/2/07 12:05 PM Page xx

36f4dc347211ca9dae05341150039392

sound, feel, and so on, besides just how they function. I suspect you also learn best in a
nontraditional way. Well, if this describes you at all, you’ve picked up the right book. If, on
the other hand, you pride yourself on your robotic ability to tune out sensory data and fol-
low linear directions, then (1) keep reading, (2) make art, and (3) buy multiple copies of
this book.

My own interest in writing code evolved organically out of my work as a painter and
designer over a long period (a well-timed, nonserious illness also contributed). I graduated
with my MFA in painting in 1992, and got a teaching job right out of grad school. However,
I soon realized that I wasn’t ready to teach (or hold a job for that matter), and landed up
quitting within a couple of months (my folks weren’t too pleased at the time). Fortunately,
an uncle of mine (the previous black sheep in the family) stepped in and suggested I look
into computer graphics. With nothing to lose, I rented a Mac 2ci, borrowed some software,
and locked myself away for a couple of months.

I eventually developed some basic skills in digital imaging, page layout, and vector-based
drawing. I also began studying graphic design, which, despite my two overpriced degrees
in painting, I knew next to nothing about. Equipped with my new (very shaky) skills, I put
together some samples and went looking for work. Over the next few years, I got involved
in a number of startups (most quickly imploded), as well as my own freelance design busi-
ness. The work included print, CD-ROM/kiosks, 2D and 3D animation, video, broadcast,
and eventually web design. Throughout this period, I also continued to paint and show my
work, and began teaching again as well.

My paintings at the time were perceptually-based—which means I looked at stuff as I
painted. I worked originally from the landscape, which eventually became just trees, and
then a single tree, and finally branches and leaves. The paintings ultimately became purely
abstract fields of color and marks. This transformation in the painting took a couple of
years, and throughout this period I worked as a designer and multimedia developer. I was
dealing with a fair amount of code in my multimedia work, but I still didn’t really know
how to program, although I had gotten really adept at hacking existing code. I suspect this
may sound familiar to some readers.

Then I got ill and was laid up, which turned out to be the perfect opportunity to learn how
to program. I’ll never forget the first program I hacked out, based on the pattern structure
in one of my field paintings. The program wasn’t pretty, but I was able to translate the
color field pattern in the painting to code and generate a screen-based approximation of
the painting. But the really exciting thing (or disturbing thing, depending upon your per-
spective) happened when I was able to generate hundreds of painting variations by simply
changing some of the values in the program. I remember excitedly showing what I had
done to some of my more purist artist friends—who’ve since stopped calling.

It wasn’t long before I was completely hooked on programming and was using it as a pri-
mary creative medium. I also began covering it more and more in my design courses,
eventually developing a semester-long class on creative coding for artists. This book grows
directly out of this experience of teaching programming to art students.

INTRODUCTION

xxi

617xFM.qxd 5/2/07 12:05 PM Page xxi

Intended audience
This book presents an introduction to programming using the Processing language and is
intended as an entry-level programming book—no prior programming experience is
required. I do assume, though, that you have some experience working with graphics
application software (such as Adobe Photoshop) and of course some design, art, or visual-
ization interests—which although not necessary to read the book, makes life more inter-
esting. I don’t expect you to “be good at” or even like math, but I’d like you to at least be
open to the remote possibility that math doesn’t have to suck—more on this shortly.

Coding as an organic, creative, and cathartic
process

When I tell people I write code as my main artistic medium, they smile politely and quickly
change the subject, or they tell me about their job-seeking cousin who makes videos using
iMovie. For nonprogrammers, code is a mysterious and intimidating construct that gets
grouped into the category of things too complicated, geeky, or time-consuming to be
worth learning. At the other extreme, for some professional programmers, code is seen
only as a tool to solve a technical problem—certainly not a creative medium.

There is another path—a path perhaps harder to maneuver, but ultimately more reward-
ing than either the path of avoidance or detachment—a holistic “middle” way. This is the
path the book promotes; it presents the practice of coding as an art form/art practice,
rather than simply a means to an end. Although there are times when a project is scoped
out, and we are simply trying to implement it, most of the time as artists, we are trying to
find our way in the process of creating a project. This approach of finding and searching is
one of the things that makes the artist’s journey distinctive and allows new unexpected
solutions to be found. It is possible to do this in coding as well, and the Processing lan-
guage facilitates and encourages such a “creative coding” approach.

“I’m an artist—I don’t do math”
Early on in school we’re put into little camps: the good spellers/readers, the mathletes, the
artsy crowd, the jocks, and so on. These labels stick to us throughout our lives, most often
limiting us rather than providing any positive guidance. Of course, the other less positive
labels (poor speller, bad at math, tone deaf, etc.) also stick, and maybe with even more
force. From a purely utilitarian standpoint, these labels are efficient, allowing administra-
tors and computers to schedule and route us through the system. From a humanistic
standpoint, these labels greatly reduce our true capabilities and complexity down to a few
keywords. And worst of all, people start believing these limited views about themselves.

A favorite lecture I give to my art students is on trigonometry. Just saying the word
trigonometry makes many of the art students squirm in their seats, thinking “is he

xxii

INTRODUCTION

617xFM.qxd 5/2/07 12:05 PM Page xxii

serious?” When I was an art student, I would have reacted the same way. And I remember
studying trig in high school and not getting its relevance at all. Also, lacking discipline, I
wasn’t very capable of just taking my trig medicine like a good patient. So basically, I’ve
had to teach myself trigonometry again. However, what I got this time was how absolutely
fascinating and relevant trig (and math in general) is, especially for visually modeling
organic motion and other natural phenomena—from the gentle rolling waves of the
ocean, to a complex swarm, to the curvilinear structure of a seashell. Math really can be an
expressive and creative medium (but perhaps not in high school). Finally, and likely most
reassuring to some readers, playing with math in Processing is pretty darn easy—no proofs
or cramming required.

Toward a left/right brain integration
I once had a teacher who said something to the effect that there is significance in the
things that bore us, and ultimately these are the things that we should study. I thought at
the time that he was being annoyingly pretentious. However, I’ve come to recognize some-
thing important in his suggestion. I don’t necessarily think we need to study all the things
that bore us. But I do think that at times, the feeling of boredom may be as much a
defense mechanism as it is a real indicator of how we truly feel about something. I’ve
become aware of the feeling of boredom in my own process, and notice it usually occur-
ring when there is fear or anxiety about the work I’m doing (or the pressure I’m putting on
myself). However, when I push through the boredom and get into a flow, I’m usually fine.
I’ve heard many artists talk about the difficulty they have in getting started in their studios,
spending too much time procrastinating. I think procrastination also relates to this notion
of boredom as defense mechanism. My (unproven) hypothesis is that we sometimes feel
boredom when we’re stretching our brains, almost like a muscular reflex. The boredom is
the brain’s attempt to maintain the status quo. However, making art is never about the
status quo.

Dealing with subjects like programming and math also seems to generate the sensation of
boredom in people. Some people find it uncomfortable to think too intensely about ana-
lytical abstractions. I don’t think this phenomenon has anything to do with one’s innate
intelligence; it just seems we each develop cognitive patterns that are hard to change,
especially as we get older. As I’ve learned programming over the years, I’ve experienced a
lot of these boredom sensations. At times, I’ve even (theatrically) wondered how far can I
stretch my brain without going bonkers. I think it is especially scary for some of us to
develop the less-dominant sides of our minds (or personalities). As artists, that is often
(but certainly not always) the left side of our brain (the analytical side). However, I firmly
believe that we will be more self-actualized if we can achieve a left/right brain integration.
I even conjecture that the world would be a better place if more people perceived their
reality through an integrated mind—so make code art and save the world!

Well, enough of my blathering. Let’s start Processing!

xxiii

INTRODUCTION

617xFM.qxd 5/2/07 12:05 PM Page xxiii

xxiv

Setting up Processing
If you haven’t already downloaded Processing, you should do so now. You’ll (obviously)
need a working copy of the software/language to follow the tutorials throughout the
book. To download the latest version, go to http://processing.org/download/index.
html.

If you’re not sure which version to download, keep reading.

Since Processing is a Java application, any platform that can run Java can theoretically run
Processing. However, Processing is only officially released for Windows, Mac OS X, and
Linux, and the software is only extensively tested on Windows and OS X. Linux users are
somewhat on their own. Here’s what the Processing site says in regard to Linux users:

For more details about platform support, please check out http://processing.org/
reference/environment/platforms.html#supported.

In selecting a version to download, Mac and Linux users have only one choice; Windows
users have two choices: Processing with or without Java. The recommendation is to down-
load Processing with Java. However, the without-Java version is available if download size is
an issue and you know you have Java installed. If you’re not sure whether you have
Java installed, and/or the idea of changing your PATH variable gives you the willies,
please download Processing with Java. If you still want to download them separately, here’s
a link (but remember, you’ve been warned): http://java.sun.com/javase/downloads/
index.jsp.

OS X users already have Java installed, thanks to the good people at Apple.

Regarding Java, the most current version available on Windows is Java SE 6 (the SE stands
for Standard Edition). On OS X, Java releases typically lag behind, and the most current
version is J2SE 5 (the names are also annoyingly a little different). The most current version
on Linux is also J2SE 5. If all this isn’t confusing enough, Processing only supports J2SE 1.4

For the Linux version, you guys can support yourselves. If you’re enough of a hacker
weenie to get a Linux box set up, you oughta know what’s going on. For lack of time,
we won’t be testing extensively under Linux, but would be really happy to hear about
any bugs or issues you might run into . . . so we can fix them.

As of this writing, the latest downloadable version of the software is 0124 BETA,
released February 4, 2007. It’s possible, by the time you’re reading this, that the
release number has changed, as the developers are in the process of stabilizing the
current beta release as version 1.0. Any changes made to the language between beta
release 0124 and version 1.0 should be very minor and primarily focused on debug-
ging existing functionality. For more information about the different releases, check
out http://processing.org/download/revisions.txt.

INTRODUCTION

617xFM.qxd 5/2/07 12:05 PM Page xxiv

http://processing.org/download/index
http://processing.org/download/revisions.txt
http://processing.org/
http://java.sun.com/javase/downloads/

and earlier (yes, J2SE 5 and Java SE 6 come after J2SE 1.4). Version 1.4 is the version that
comes bundled with Processing’s Windows installer, and it is also the default installation in
OS X. The reason Java versioning numbers go from 1.4 to 5 is because Sun, in their wis-
dom, decided to drop the “1.” from the names—if you really care why, you can read about
it here: http://java.sun.com/j2se/1.5.0/docs/relnotes/version-5.0.html.

What all this means to Processing users is that you can’t use any new Java syntax specified
in releases after 1.4 within the Processing development environment. (Syntax is essentially
the grammar you use when you write code—which you’ll learn all about in Chapter 3.) For
the latest information on the tempestuous love affair between Processing and Java, please
see http://processing.org/faq.html#java.

Web capability
Java’s capabilities also extend to the browser environment, allowing Java programs
(applets) to be run in Java-enabled browsers, similar to the way Flash programs run within
the browser. Processing takes advantage of this capability, allowing Processing sketches
that you create within the Processing development environment to be exported as stan-
dard Java applets that run within the browser.

One of the factors in Processing’s quickly spreading popularity is its web presence.
Processing’s online home, http://processing.org/, has single-handedly put Processing
on the map; the many awards and accolades bestowed upon its creators, Casey Reas and
Ben Fry, haven’t hurt either. One of the main reasons people continue to go to the
Processing site is to visit the Processing Exhibition space (http://processing.org/
exhibition/index.html), which has a simple “Add a link” feature, allowing Processors to
add a link to their own Processing work. The fact that Processing sketches can be exported
as Java applets is the reason this online gallery is possible.

Because Processing has been a web-based initiative, its documentation was also written in
HTML and designed to take advantage of the browser environment. The Java API (applica-
tion programming interface) is also HTML-based. HTML allows both Processing and Java’s
documentation to have embedded hyperlinks throughout, providing easy linking between
related structures and concepts. The Processing API is the main language documentation
for the Processing language, and can be found online at http://processing.org/
reference/index.html. The Java API most useful with regard to Processing (there are a
couple different ones) can be found at http://java.sun.com/j2se/1.4.2/docs/api/
index.html.

Aside from the Processing API, there are two other helpful areas on the Processing site
worth noting: Learning/Examples (http://processing.org/learning/index.html) and
Discourse (http://processing.org/discourse/yabb_beta/YaBB.cgi). The Learning/
Examples section includes numerous examples of simple Processing sketches, covering a
wide variety of graphics programming topics. This section, like most of the Processing site,
is an evolving archive and a great place to study well-written snippets of code as you begin
learning. The Discourse section of the site includes message boards on a wide range of
subjects, covering all things Processing. You’ll even get replies from Casey and Ben, as well
as other master Processing coders—a number of whom are well-known code artists and
Processing teachers.

xxv

INTRODUCTION

617xFM.qxd 5/2/07 12:05 PM Page xxv

http://java.sun.com/j2se/1.5.0/docs/relnotes/version-5.0.html
http://processing.org/faq.html#java
http://processing.org/
http://processing.org/
http://processing.org/
http://java.sun.com/j2se/1.4.2/docs/api/
http://processing.org/learning/index.html
http://processing.org/discourse/yabb_beta/YaBB.cgi

Hopefully by now you’ve successfully downloaded the Processing software. Now, let’s
install it and fire it up.

Launching the application
OS X: After downloading the software, launch the Stuffit X archive (.sitx), which
will create a Processing 0124 folder. Within the folder you’ll see the Processing
program icon.

Windows: After downloading the software, extract the ZIP archive (.zip), which will
create a Processing 0124 folder. Within the folder you’ll see the Processing pro-
gram icon.

To test that Processing is working, double-click the Processing program icon to launch the
application. A window similar to the one shown in Figure 1 should open.

Figure 1. The Processing application interface

xxvi

INTRODUCTION

617xFM.qxd 5/2/07 12:05 PM Page xxvi

Processing comes with a bunch of cool code examples. Next, let’s load the BrownianMotion
example into the Processing application. You can access the example, and many others,
through Processing’s File menu, as follows:

Select File ➤ Sketchbook ➤ Examples ➤ Motion ➤ BrownianMotion from the top menu bar.

You should see a bunch of code fill the text-editor section of the Processing window, as
shown in Figure 2.

Figure 2. The Processing application interface with a loaded sketch

To launch the sketch, click the right-facing run arrow (on the left of the brown toolbar at
the top of the Processing window—it looks like a VCR play button), or press Cmd+R (OS X)
or Ctrl+R (Windows).

If you were successful, a 200-pixel-by-200-pixel display window with a dark gray back-
ground should have popped open, showing a white scribbly line meandering around the
window (see Figure 3). Congratulations! You’ve just run your first Processing sketch. I rec-
ommend trying some of the other examples to get a taste of what Processing can do and
to familiarize yourself a little with Processing’s simple yet elegant interface.

xxvii

INTRODUCTION

617xFM.qxd 5/2/07 12:05 PM Page xxvii

Figure 3. Screenshot of BrownianMotion sketch

How to use this book
I created this book with a couple of objectives in mind. Based on my own creative experi-
ences working with code and application software, I wanted to present a conceptual intro-
duction to code as a primary creative medium, including some history and theory on the
subject. Based on my experiences in the digital art classroom, I wanted to provide an artist-
friendly, introductory text on general programming theory and basic graphics program-
ming. Lastly, based on my experience of working with a number of programming languages
(especially ActionScript and Java), I wanted to introduce readers to an exciting new
approach to creative coding with the Processing language and environment. Accomplish-
ing all this required a fairly ambitious table of contents, which this book has.

In addition to the 800+ pages within the book, there are an additional 142 pages of
“bonus” material online, at www.friendsofed.com/book.html?isbn=159059617X.

The bonus material is divided into Chapter 14 and Appendix C. Chapter 14 covers
Processing’s Java mode, as well as some advanced 3D topics. Appendix C provides a
tutorial on how to use the Processing core library in “pure” Java projects—outside of
the Processing environment.

xxviii

INTRODUCTION

617xFM.qxd 5/2/07 12:05 PM Page xxviii

In navigating all this material, I offer some suggestions to readers:

Don’t feel that you have to approach the book linearly, progressing consecutively
through each chapter, or even finishing individual chapters before moving ahead. I
don’t think people naturally operate this way, especially not creative people. I tend
to read about 20 books at a time, moving through them in some crazy fractal pattern.
Perhaps my approach is too extreme, but beginning on page one of a book like this
and progressing until the last page seems even more extreme. I suggest taking a
grazing approach, searching for that choice patch of info to sink your brain into.

Read stuff over and over until it sticks. I do this all the time. I often get multiple
books on the same subject and read the same material presented in different ways
to help me understand the material. I don’t do this to memorize, but to grasp the
concept.

Don’t worry about memorizing stuff you can look up. Eventually the stuff that you
use a lot will get lodged in your brain naturally.

Try to break/twist/improve my code examples. Then e-mail me your improved
examples—maybe I’ll use one in another book; of course I’d give you credit.

Always keep a copy of the book in the bathroom—it’s the best place to read guilt-
free when the sun’s still out.

Give us some feedback!
We’d love to hear from you, even if it’s just to request future books, ask about friends of
ED, or tell us how much you loved Processing: Creative Coding and Computational Art.

If you have questions about issues not directly related to the book, the best place for these
inquiries is the friends of ED support forums, at http://friendsofed.infopop.net/2/
OpenTopic. Here you’ll find a wide variety of fellow readers, plus dedicated forum moder-
ators from friends of ED.

Please direct all questions about this book to support@friendsofed.com, and include the
last four digits of this book’s ISBN (617x) in the subject of your e-mail. If the dedicated
support team can’t solve your problem, your question will be forwarded to the book’s
editors and author. You can also e-mail Ira Greenberg directly at processing@
iragreenberg.com.

Layout conventions
To keep this book as clear and easy to follow as possible, the following text conventions
are used throughout:

Important words or concepts are normally highlighted on their first appearance in
bold type.

Code is presented in fixed-width font.

xxix

INTRODUCTION

617xFM.qxd 5/2/07 12:05 PM Page xxix

http://friendsofed.infopop.net/2/

New or changed code is normally presented in bold fixed-width font.

Pseudocode and variable input are written in italic fixed-width font.

Menu commands are written in the form Menu ➤ Submenu ➤ Submenu.

When I want to draw your attention to something, I highlight it like this:

Sometimes code won’t fit on a single line in a book. Where this happens, I use an
arrow like this: ➥

This is a very, very long section of code that should be written ➥

all on the same line without a break.

Ahem, don’t say I didn’t warn you.

INTRODUCTION

xxx

617xFM.qxd 5/2/07 12:05 PM Page xxx

PART ONE THEORY OF PROCESSING
AND COMPUTATIONAL ART

The creative process doesn’t exist in a vacuum—it’s a highly integrated activity reflecting
history, aesthetic theory, and often the technological breakthroughs of the day. This
was certainly the case during the Renaissance, when artists, engineers, scientists, and
thinkers all came together to create truly remarkable works of art and engineering.
Over the last few decades, we’ve been experiencing our own Renaissance with the pro-
liferation of digital technology—creating radically new ways for people to work, play,
communicate, and be creative. Processing was born directly out of these exciting
developments.

In Part 1 of the book, I’ll look at some of the history and theory behind Processing,
computational art, and computer graphics technology. I’ll also discuss some of the
challenges and exciting possibilities inherent in working with such a new and evolving
medium. You’ll learn about a number of pioneers in the computational art field, and
also take a tour of the Processing environment. Finally, you’ll explore some of the fun-
damental concepts and structures involved in graphics programming.

617xCH01.qxd 2/27/07 2:58 PM Page 1

617xCH01.qxd 2/27/07 2:58 PM Page 2

1 CODE ART

617xCH01.qxd 2/27/07 2:58 PM Page 3

Ask the average person what they think computer art is, and they’ll likely mention the
types of imaging effects we associate with Photoshop or maybe a blockbuster 3D animated
film like Shrek. I still remember the first time I cloned an eyeball with Photoshop; it was
totally thrilling. I also remember getting a copy of Strata Studio Pro and creating my first
perfect 3D metal sphere (you know, the one with the highly reflective ship plate texture
map). However, once we get a little more experience under our belts and have tried every
freakin’ filter we can get our hands on, the “gee whiz” factor subsides, and we are stuck
with the same problem that all artists and designers experience—the empty white page or
canvas. Of course, each year I have many students who believe that they have found the
perfect combination of filters that will produce remarkable and original works of art—
without the need to exert too much effort (or leave their game consoles for very long). In
the end, though, the stylistic footprints left behind by these filters is unavoidable. That is
not to imply that the filters are the problem; I couldn’t do my job without the genius of
Photoshop. It is the approach to using them that is the problem, or the belief that all that
power will make the process of creating art any easier.

The fact that these filters are so captivating and that my students are drawn to them is sig-
nificant, and I don’t think it is only because they are a quick fix. I think what we see in
those amazing filters, as we do when we stare at a cool seashell or a dramatic sunset, is
algorithmic beauty. Now, I can hear some of you beginning to moan when you read a
phrase like that, but I promise you I won’t lapse into too many pages of new age touchy-
feeliness.

For me, algorithmic beauty is just an apparent mathematical pattern that we find engag-
ing. It can be a passage in music, a strange coincidence of events, a crystal, or, yes, even a
Photoshop filter. We see a pattern of forces at work, creating something uncommon, yet
familiar at the same time. When we can predict the patterning too readily, and in a sense
crack the code, the effect tends to wear off, and we have almost the opposite reaction to
awe; we feel cheated or at least unimpressed—thus my disdain at spotting too many fil-
ters. The really cool and mysterious thing is that in some sense, in detecting beauty, our
brains seem to be doing a strange type of intuitive math, where we are measuring inter-
vals, comparing ratios, and computing some kind of algorithmic aesthetic solution.

I experienced an example of this when I was in grad school studying painting. A bunch of
us were eating breakfast at the quintessential greasy spoon in center city, Philadelphia.
Somebody had found this pretty cheesy visual literacy quiz. The idea was to look at a series
of diagrams and pictures and say which one worked the best. There were about ten sepa-
rate questions on the page, and everyone at the table took the test independently,
between forkfuls of grease heaven. Surprisingly, we all got the same exact answers. Now it
could have been due to the common grease we were ingesting, or sheer coincidence, but
I like to think we all got the same answers because we all shared a common visual algo-
rithmic literacy. The test wasn’t about what we liked, but which images worked best. Had
the test instead been about which images were better works of art, not only would none
of us have agreed, but we most likely would have been thrown out of the restaurant for
disorderly conduct. The decision whether an image, object, or design “works” from an aes-
thetic standpoint may be as close to a quantifiable measure as you can (or probably
should) bring to a piece of art.

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

4

617xCH01.qxd 2/27/07 2:58 PM Page 4

The problem with a Photoshop filter is its limited range of expressive possibility. Each filter
has a rational consistency, which is absolutely necessary for generating predictable results
and overall reliability. But the rationality built into the tool makes it hard to find new solu-
tions. Coding allows you much greater freedom to build in levels of control, and also lev-
els of randomization and even irrational processes that don’t always work but can lead to
exciting, unexpected results.

Using Processing, it doesn’t take too long playing with some code to generate truly evoca-
tive images and visual experiences, gain some insight into how a program like Photoshop
works, and go way beyond any preprogrammed filters.

Aesthetics + Computation
Aesthetics + Computation is the name of the now famous research group at MIT’s Media
Lab, where Casey Reas and Ben Fry, the creators of the Processing language, worked as
grad students under John Maeda. However, interest in aesthetics and computation goes
back way before 1996, when Maeda began teaching at MIT.

If we’re a bit flexible in how we translate the term “computation,” we can go really way
back—as far back, in fact, to when people first learned to count and draw (ironically, skills
that some would argue are in sharp decline today because of computers). The term com-
putation, according to www.dictionary.com, means “the procedure of calculating; deter-
mining something by mathematical or logical methods.” If you take the term mathematical
out of the definition (already I can feel some readers’ comfort levels increasing), the defi-
nition could pretty much account for most human decisions. For example, I have a faculty
meeting coming up. Therefore, I need to remember to bring my sketchpad to the meeting
to be able to draw annoying caricatures of my colleagues so that I don’t fall asleep. See, a
perfect example of aesthetics + computation.

Serious interest in aesthetics + computation as an integrated activity is evident in all cul-
tures and is manifest in many of the objects, structures, and technologies of the times in
which they were created. Regardless of whether the technology is an engraving stick, a
loom, a plow, or a supercomputer, the impulse to work and play in an integrated left-/
right-brain way is universally evident, and the technical innovations of the day most often
coincide with parallel developments in aesthetics. Early astrological and calendar systems,
across many cultures, combined observed empirical data with richly expressive, mytholog-
ical narratives as a way of interpreting and ultimately preserving and disseminating the
data. Weavings, textiles, engravings, mandalas, and graphs from cultures around the world
employ complex algorithmic patterns based upon mathematical principles, yet most often
are not developed by mathematicians (see Figures 1-1 through 1-4). Rather, these devel-
opments seem to reflect a universal human impulse to integrate right-brain and left-brain
activities, combining qualitative notions of aesthetic beauty with analytical systems for
structuring visual data.

CODE ART

5

1

617xCH01.qxd 2/27/07 2:58 PM Page 5

Figure 1-1. Ur game board, found in grave, 2600 BC

Figure 1-2. Replica of the Aztec stone of the sun, from the original found in the city
formerly known as Tenochtitlán

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

6

617xCH01.qxd 2/27/07 2:58 PM Page 6

Figure 1-3. Example of ancient art of Kolam, southern India, 1970s

Figure 1-4. Tibetan monks making a temporary “sand mandala” in the Kitzbühel City Hall, Austria

CODE ART

7

1

617xCH01.qxd 2/27/07 2:59 PM Page 7

Renaissance biographer Giorgio Vasari tells us that the Florentine architect Filippo
Brunelleschi (1337–1446) took up painting to apply his newly developed theory of per-
spective, based upon Greek geometry. Additionally, other major Renaissance painters
including Piero della Francesca, Albrecht Dürer, and Leonardo da Vinci not only experi-
mented and applied principles of geometry in their work, but published treatises on math-
ematics. Dürer even developed several drawing machines that could be used to teach
perspective. Especially during the European Renaissance, the division separating art and
science blurred to the point that many of its greatest practitioners made nearly equal con-
tributions to each.

Interestingly (or maybe sadly), it may be one of the unique aspects of our contemporary
culture that the need for professional hyperspecialization has made left-/right-brain inte-
gration more difficult and rare. The amount of training and specialized information we
each feel we need to develop “competency,” and ultimately, success, in our fields forces a
vocational myopia, which then reinforces many of our erroneous assumptions: “I’m not
good at math,” “I can’t draw,” and so on. The situation isn’t helped when we create totally
inscrutable private vocabularies around our fields (especially the most technical ones),
making them practically inaccessible to outsiders. This is certainly the case in computing,
and especially programming. I think one of John Maeda’s hopes in creating the Aesthetics
+ Computation group at MIT, and the reason he created the programming language
Design by Numbers (DBN; the precursor to Processing), was to reveal the aesthetic beauty
and power of computation (and math) to artists and designers. By using a really simplified
programming language and approaching programming instruction in a straightforward
and creatively centered way, he hoped artists would feel free to begin to express them-
selves through this fascinating medium and challenge some of their unproductive assump-
tions (such as “artists don’t do math”).

I think Maeda believes, as I do, that the core expressive element of computing is not at the
software application level, using sliders, spinners, dialog boxes, and filters; but at the lower
level of computation, most accessible through direct programming. I like to think of pro-
gramming as the material level of computing, the place to get, at least metaphorically,
your hands dirty. Casey Reas and Ben Fry, Maeda’s students, understood this vision and
built Processing as an extension of (or at least homage to) DBN, adding the features of a
powerful programming language while retaining DBN’s ease of use to facilitate its applica-
tion as an expressive creative medium.

Computer art history
The history of computer art goes back further than most people realize. However, before
diving into computer art, it’s helpful to create some historical context by examining just a
little computing history. There are many places to begin the story of computing; we could
go back 4,000 years to the ancient Egyptians and Babylonians and the origins of mathe-
matics. I suspect of interest to some readers would be the Egyptian Ahmes Papyrus, which
contains some of the first known written equations for, among other things, the formula
for beer—one approach to keeping students interested in math. We could then methodi-
cally move through the entire history of mathematics, looking at the Babylonian Salamis
tablet, or counting board, circa 300 BC; the Roman hand abacus (see Figure 1-5) a little
later; and then the suan pan, or Chinese abacus, getting us to around 1200 AD. We could

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

8

617xCH01.qxd 2/27/07 2:59 PM Page 8

then jump 400 years to 1614 and John Napier, the Scottish supergenius who developed
logarithms (which allow multiplication and division to be handled like simple addition and
subtraction), as well as a system of using metal plates for performing multiplication and
division. For this, Napier gets credited with developing the earliest known attempt at a
mechanical means of calculation. Building upon Napier’s work, Edmund Gunter gets cred-
ited in 1620 with developing the second most important geek tool of all time, the slide
rule (see Figure 1-6). Leaping ahead 200 years or so to the 1830s, we come across a very
significant moment in computing history and some extremely interesting characters:
Charles Babbage, Ada Lovelace, and the Analytical Engine.

Figure 1-5. Reconstruction of a Roman abacus

Figure 1-6. Pickett circular slide rule with two cursors

CODE ART

9

1

617xCH01.qxd 2/27/07 2:59 PM Page 9

Babbage was a professor of mathematics at Cambridge, who interestingly held the same
Lucasian chair as Newton, which is now held by present day supergenius Stephen Hawking—
not a bad lineage. Babbage was an obsessive classifier, regularly measuring and collecting
all the relevant (by his standards) data he came across, such as the heartbeats of farm ani-
mals, the rate at which a man could saw wood, and even the frequency and cause of bro-
ken windows around town. He supposedly went so far as to bake himself in an oven for a
couple of minutes to figure out the amount of heat that the human body could withstand.
Babbage was also a vehement hater of street musicians (not sure why).

Babbage believed, perhaps naively but brilliantly, that his obsessive data analysis would
lead to a sort of empirical truth about, well, everything. Babbage designed a complex cal-
culating machine called the Analytical Engine (see Figure 1-7). It was designed as a steam
run, automatic, programmable, universal machine capable of solving nearly any algebraic
function. Amazingly, Babbage’s design included almost all the logical features of a modern-
day computer. Unfortunately, as with many visionaries, his wild ambition for the engine
was ultimately beyond the reality of its actualization, and it was never completed.

Figure 1-7. The London Science Museum’s replica difference engine, built from Babbage's design

Ada Lovelace, the daughter of poet Lord Byron, who never actually met her famous father,
was raised to be a mathematician and scientist. Her controlling mother was determined to
rid her of any inherited poetical tendencies from her estranged famous husband (she
divorced Byron shortly after her daughter’s birth). This plan of course failed, and Lovelace’s

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

10

617xCH01.qxd 2/27/07 2:59 PM Page 10

fertile imagination remained intact, along with her phenomenal analytical talents, making
her a great exemplar of the power of an integrated mind. The story goes that Lovelace
eventually heard about Babbage’s analytical engine at a dinner party in 1834, and was
quite taken by the idea. She saw many potential applications for the powerful engine,
when most everyone else did not, including the wild possibility of having the machine
compose music and even generate graphics. Babbage and Lovelace developed a corre-
spondence, and she eventually wrote a document to Babbage suggesting a plan to have
the engine calculate Bernoulli numbers. There is no simple way to explain Bernoulli num-
bers, so I’ll just say that they are quite significant in mathematics—here’s a link if you’re
interested: http://en.wikipedia.org/wiki/Bernoulli_numbers. The plan, or algorithm,
that Lovelace wrote to Babbage is now regarded as the first computer program—100 years
before the invention of the computer! (How cool is that?)

In spite of Babbage and Lovelace’s prescient work, computing history went nowhere for
nearly 100 years. It wasn’t until the mid-1930s that German engineer Konrad Zuse devel-
oped the Z1 (see Figure 1-8) and got credited with developing the first computer.

Figure 1-8. The Z1 was a mechanical computer created by Konrad Zuse in 1937. A reproduction of
this machine (pictured) is currently housed in the Deutsches Technikmuseum Berlin.

Between the ’30s and mid-’40s—thanks in part to the very unfortunate need for things like
firing tables and atomic bomb calculations—numerous modifications were made to the
Z1, and other significant computer initiatives were begun, including John Atanasoff’s ABC
computer, the Mark 1 at Harvard, and the ENIAC at Penn (see Figure 1-9). These initial
machines were very difficult to program, and the Mark 1 and the ENIAC were absolutely
enormous. The Mark 1 was 51 inches long, 8 feet high, and contained 17,486 vacuum
tubes. The ENIAC weighed in at 30 tons and used so much power that it was said to cause
the lights of Philadelphia to flicker.

CODE ART

11

1

617xCH01.qxd 2/27/07 2:59 PM Page 11

http://en.wikipedia.org/wiki/Bernoulli_numbers

Figure 1-9. The ENIAC

Finally in 1951, the first general-purpose computer, the UNIVAC, was developed, with a
relatively easy-to-use programming language, including some programming standards. The
UNIVAC was used by the Census Bureau in 1951, and famously predicted Eisenhower’s vic-
tory in 1952. The programming language the UNIVAC used was developed by the amazing
Grace Murray Hopper (see Figure 1-10), the first woman to be awarded the rank of rear
admiral.

Figure 1-10.
Commodore Grace M. Hopper

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

12

617xCH01.qxd 2/27/07 2:59 PM Page 12

As an aside, it’s worth observing that computer programming, which has gotten the stigma
as a male-dominated pursuit, had two brilliant women as its founding pioneers.
Contemporary artist Mary Flanagan addresses this issue in a very interesting way with her
RAPUNSEL project, which I’ll elaborate upon a little later.

Admiral Hopper is, among many other distinctions, also attributed with coining the term
“software bug,” when she actually found a dead moth in one of the Mark 2 computers,
preventing it from working. She had programmed the Mark 1 at Harvard in the very early
’40s, and also developed the first compiler. Compilers are used to convert the mnemonic
code that a programmer writes into machine code. Machine code is a binary system com-
posed of zeros and ones that is, in a sense, the native language the computer speaks.
Mnemonic code is a higher-level system of symbols and natural language-like constructs,
which we use to program the computer with. For example, as it is near lunchtime I am
beginning to think “I’m getting hungry.” Converting these words into binary machine code,
I get the following:

01001001001001110110110100100000011001110110010101110100011101000110100101
1011100110011100100000011010000111010101101110011001110111001001111001

I don’t know about you, but I find it a bit (no pun intended) easier to understand the sym-
bolic code “I’m getting hungry,” rather than the 144 zeros or ones in the binary code.

As computers have evolved, and the problems we throw at them (such as art making) have
steadily increased in complexity, the mnemonic codes, or programming languages, that
we’ve developed have steadily gotten higher-level. Higher-level means moving the sym-
bolic abstraction of the language further away from the underlying binary machine code
and nearer to our natural language—and ultimately (hopefully) nearer to how people
think. This idea of creating higher-level symbolic abstractions away from the zeros and
ones, allowing the coder to think more naturally and thus gain programming literacy more
easily, has led directly to the development of languages like Processing.

It didn’t take very long for some pioneering artists to see the expressive potential and fas-
cination in computers. As early as 1956, just five years after the UNIVAC was developed,
artists began experimenting with computing as an expressive medium. Of course, comput-
ers were inaccessible to most artists in the late ’50s. According to Jasia Reichardt in her
book The Computer in Art, there were no computers in any art departments or art col-
leges by the end of the 1960s. Although at a few places, notably Ohio State, artists had
access to the university computer, as well as some technical staff. Jasia then goes on to
state in her 1971 book, “one can assume that there are probably no more than about
1,000 people in the world working with computer graphics for purposes other than the
practical ones.”

Dividing computer graphics pioneers along practical vs. nonpractical applications in 1971
struck me as amusing. I’d argue that anyone dabbling in this black science back then was
pioneering very experimental applied applications at best. I think this same erroneous dis-
tinction between applied vs. fine art continues to linger within the digital arts today, as
many “hybrid” types (myself included) have struggled to define their places in universities,
galleries, and industry. Fortunately, there were times in history when scientists, artists,
philosophers, engineers, and so forth were all seen as integrated creative practitioners—
not divided solely by their perceived utilitarian value in the marketplace. And there seems

CODE ART

13

1

617xCH01.qxd 2/27/07 2:59 PM Page 13

to be a growing recognition in industry, thanks in part to companies like Apple, that
creativity and design are good for business. Universities are also recognizing and respond-
ing to students’ interests in blurring old delimiting disciplinary and curriculum boundaries,
and digital media and the electronic arts are at the center of this movement. The recent
dramatic and swelling popularity of Processing is a testament to this contemporary
renaissance.

Code artists
In concluding this chapter, I’ve included some brief biographies of 12 code/electronic
artists, many of whom are still practicing, exhibiting, and teaching. Some have worked as
fine and applied artists throughout their careers, many with traditional materials, which in
most cases has informed the digital work. All of these artists apply computation and tech-
nology to their creative practice in a formally rigorous way, utilizing code and algorithmic
approaches. Their work is not solely a commentary on technology, nor illustrated or sim-
ply facilitated by it, but is rather of it. I also want to preface this list by stating that I have
left out at least as many worthy individuals as I have included. I have tried to include those
individuals who represent a wide range of approaches and whose work most directly
informs the varied directions artists are pursuing with Processing. Following the biogra-
phies is a list of additional noteworthy artists with links to their work.

Ben Laposky, 1914–2000

Both mathematician and artist, Ben Laposky was a pioneer among computer art pioneers.
He created the first electronic abstract images in 1950 by using an electronic analog device
called a cathode ray tube oscilloscope. To put Laposky’s pioneering role in some context,
it wasn’t until 1960 (ten years later) that the term “computer graphics” was first coined by
William Fetter, a graphic designer at Boeing. Laposky created images of beautiful mathe-
matical curves he named “oscillons.” The curves were based on the basic waveforms uti-
lized in analog computers. Analog computers, now mostly unknown, were utilized as early
as the 1920s and were capable of very fast, complex calculations. They used continuous
variations in voltage, allowing real-time calculations, as opposed to distinct finite signals,
which are employed in digital computers. To learn more about analog computers, check
out http://en.wikipedia.org/wiki/Analog_computer. By the 1940s, analog computers
began to be replaced by digital computers, which were more affordable to produce and
more universal as general-purpose tools. I’ll discuss more about the type of waveforms
Laposky generated later in the book, including how to generate some of them. To capture
the curves, Laposky photographed the images directly off the display with high-speed film.
What I find striking about his images is their elegant simplicity and organic quality, in con-
trast to the technical means from which they arose. Beyond Laposky’s pioneering technical
virtuosity is his steadfast focus on the aesthetic quality of his work. This combined focus
on the technical and aesthetic is an important enduring legacy that unites all the artists
mentioned in this chapter. To learn more about Laposky and view some images of his
work, check out www.dam.org/laposky/index.htm and www.atariarchives.org/artist/
sec6.php.

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

14

617xCH01.qxd 2/27/07 2:59 PM Page 14

http://en.wikipedia.org/wiki/Analog_computer

John Whitney Sr., 1918–1995

John Whitney’s work involved photography, film, and eventually also music. In the 1940s,
he began to study images in motion, along with his brother James. This interest would
remain with him the rest of his long career and eventually involve the integration of
motion and sound. Whitney combined a very successful career in commercial film and tel-
evision with his more personal and experimental investigations. He even produced the title
sequence for Hitchcock’s Vertigo. By the 1960s, Whitney had formed a company, Motion
Graphics, to produce commercials, at which he pioneered early computer-based anima-
tion and typography with a mechanical analog computer that he invented. Whitney gained
wide recognition for his work with the analog computer, as well as for a sample reel enti-
tled “Catalog,” which showcased his innovative motion work. Between 1966 and 1969,
Whitney got to work with powerful digital computers as the first artist in residency at IBM.
From this period through the ’70s, he continued to push the complexity of his work,
creating numerous experimental films and documentaries while also refining his focus to
achieve what he called “harmonic progression.” Throughout his entire career, Whitney
remained an innovator, eventually developing a computerized instrument that allowed
him to compose visuals and music in real time. Additional information on Whitney,
including images, can be viewed at www.siggraph.org/artdesign/profile/whitney/
nowhitney.html and http://en.wikipedia.org/wiki/John_Whitney_(animator).

Herbert W. Franke, b.1927

Franke is a brilliant generalist, with formal training in physics, mathematics, chemistry, psy-
chology, and philosophy. He is a widely published author—his works include seven science
fiction titles, essays, articles, and scripts on subjects as wide ranging as physics, theoretical
chemistry, scientific photography, visual perceptions, art and technology, futurology, and
speleology (the scientific study of caves). His early work paralleled Loposky’s, utilizing
oscilloscopes to generate images based on waveforms. Since 1962, Franke has remained
active in “experimental aesthetics,” lecturing and creating new work in the field. He
cofounded the Ars Electronica Festival in 1979, arguably the most prestigious international
electronic arts festival in the world, held annually in Linz, Austria. In 2005, for their work
on Processing, Casey and Ben won a Golden Nica—the festival’s top prize. Franke has
remained on the bleeding edge of emerging technology throughout his career, and begin-
ning in the mid ’90s began developing algorithmic animations using the Mathematica soft-
ware system. In 2002, he released a book on the subject, entitled Animation with
Mathematica. To learn more about Franke (in English), see http://en.wikipedia.org/
wiki/Herbert_W._Franke and www.dam.org/franke/index.htm; to learn more about him
in German, see www.zi.biologie.uni-muenchen.de/~franke/.

Lillian Schwartz, b. 1927

Lillian Schwartz has been a central and pioneering figure in the history of computer art,
making broad and significant contributions in computer-generated art and computer-
aided art analysis. Her work and research have led to advances in graphics, film, video,
animation, special effects, virtual reality, and multimedia. She gained prominence in
the late ’60s when one of her kinetic sculptures, Proxima Centauri, was included in the

CODE ART

15

1

617xCH01.qxd 2/27/07 2:59 PM Page 15

http://en.wikipedia.org/wiki/John_Whitney_(animator
http://en.wikipedia.org/

groundbreaking 1968 Machine Exhibition at the Museum of Modern Art (MoMA), New
York. She is also the first artist to have a piece of computer art acquired by the MoMA. In
addition to the MoMA, her work has been exhibited at and is owned by the Metropolitan
Museum of Art, the Whitney Museum of American Art, the Moderna Museet (Stockholm),
Centre Beaubourg (Paris), the Stedelijk Museum of Art (Amsterdam), and the Grand Palais
Museum (Paris). Her films have been shown and won awards at the Venice Biennale,
Zagreb, Cannes, and the National Academy of Television Arts and Sciences; and she has
been nominated for and received Emmy awards. Like many of the early pioneers, Schwartz
has made substantial contributions within industry, academia, and the art world. She was a
consultant at AT&T Bell Laboratories, IBM’s Thomas J. Watson Research Laboratory, and
Lucent Technologies Bell Labs Innovations. Her research has led to advances in the under-
standing of visual and color perception, sound, perspective, historic preservation, and
applications of the computer in the philosophy of art—using computation to investigate
the creative process. She has taught in both fine art and computer science departments
throughout the United States, as well as internationally. Schwartz has received numerous
awards, including Computerworld Smithsonian awards in three categories. She has also
been the subject of articles, books, and television news and documentary programs, and is
the coauthor of The Computer Artist's Handbook (together with Laurens R. Schwartz). To
learn more about Schwartz and see images of her work, go to her personal website,
www.lillian.com/.

Harold Cohen, b. 1928

Cohen, probably more than anyone else, made a wide and dramatic migration from the
traditional arts to computer art. He was a celebrated painter in the ’60s, including repre-
senting Great Britain in the Venice Biennial in 1966. In 1968, he moved to Southern
California as a visiting faculty at the University of California, San Diego. He soon became
interested in artificial intelligence, and in 1971 was invited to spend two years at the
Artificial Intelligence Laboratory of Stanford University as a guest scholar. Since then, his
work has focused on the integration of artificial intelligence with the visual artist’s creative
process. Over three decades, Cohen developed an expert drawing system, a rule-based
software program capable of simulating aspects of human creativity and intelligence. He
named the system he developed AARON. AARON is capable of creating original works of
art on its own. Although all the work AARON produces is stylistically similar, the range of
subject matter, composition, and color is not. What is so surprising about AARON, and I
believe what makes it groundbreaking, is that the work it produces is representational.
Most algorithmic systems generate abstract or color field–oriented images. AARON cre-
ates, in a sense, freehand drawn images of people, still lifes, and landscapes. Cohen’s (and
AARON’s) work has been shown around the world, including in the Los Angeles County
Museum, Documenta 6, the San Francisco MoMA, the Stedelijk Museum in Amsterdam,
the Brooklyn Museum, the Tate Gallery in London, and the IBM Gallery in New York. Cohen
has a permanent exhibit in the Computer Museum in Boston, and represented the United
States in the Japan World Fair in 1985. In 2000, artificial intelligence entrepreneur and
inventor Ray Kurzweil licensed the code to AARON and created a screen saver version of
the software, which he hosts at his Kurzweil CyberArt Technologies website (www.
kurzweilcyberart.com/). Cohen continues to push his work and process, developing even
more naturalistic and organic representational images based on machine intelligence

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

16

617xCH01.qxd 2/27/07 2:59 PM Page 16

algorithms. To learn more about Cohen and to see images of his (and AARON’s) work,
check out www.kurzweilcyberart.com/aaron/hi_cohenbio.html and www.viewingspace.
com/genetics_culture/pages_genetics_culture/gc_w05/cohen_h.htm. Here’s an inter-
esting blog entry he wrote about “creative” programming: http://grandtextauto.
gatech.edu/2003/06/17/harold-cohen-on-artist-programmers/.

Roman Verostko, b. 1929

Roman Verotsko has had a long, distinguished, multifaceted career. For 16 years, beginning
in 1952, he lived as a Benedictine monk. Toward the end of this monastic period, he was
sent to New York to develop himself as an artist, with the goal of bringing this experience
and training back to the abbey. While in New York, he received an MFA from Pratt and
then took graduate courses in Art History at both Columbia and New York University.
Eventually struggling with his beliefs in revelation and the dogmas of the church, he left
the monastic life in 1968 and took a faculty position at Minneapolis College of Art and
Design, where he remained throughout his academic career. Verostko spent the first 30
years of his artistic life painting. This early work dealt with the search for an internal
dynamic force in a work of art. He wrote the following about his process:

In 1970, he received a Bush Fellowship grant, which provided him the opportunity to work
with Gyorgy Kepes at the Center for Advanced Visual Studies at MIT. At the time,
Verostko’s interest in computer technology related more to how artists could humanize
the emerging medium than how it could be applied directly to the creative practice; it
would be 14 years (1984) before Verostko began utilizing computer code within his own
creative practice. Eventually, code would become his primary creative medium, extending
(rather than supplanting) his earlier interests in spiritual practice and painting.

Verostko was influenced by artists such as Mondrian, Kandinsky, and Malevich in his pur-
suit to uncover the underlying unity of nature, based on an integration of opposing forces
within the image. He developed a software/hardware system he called “Hodos.” Hodos
generates both screen-based and physical images created with brushes mounted on a pen
plotter’s drawing arm. Verostko’s algorithms control the range of expression of the system,
allowing for his personal style and interest in opposing forces to emerge. In 1995, Verostko
and a group of artists including Jean-Pierre Hébert and Ken Musgrave formed an informal
group they named “the Algorists,” for those artists who use their own algorithms for cre-
ating art objects. Verostko has received numerous awards and recognition for his work
including the Golden Plotter (first prize, 1994), Gladbeck (Germany), and Prix Ars
Electronica (honorary mention, 1993). Verostko maintains an excellent site about his work
and life at www.verostko.com/.

Through this process, in a kind of spiritual quest—one has to empty the self of "think-
ing," be entirely present to the moment, and strive to be one with one's world. To be
one with the brush, the crayon, the panel, the universe—in a free flowing gesture was
indeed the goal. Being most "free" was also being most "joined."

CODE ART

17

1

617xCH01.qxd 2/27/07 2:59 PM Page 17

http://grandtextauto

George Legrady, b. 1950

Chronologically, Legrady represents a generation of digital artists born between the earli-
est pioneers—Laposky, Whitney, Franke, and Schwartz, who depended upon (and often
were) scientists and technical experts—and the current generation of digital artists in their
30s and 40s, who grew up with the ease and convenience of personal home computing.
Paralleling this is Legrady’s own personal story. He is a two-time immigrant, born in
Budapest in 1950, who fled to Montreal in 1956 during the Hungarian uprising, and then
eventually settled in California in 1981. This recurring theme of being between or crossing
generations, space, cultures, and even time runs throughout his work. Trained originally as
a classical musician, Legrady’s musical interests eventually crossed over, and in 1969 he
worked as a rock and roll keyboard player. A product of the counterculture revolution of
the ’60s, Legrady created socially conscious documentaries in the 1970s and ’80s on the
Cree Indians of northern Quebec, communist iconography of central Europe, and hand-
painted advertising billboards in China. In 1981, Legrady began working with digital artist
pioneer Harold Cohen (whose bio is included in the preceding text), experimenting with
computer code as a creative medium. By the mid-’80s, Legrady, then an assistant professor
at the University of Southern California, began to receive recognition and awards for his
digital work, which at the time consisted of digital prints. In the following decade and
through the present, Legrady’s work has become more site-specific and computationally
intensive, involving interactive and algorithmically-based installations. For example, his
well-known piece Pockets Full of Memories involves an interactive space with large-scale
projections. Here’s an excerpt about the piece, taken directly from Legrady’s site
(http://www.mat.ucsb.edu/~g.legrady/glWeb/Projects/pfom2/pfom2.html):

George Legrady is Professor of Interactive Media, with joint appointments in the Media
Arts and Technology program and the department of Art at UC Santa Barbara. Additional
information about the artist and his work can be found at www.georgelegrady.com/.

Mark Napier, b. 1961

Napier originally studied engineering before switching to studio art. He graduated with a
BFA from Syracuse University and began his art career as a painter. A self-taught program-
mer, he supported himself as a software engineer, developing database systems and web-
based tools for the financial industry. In 1995, he merged these two pursuits, ending his
painting career and focusing his creative work exclusively, at the time, on Internet-based
art. In recent years, some of his work has expanded into gallery and museum settings.
Napier pioneered innovative and boldly conceptual web-based pieces such as Shredder
(www.potatoland.org/shredder/shredder.html), Digital Landfill (www.potatoland.org/

“Pockets Full of Memories” is an interactive installation that consists of a data collec-
tion station where the public takes a digital image of an object, adds descriptive key-
words, and rates its properties using a touchscreen. The data accumulates through-out
the length of the exhibition. The Kohonen self-organizing map algorithm is used to
organize the data, moving the images of the objects into an ordered state according
to similarities defined by the contributors’ semantic descriptions.

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

18

617xCH01.qxd 2/27/07 2:59 PM Page 18

http://www.mat.ucsb.edu/~g.legrady/glWeb/Projects/pfom2/pfom2.html):

landfill/), and Feed (www.potatoland.org/feed/). These projects, while technically
sophisticated and finely crafted, purposefully revealed the limitations, political implica-
tions, and chaos of the Web. Shredder is an alternate browser that constructs web pages,
not as ordered predictable pages, but in Napier’s words, “as a chaotic, irrational, raucous
collage.” Besides the implicit politics and software engineering in pieces like Shredder and
another browser he developed called riot, one perceives an interest in the visual. These
algorithmically-generated pieces are chaotic—at times boisterous, but always aesthetically
engaging, informed by a trained painter’s eye. It is these opposing forces of the raw and
the refined that give Napier’s pieces their distinctive energy and appeal. Napier’s work is in
numerous major collections, including the Guggenheim in New York. He’s also had work
commissioned by both the Whitney Museum of American Art and the San Francisco
Museum of Modern Art. His work has been shown widely, including at the Whitney
Biennial (2001), Ars Electronica, the Kitchen, ZKM net_condition, the Walker’s AEN show,
and many other venues and festivals around the world. Additional information, images,
and code can be found on Napier’s personal site, http://potatoland.org/.

John F. Simon Jr., b. 1963

John Simon combines a highly refined visual aesthetic with industrial grade coding skills.
He graduated from Brown in 1985 with degrees in studio art and geology, and then
received two more advanced degrees in earth and planetary science from Washington
University in St. Louis, and an MFA in computer art from the School of Visual Arts in New
York. His dual interests in analytical systems and aesthetics is almost always apparent in his
work. For example, in his “art appliances” software and LCD panels, 1998–2004, Simon sets
up algorithmically-based, complex software systems that examine abstraction vs. realism,
color theory, viewer perception, and other traditional painting concerns. The work often
has art historical connections and references (e.g., to Bauhaus, Klee, Kandinsky, Mondrian,
and Lewitt). Beyond Simon’s impressive software engineering skills and art historical
knowledge is a subtle, often poetic, aesthetic sensibility; many of his pieces are beautiful
objects. The work, both in concept and execution, is precise and economical. Simon
extends his work from the Web to handheld devices to wall-mounted integrated hard-
ware/software systems that he builds. He also produces software-driven laser-cut Plexiglas
objects. Simon is redefining how artists exist in the marketplace, pioneering the sale of
affordable works of art directly from his site, at http://numeral.com/.

John Maeda, b. 1966

John Maeda is currently the E. Rudge and Nancy Allen Professor of Media Arts and
Sciences at MIT. He is also one of the most well-known designers and digital arts pioneers
in the world, awarded in 2001 both the US and Japan’s top design career honor: the
National Design Award and the Mainichi Design Prize—not bad for someone who recently
turned 40. Maeda’s work and teaching have had a profound impact on the digital design
landscape and, perhaps more than anyone else, Maeda has influenced the present gener-
ation of code artists. Between 1996 and 2003, he directed the Aesthetics + Computation
Group (ACG) at MIT, which conducted research into the application of computer code and
computation as a primary creative medium. A number of Maeda’s students have become
leading designers/artists and (creative) technologists, including Golan Levin, Jared

CODE ART

19

1

617xCH01.qxd 2/27/07 2:59 PM Page 19

http://potatoland.org/
http://numeral.com/

Schiffman, and of course Casey Reas and Ben Fry. ACG was an outgrowth of an earlier
research group at MIT called the Visual Language Workshop (VLW), created in 1973. VLW
was created by Muriel Cooper and Ron MacNeil. Muriel Cooper was a renowned designer,
like Maeda, who became interested in applying artificial intelligence to the traditional
design process. In 2003, Maeda changed directions, transforming ACG into the Physical
Language Workshop (PLW), a design-oriented group that according to the site overview,
http://plw.media.mit.edu/, “designs tools for creating digital content in a networked
environment, and the means by which the content can be leveraged as creative capital
within an experimental online micro-economy that we call OpenAtelier.” For Maeda, PLW
was a return to the core ideas in Muriel Cooper’s VLW.

In addition, Maeda codirects SIMPLICITY, a new media lab–wide research initiative aimed
at redefining users’ relationships with technology in their daily lives. This statement on the
SIMPLICITY site says it all: “How do you make something powerful, but simple to operate
at the same time? This is the challenge.” Maeda’s extraordinary range of talents and his
critical approach to the development and implementation of technology in our daily lives
have contributed to him being included in Esquire’s 1999 list of the 21 most important
people of the 21st century. Here are some links to learn more about Maeda and view his
work: www.maedastudio.com/index.php, www.media.mit.edu/people/bio_maeda.html,
and http://weblogs.media.mit.edu/SIMPLICITY/.

Mary Flanagan, b. 1969

Mary Flanagan is an artist, producer, designer, technologist, activist, writer, and theorist,
and her work reflects an integration of all these interests. Her multidimensional projects
are created primarily for the Net or installation, and thematically involve the influence of
technology—net.culture, computer gaming, and mundane technological tools—on our
daily lives. Flanagan offers a fresh, alternative voice, inspiring through her work underrep-
resented populations to cross the digital divide. Prior to her academic appointments,
Flanagan spent a number of years working at Human Code, an Austin-based software
developer. Although she was a highly regarded and award-winning producer and designer
within the gaming industry, she was frustrated by the lack of titles being developed for
girls and minorities, so she left the industry for academia to pursue her social activist/artis-
tic vision. Two projects she has since developed directly address this concern. The
Adventures of Josie True (www.maryflanagan.com/josie/) is the first web-based adven-
ture game for girls. The game’s characters include Josie, an 11-year-old Chinese-American
girl; a female African-American aviator called Bessie Coleman; and Josie's science teacher,
Ms. Trombone, who is also an inventor. Flanagan is also involved in the development of a
collaborative and highly ambitious project: RAPUNSEL (www.maryflanagan.com/rapun-
sel/). The RAPUNSEL project team is made up of a number of leading computer scientists,
artists, and educational theorists who are researching and building a software environment
to teach programming concepts to kids. Ultimately, RAPUNSEL will become a multiuser 3D
game to teach middle school girls computer programming. Flanagan’s work has been
exhibited internationally at museums, festivals, and galleries, including the Guggenheim,
the Whitney Museum of American Art, SIGGRAPH, the Banff Centre, the Moving Image
Centre in New Zealand, the Central Fine Arts Gallery in New York, Artists Space in New
York, the University of Arizona, the University of Colorado, Boulder, and many other inter-
national venues. Her essays on digital art, cyberculture, and gaming have appeared in

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

20

617xCH01.qxd 2/27/07 2:59 PM Page 20

http://plw.media.mit.edu/
http://weblogs.media.mit.edu/SIMPLICITY/

periodicals such as Art Journal, Wide Angle, Intelligent Agent, Convergence, and Culture
Machine, as well as several books. She has received funding by the National Science
Foundation, the Pacific Cultural Foundation, and the National Endowment for the Arts.
Flanagan teaches in the Department of Film and Media Studies at Hunter College, New
York. Her research group and lab at Hunter is called tiltFactor. Visit it online at www.
tiltfactor.org/.

Casey Reas, b. 1970

Casey Reas is a renowned designer/artist, lecturer, thinker, and of course one half of the
Processing design/development team. He was a student of John Maeda’s at the MIT media
lab, where he and Ben Fry helped develop the DBN programming language/environment.
Processing was, to a degree, a natural outgrowth of DBN. Reas originally studied design at
the University of Cincinnati before attending MIT, and was one of the founding professors
at Interaction Design Institute Ivrea. At Ivrea, Reas worked with an international student
body to develop a new arts pedagogy. It was during this period in Ivrea that he and Fry ini-
tiated Processing. Reas’s work is software-based—code and coding are his primary
medium. However, he manifests his code-based work in a variety of executions, including
kinetic, reactive, and printed pieces. Some of his most recent work employs ideas explored
in conceptual and minimal artworks, such as the wall drawings of Sol LeWitt. In a commis-
sion he received in 2004 from the Whitney, entitled {Software} Structures, Reas explored
the relationship between conceptual art and software art. For the project, Reas created
three unique descriptive structures that merely described relationships between elements
in the pieces. He purposely left the structures general, without any code notation, to allow
other coders to implement the pieces in different programming languages. Three other
leading code artists—Jared Tarbell of Levitated (http://levitated.net/), Robert Hodgin
of Flight404 (http://flight404.com/), and William Ngan of Metaphorical.net (http://
metaphorical.net/)—created the 26 code implementations. The project can be viewed at
http://artport.whitney.org/commissions/softwarestructures/. When Reas is not lec-
turing around the world and developing Processing, he teaches as an assistant professor in
the department of Design/Media Arts at UCLA. Reas is represented by bitforms gallery in
New York, (www.bitforms.com), the BANK gallery in Los Angeles (www.bank-art.com/
index.html), and the [DAM] in Berlin (http://dam.org/). His work can be viewed online
at http://reas.com/.

Jared Tarbell, b. 1973

Jared Tarbell’s code art is sensuously analytical, combining gorgeous tonal subtleties and
implicit complex mathematical structures. This fine integration of aesthetic and analytical
concerns sets his work apart. He gained prominence with his early ActionScript work and
his inclusion in the friends of ED Flash Math Creativity books. In recent years, Tarbell has
been creating with Processing, and the increased low-level capabilities of Processing and
Java have allowed him to create even more organic, complex, expressive work. Most of this
work reflects his interest in visualization and emergent behavior, as well as his commit-
ment to open source development; he freely distributes his source code in modifiable
form. Jared holds a BS in computer science from New Mexico State University, is a fre-
quent lecturer at international conferences, and is a contributing author to another

CODE ART

21

1

617xCH01.qxd 2/27/07 2:59 PM Page 21

http://levitated.net/
http://flight404.com/
http://metaphorical.net/)%E2%80%94created
http://artport.whitney.org/commissions/softwarestructures/
http://dam.org/
http://reas.com/

friends of ED book, New Masters of Flash, Volume 3. He maintains the websites Levitated
(http://levitated.net/) and Complexification (http://complexification.net/), where
his work can be viewed, and in the case of Complexification, purchased directly from
the site.

Ben Fry, b. 1975

Ben Fry, along with Jared Tarbell, represents a generation of young artists who explore
computational processes and structures as fundamental creative modalities. He’s also of
course the cocreator of Processing. Born the same year as the Altair 8800 was introduced,
Fry and his generation never knew a time without personal computers. By the time Fry et
al. were entering elementary school, the Macintosh computer was emerging, issuing in a
revolution in desktop computer graphics. This generation was able to develop a fluency in
computing that would have been impossible for previous generations (especially for
artists). I think this fluency (and comfort) with computing is evident in Fry’s work, which is
less about the phenomena of computation and more about advanced and poetic applica-
tions of it.

Fry earned his undergraduate degree from Carnegie Mellon, double majoring in graphic
design and computer science, and his PhD from MIT (Media Lab), studying under John
Maeda and alongside Casey Reas in ACG. On the online title page of his PhD dissertation,
he proposes, “To gain better understanding of data, fields such as information visualiza-
tion, data mining and graphic design . . . be brought together as part of a singular process
titled Computational Information Design.”

Much of Fry’s work deals with visualizing large data sets, including the human genome.
After completing his PhD, he worked at the Eli & Edythe Broad Institute of MIT & Harvard,
developing tools for the visualization of genetic data. His personal work also deals with
visualization. For example, his well-known and visually engaging piece Valence is custom
software he wrote about “building representations that explore the structures and rela-
tionships inside very large sets of information.” You can read more about the piece at
http://acg.media.mit.edu/people/fry/valence/index.html. Fry’s work has been
shown in galleries and museums throughout the world, including the Whitney Biennial, the
Cooper Hewitt Design Triennial, the MoMA in New York, and the Ars Electronica in Linz,
Austria. His work has also appeared in the feature films Minority Report and The Hulk, and
in print publications, including the journal Nature, New York magazine, and Seed. Fry has
been the recipient of numerous awards, including the Golden Nica from the Prix Ars
Electronica in 2005 for his work on Processing with Casey Reas, and a Rockefeller
Foundation New Media fellowship. He was also included in the “The I.D. Forty: Forty
Designers Under 30 Years of Age.” Fry currently holds the Nierenberg Chair of Design for
the Carnegie Mellon School of Design. When he’s not winning awards, helping students at
CMU, or creating visualizations, he can be found answering users’ questions on the
Processing discourse board. You can see more information about Fry and view his work at
http://benfry.com/.

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

22

617xCH01.qxd 2/27/07 2:59 PM Page 22

http://levitated.net/
http://complexification.net/
http://acg.media.mit.edu/people/fry/valence/index.html
http://benfry.com/

And many more . . .

While I have included some wonderful and very noteworthy code art pioneers, there are
many others of equal distinction I was forced to omit because of space concerns. I actually
struggled quite a bit with this section. The following are some of these prominent folks
with links to their work. I’m sorry I wasn’t able to include more.

Charles Csuri: www.siggraph.org/artdesign/profile/csuri/

Joshua Davis: www.joshuadavis.com/

Andy Deck: http://artcontext.org/

Amy Franceschini: www.futurefarmers.com/

Ken Goldberg: www.ieor.berkeley.edu/~goldberg/index-flash.html

Jean-Pierre Hébert: http://hebert.kitp.ucsb.edu/studio.html

John Klima: www.cityarts.com/

Mario Klingemann: www.quasimondo.com/

Ruth Leavitt: http://dam.org/leavitt/index.htm

Golan Levin: www.flong.com/

Manfred Mohr: www.emohr.com/

Colin Moock: www.moock.org/

Ken Musgrave: www.kenmusgrave.com/

Yugo Nakamura: www.yugop.com/

William Ngan: http://metaphorical.net/

Josh Nimoy: www.jtnimoy.com/

Josh On: www.futurefarmers.com/josh/

Robert Penner: www.robertpenner.com/index2.html

Ken Perlin: http://mrl.nyu.edu/~perlin/

Keith Peters: www.bit-101.com/

Amit Pitaru: http://pitaru.com/

Paul Prudence: www.transphormetic.com

Daniel Rozin: http://smoothware.com/danny/

Karsten Schmidt: www.toxi.co.uk/

Manny Tan: www.uncontrol.com/

Martin Wattenberg: www.bewitched.com/

Marius Watz: www.unlekker.net/

Mark Wilson: http://mgwilson.com/

CODE ART

23

1

617xCH01.qxd 2/27/07 2:59 PM Page 23

http://artcontext.org/
http://hebert.kitp.ucsb.edu/studio.html
http://dam.org/leavitt/index.htm
http://metaphorical.net/
http://mrl.nyu.edu/~perlin/
http://pitaru.com/
http://smoothware.com/danny/
http://mgwilson.com/

Summary
I wanted to create some code art historical context in this chapter and also hopefully pro-
vide some inspiring role models. As you progress as a coder, you’ll want to study the
work/code of others, and this list is a great place to begin. I think you’ll find, as I have, that
the “creative coding” community is made up of a wonderful group of generous, intelligent,
highly creative people. Proof of this can be seen daily on the Processing Discourse board
(http://processing.org/discourse/yabb_beta/YaBB.cgi), where a devoted cadre of
code-helper zealots—JohnG, st33d, seltar, TomC, mflux, metaphorz, arielm, fjen, blprnt,
flight404, shiffman, toxi, fry, REAS, and many more—stand ready to assist new and experi-
enced coders alike. Thanks to all of you! This book has benefited immeasurably because of
your generosity and combined wisdom.

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

24

617xCH01.qxd 2/27/07 2:59 PM Page 24

http://processing.org/discourse/yabb_beta/YaBB.cgi

617xCH01.qxd 2/27/07 2:59 PM Page 25

617xCH02.qxd 2/27/07 10:52 AM Page 26

2 CREATIVE CODING

617xCH02.qxd 2/27/07 10:52 AM Page 27

I have a friend, Mark K., who was a web developer who had artistic yearnings (don’t they
all). I met him a number of years ago when he enrolled in a 3D animation course I was
teaching. Mark worked for a sizable, very businessy type company that will remain name-
less, doing pretty dull programming. Mostly he was working on legacy code—stuff other
people had written—and trying to keep things together with band-aids and string. On top
of this, his company was outsourcing most of the interesting development work overseas,
and Mark also had the fun job of trying to coordinate video conferences at all hours of the
night (big time difference), while integrating their code (in a programming language/
development environment he wasn’t too familiar with) back into the company’s legacy
spaghetti (disorganized and poorly structured) code. Is it any surprise Mark was pretty sour
on coding and dreamed about painting rainbows and unicorns in the Elysian Fields? Well,
actually it was more like working in the game industry. We met at the perfect time.

While Mark was losing his passion for coding, I was losing my passion for pretty much
everything else. I was dreading teaching the 3D course at the time, an area just a few years
prior I had been passionately involved in. However, my spirits lifted on the first day of class
when I met Mark. As a first day ice-breaker, I usually have each student tell me a little
about themselves. When Mark described his programming background, I immediately
imagined us having these long, intense discussions about the joys and intricacies of coding.
Of course this fantasy was shot down quickly as Mark continued to explain his interest of
eventually entering the game or animation industry and his waning interest in program-
ming. A little disappointed, I summoned encouragement for his new interest and ambition
and settled in for a long semester. In the end, the semester turned out to be great. Mark
discovered an innate gift and interest in design, and the discussions I originally imagined
having with Mark did indeed happen, but of course in a different and actually far more
interesting way. Mark and I also developed a real friendship that continues to this day.

One of the subjects that Mark and I often discussed was the intuitive vs. analytical nature
of coding. Mark had been formally trained as a programmer and thus had developed a
“look before you leap” approach to coding that spilled into his other creative work as well.
He was trained to analyze a problem, develop a plan, and then implement it. I on the other
hand, trained as a fine artist, was taught to let go of the need to understand everything,
and to learn to find structure and meaning in the process. Obviously, the utilitarian aspects
of programming and the pretty much complete lack of utility of painting contributed to
the approaches adopted in our training. At this point, I was mostly coding little graphics
experiments with ActionScript. I would sit on the couch with the TV on, the laptop burn-
ing my legs (PowerBook G4), snacks of course, and tweak code until cool things started
happening. Eventually one of my convoluted, incomprehensible equations would start
yielding something I liked. Then I’d do a “save as” and keep tweaking until I found some-
thing else. I was able to hack out tons of art, watch bad reality TV, and still IM Mark dur-
ing renderings. Mark was always amazed that I could approach programming that way. He
just couldn’t see it as an intuitive medium. We eventually tried some collaboration, but
would often get stuck in our planning vs. implementing discussions. In time, though, we
both began to learn from one another. I began planning some stuff before attacking by
the seat of my pants, and Mark began to “throw some dung against the side of the barn.”
I really began to see the virtue in Mark’s analytical approach when my projects began to
get more complex and I started developing larger applications and reusable classes (which
I’ll cover a bit later). I hope Mark was able to learn from me as well, which seems to be the
case, as he eventually landed an art director’s position, and also has begun to enjoy coding
again—with Processing, of course.

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

28

617xCH02.qxd 2/27/07 10:52 AM Page 28

I think what was reinforced for me through my collaboration with Mark was the idea that
to be really effective, you need to approach a problem both analytically and intuitively or
even holistically. It is relatively easy to understand how to approach a painting or even
design problem intuitively. As children, most of us scribbled with crayons and learned to
make things without much planning. We learned to express ourselves with marks and ges-
tures and weren’t too self-conscious about making a mess. Our experiences in math class
may have been quite different, as problems got framed by Boolean logic—the answer is
either true or false. How you were feeling during the process of solving the problem had
little bearing on the answer. When a non-expert looks at a design or painting, especially a
representational image, they believe they can understand it (of course, whether they really
can is a whole other issue). When that same non-expert looks at a page of computer code,
it seems totally inaccessible and very likely overwhelming. They are used to looking at pic-
tures and gestures, for which there doesn’t seem to be a right or wrong answer. Looking at
code seems like really hard work, and based on those early experiences in math classes,
maybe even scary hard work. You do certainly need to put in some amount of effort to
learn to decipher the code. But the same thing applies to being able to read a painting or
design. It’s just that many people believe that just because they have eyes, they can intu-
itively understand the visual formal language—the underlying pictorial structure—in a
painting or design. But seeing, of course—especially seeing critically—involves the brain as
well. Now I could very easily lapse into many pages of the most vitriolic prose about the
current plague upon our nation because of rampant visual illiteracy, blah, blah, blah . . .
but my editor will surely put the kibosh on that. So let me sum it up by stating that in my
humble opinion it is much, much, harder to learn a foreign language than it is to learn a
programming language, and having taught both painting and programming, it is much,
much, much harder to (really) learn to paint or even draw a figure than it is to gain basic
fluency in programming.

If you haven’t thrown the book at the wall yet, a logical next question might be—especially
if you are totally new to programming—“Exactly how much do I need to know before I can
begin to start hacking out some art on my couch, and of course what snacks do you rec-
ommend?” Well, obviously, unlike drawing, you can’t just grab the tool and begin scrib-
bling. Well, if you start with some sample code (which Processing responds quite well to),
you can, and that is one valid approach to learning to code. However, I think a much more
efficient path, and I guess the main reason for the book, is to quickly (with minimal stress)
develop a base coding literacy that will optimize your hack-per-minute efficiency—which
translates into making more good art. Regarding snacks, I’m a big fan of Newman’s organic
stuff, especially the mint Newman-O’s. (Yuummm!)

For many years, I tried the steal/tweak/pray coding approach, especially with JavaScript.
However, there was always this fear and guilt in the back of my mind: the code will break,
somebody will find out exactly how little I know, and I really can’t take credit for this.
Usually, freelance deadlines beat those feelings back. But using appropriated code that I
didn’t totally understand to make art for myself didn’t feel as good. Also, as a professor I
hate being asked questions I don’t know the answer to. Of course, this happens practically
every day when you have bright, talented students—which I’ve mostly been blessed to
have—and are teaching emerging technology. Teaching Flash for many years, I would get
asked practically every ActionScript question imaginable, and I eventually got really tired
of BSing my way through half-assed answers. I eventually decided to formally train myself
in programming. I got a mountain of books on programming languages (mostly Java and

CREATIVE CODING

29

2

617xCH02.qxd 2/27/07 10:52 AM Page 29

ActionScript), object-oriented programming, and basic math (mostly algebra and trig), and
I took the leap. It was based on this experience that I first got interested in writing a book
on creative coding.

I spent many long, lonely nights with those books, especially the Java API (application pro-
gramming interface—basically a description of the language’s rules and tools). Over time
I’ve come to realize that most programming how-to books are excellent for teaching you
how to program if you already have a basic understanding of programming. The Java API,
although indispensable to me now, was pretty scary, inscrutable, and downright frustrating
back then. When I eventually began teaching entire semester courses on creative pro-
gramming, I really learned a lot about how non-technical people learn technical stuff, and
most importantly how to make it engaging. I knew from my own experiences that code
was a powerful creative medium, but how to convince my wide-eyed art students was
another thing altogether, and I knew most sane people wouldn’t do what I did—tackling
this scary stuff on their own. I should also point out that besides being obsessive compul-
sive, I was a science student prior to being an art student, so I had developed some toler-
ance and coping strategies for studying dense, unfriendly stuff. This book is a tribute to all
my coding students who taught me along the way how to be a better teacher and (most
importantly) what to do to keep them from dropping my classes.

The origin of Processing
Since around 1945 (or 1834 if you go back to Ada Lovelace’s letter to Charles Babbage),
many, many programming languages have been developed—in fact, more, I think than
most people would guess. Unless you are deep in the computer science world, you maybe
have heard of at most five to ten different programming languages. According to a
somewhat comprehensive language list at http://people.ku.edu/~nkinners/LangList/
Extras/langlist.htm, more than 2,500 languages have been developed. My guess is that
the number is actually much higher. Interestingly, at the time of this writing, Processing
isn’t on the list. This might be due to the list not being properly maintained or because
some purists might not see Processing as a separate language. What? Well, rest assured, I
sent an e-mail telling them all about Processing. But there is a valid argument to be made
that Processing is not technically a language, but more of a programming environment—
what is commonly referred to as an IDE, or integrated development environment. I’ll try to
make this argument and then I’ll refute it. I love arguing with myself. However, before I get
into more Processing nuts and bolts, a more conceptual over-the-hood discussion about
Processing and its forebear, DBN, will be helpful, or at least (I hope) mildly interesting.

Processing grew out of research in the Aesthetics + Computation group at the MIT Media
Lab in around 2001. Prior to that, John Maeda, the group’s famous leader, with the aid of
some of his students, developed DBN. DBN was a very simple programming language and
environment, begun in around 1999. Casey Reas and Ben Fry also participated in the devel-
opment of DBN. Processing can be thought of as the very advanced, production-grade
child of DBN. DBN was usable on the Web or as a stand-alone application, and was designed
to massively simplify the coding process for visual artists. Unlike Processing, DBN didn’t
have much application outside of the classroom, as the screen output was limited to about
1.5 by 1.5 inches and there was no color. Yet many of the basic processes we expect in a
programming language were there, including the ability to set and recall values, create

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

30

617xCH02.qxd 2/27/07 10:52 AM Page 30

http://people.ku.edu/~nkinners/LangList/

customized commands, and run loops. It even had some basic networking and event
behavior (mouse and keyboard detection). If you’re interested to learn more, as of this
writing, the DBN site can still be found at: http://dbn.media.mit.edu/. DBN was devel-
oped to simplify the massive complexity involved in graphics programming. Later on in the
book, I will provide some sample code illustrating the minutiae and verbosity of code
needed to generate the simplest graphics, even in a high-level language like Java. By “high-
level,” I mean a language that is supposed to be easier to work in than a low-level lan-
guage. You can think of the lowest-level language as zeros and ones. DBN was in a sense a
reaction to this problem, and it went, some would argue, overboard in addressing it.
Processing, having the benefit of standing on the shoulders of DBN, as well as being a
second go-around for Ben and Casey, cleverly addressed this problem by providing a mul-
timodal approach, allowing some users to work in a very high-level way—like in DBN—
while other codeheads (myself included) could work in pure Java and still others could
work with a hybrid approach. This totally inspired design, providing choice, is I believe
what makes Processing a very special and cutting-edge tool/environment/language. Today,
Processing, free from the confines of the Media Lab, is supported by Ben and Casey, with
a growing cadre of devoted (some might say obsessed) “Processors” around the world.

Programming language comparisons
Now for some nuts and bolts. If you get a little lost in this section, don’t panic; it will
become clearer in time. Also, it is not critical info to get started coding. If you really hate
it, just skip it. But I strongly recommend coming back to it eventually. I put it here in the
beginning of the book because I do think it is important.

The argument to be made that Processing is not actually a programming language, but
rather a programming environment, is based on the fact that Processing is built on top of
the Java programming language. Of course, parts of Java itself were created with other
programming languages as well (C and C++), so what’s the point? The point is that when
you run Processing, you are actually running a Java program. Processing allows you to write
much simpler code than you would need to write if you were working in pure Java. It also
allows you to structure your code in a function-based (procedural), non–object-oriented
style. But once you compile your code, the output is converted to Java class files—
indistinguishable from any other Java program—and the class files are interpreted within
the Java Virtual Machine as your program runs. Now don’t freak out! I know I just dropped
a bunch of terms you may not be familiar with. We’ll take it slow, and deal with each term,
one at a time. Again, my recommendation is to read this stuff and not get too stressed. If
it’s really bugging you out, skip it and return to it later; you’ll still be a good person.
I promise, in time, it will all be clear (or at least clearer).

If you have some prior programming experience with another language, or if you’re think-
ing, “Why should I learn Processing instead of another language?” the Processing site
includes a good comparison and contrast of a competitive set of languages to Processing
(http://processing.org/reference/compare/index.html). Of course, I don’t really think
these languages compete in any real sense, as each has its own strengths and weaknesses.
Additionally, if this coding thing sticks for you, it is very likely that you will learn some if
not most of these languages in the future. It actually gets pretty easy to learn a new pro-
gramming language after you grasp basic programming theory. As I mentioned earlier,

CREATIVE CODING

31

2

617xCH02.qxd 2/27/07 10:52 AM Page 31

http://dbn.media.mit.edu/
http://processing.org/reference/compare/index.html

learning a programming language is much easier than learning a verbal or natural lan-
guage. Now let’s tackle some of the new terms I just threw at you and look at just a little
processing code.

First, what does it mean to “structure” your code?

Here is a simple Processing program that draws a black rectangle on a white background;
it’s not too ground-breaking, but it is a nice rectangle (see Figure 2-1 for an image of the
rectangle that the code produces).

size(400, 400);
background(255);
noStroke();
fill(0);
rect(width/4, height/4, width/2, height/2);

Figure 2-1. Rectangle created using an
unstructured coding approach

A program this simple wouldn’t necessitate structuring your code any further. So, at this
point, if all you need to make are single squares, you’re done. Congratulations! However,
imagine instead of having 5 lines of code, you had 50, or 500, or 5,000? It becomes very
difficult to understand and maintain a program when it reaches a certain scale. There are
ways of structuring your code, kind of like using paragraphs to organize a chapter, that
make a large program more manageable. In addition, there are structural ways of simplify-
ing your program, reducing redundant lines of code, and ultimately increasing your coding
efficiency and possibly the program’s performance (these are all good things).

Function-based (procedural) vs. object-oriented structure

There are a number of ways of structuring your code—I’ll discuss two ways it’s done in
Processing. The first way uses functions (also referred to as procedures, or subroutines—
different words essentially describing the same technique). Functions are reusable blocks

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

32

617xCH02.qxd 2/27/07 10:52 AM Page 32

of code that work like processing machines, which you call when you need them. The
second way uses an object-oriented approach, a far more ambitious and abstract approach
that models a programming problem using concepts from the real world. In object-
oriented programming (OOP), the code is divided into smaller (and independent) blocks
of code called objects.

Before I describe and contrast each of these approaches in more detail, it is worth stating
that Processing allows you to structure a program using either a function-based, object-
oriented, or hybrid approach. In fact, if you want to, you can avoid structure altogether.
This amazing flexibility, accommodating different types of coders with varied experience
levels, is one of the features that makes Processing such a unique environment. Later in
the book, I will go into a much more detailed explanation of this material (I hear your
heart fluttering with delight), but for now I’ll just describe them in very broad strokes.

Let’s go back to the simple five-line program. This program executes from top to bottom.
You could test this by moving the fill(0); line below the rect(width/4, height/4,
width/2, height/2); line.

size(400, 400);
background(255);
noStroke();
rect(width/4, height/4, width/2, height/2);
fill(0);

You wouldn’t see anything if you now ran this program—can you guess why? It’s because
the color used by the program to draw the rectangle starts out as white, the same color
as the background (255 equals white), and is only changed to black (0 equals black) after
the rectangle is drawn. So you are actually drawing a white rectangle on a white back-
ground. Now, imagine that you have 5,000 lines of code—wouldn’t it be easier to not have
to put every line in an exact sequential order to get the program to run properly? Isn’t the
whole digital thing about not having to be so sequentially linear? Function-based, or
procedural, programming can help solve this problem by breaking a program up into
reusable code structures that you call as you need them. These blocks are called functions
(as opposed to objects in OOP); you can think of them as independent processing units
waiting for action. Functions are explicitly called when they are needed and can optionally
be passed values, which the functions can act upon. Calling a function can be considered
the entry point of a function. Once called, a function can either end when it completes its
job, or optionally return values. For example, if I wrote a program to keep attendance in
my classes (something I’ve never done very consistently), I might create a function that
simply assigned a value of present or absent for each student on a specific date. Then in
class, I could call the function and pass in the value present or absent for each student. I
wouldn’t need the function to return any value. On the other hand, if I wanted to find out
which students were absent on a specific day, I might create another function that when
called would return the actual names of the students who were absent.

Let’s make the current rectangle drawing program a little more complicated. Don’t worry
about trying to memorize or even understand the code for now. It is the theory that is
most important. Here’s the program structured using functions:

CREATIVE CODING

33

2

617xCH02.qxd 2/27/07 10:52 AM Page 33

void setup(){
size(400, 400);
background(255);
noStroke();
float myColor = getRandomColor();
fill(myColor);
rect(width/4, height/4, width/2, height/2);

}
float getRandomColor(){
return random(255);

}

The program still draws a rectangle on the white background, but instead of the rectangle
always being black, the program calculates a random value between white and black for
the fill color of the rectangle. The line return random(255); generates and returns a ran-
dom number between 0 and 255. 0 equals black and 255 equals white, and anything in
between equals a variation of gray. You’ll notice the program now has these strange brack-
ets,{ (open) and } (closed). These are called curly braces, and they are used to group the
lines of code needed by the function to do its job. You’ll also notice that the program is
broken into two groups of code: void setup(){...} and float getRandomColor(){...}.
These groups are both functions. The lines void setup(){...} and float
getRandomColor(){...} are the function declarations. It is a good idea to use a verb in
the name to describe what the function does. That way, it is easy to understand what that
function’s job is when reviewing the code. Also, a function is followed by open and closed
parentheses. This is the place where any arguments (values) the function will need to do
its job are included—commonly referred to as “passing arguments.” Even if no arguments
are required, as in the preceding case, you still need to include the parentheses.

There is another very common programming structure called a variable, which I’ll discuss
in detail a little later in the book. A variable is simply a location in memory that will hold a
piece of data. For instance, in the left part of the expression float myColor =
getRandomColor();, float myColor is a variable, to which a numeric value can be
assigned. The word “float” just specifies the type of numeric value the variable can hold.

The line float myColor = getRandomColor(); is a function call. Actually, the right part of
the expression, getRandomColor();, is the function call, and the left part of the expression
(float myColor =) simply assigns the value that the function call returns to the myColor
variable. Here’s where things get a little interesting. When the getRandomColor() function
is called, it takes over—before the line below the function call (fill(myColor);) is dealt
with, the code inside the actual getRandomColor() function is run. Only when the function
called finishes will the code below the function call be run. Inside the getRandomColor()
function, one of Processing’s built-in functions, random(), is called. Once the random()
function does its job, it returns a number back to where the getRandomColor() function
was called from, and this returned value is assigned to the variable float myColor. I real-
ize this may seem a bit overwhelming if this is your first time dealing with coding; I prom-
ise it will make (more) sense over time.

OOP was developed later than function-based or procedural programming, and was
designed to try to improve on some of procedural programming’s perceived limitations.
In a general sense, OOP was designed to allow the types of modules that functions

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

34

617xCH02.qxd 2/27/07 10:52 AM Page 34

introduced to become larger, more complex, and more independent entities. OOP facili-
tates code reuse—which will become more important as you get more experienced—and
enforces certain programming rules. OOP is a much more complex approach to program-
ming that delves into very interesting but quite challenging abstractions. I will cover OOP
in Chapter 8, although I include a brief overview of it in the next chapter, which focuses on
code grammar. OOP is such a big subject that it would be worthwhile to devote an entire
book to creative OOP with processing—maybe if I’m still standing when I’m done writing
this one . . .

If you’re interested, here is a Processing OOP version of the little rectangle program, with
some comments—the descriptions following the two forward slashes (//). I am not going
to do a full analysis of the program here, as I’ll be covering these concepts in painstaking
detail later in the book.

// Processing Object-Oriented approach: Create a rectangle
void setup(){
// set display window to 400 x 400
size(400, 400);
// set background color to light gray
background(225);

//instantiate a MyRect object and assign it to the reference ➥

variable rectangle1
MyRect rectangle1 = new MyRect(width/8, height/8, width/4, ➥

height/4, 200, -1);

/* call drawRect() method using MyRect object reference, rectangle1
calls the method using dot syntax (literally
the period between the object and the method call).*/

rectangle1.drawRect();
}

// MyRect class definition
class MyRect {

// public instance fields - each MyRect object will have
// their own set of these properties
float x, y, wdth, ht;
int fillCol, strokeCol;

/*constructor - called when the object is instantiated, using the new
operator. the parameter list between the parentheses needs to match
the argument list in the instantiation call */
MyRect(float x, float y, float wdth, float ht, int fillCol, ➥

int strokeCol){
// initialize instance fields - assignment happens form
// right to left, e.g. the value of x is assigned to the
// instance property this.x
this.x = x;

CREATIVE CODING

35

2

617xCH02.qxd 2/27/07 10:52 AM Page 35

this.y = y;
this.wdth = wdth;
this.ht = ht;
this.fillCol = fillCol;

/* check for stroke - if the last argument passed to the
constructor is not -1 then use that value to set the
stroke color. If it is -1, don't draw a stroke */

if (strokeCol!=-1){
this.strokeCol = strokeCol;
stroke(strokeCol);

}
else {
noStroke();

}
}

//drawRect method
void drawRect(){
//assign fill color
fill(fillCol);
// draw rectangle
rect(x, y, wdth, ht);

}
}

The other terms I threw at you earlier were “class files,” “compile,” “interpret,” and “Java
Virtual Machine,” which I’ll define as I introduce Java and describe Processing’s special
relationship to it.

Java

I want to cover a little of Java’s history (sorry), but I think you may find it somewhat inter-
esting, especially as a lesson in the virtue of happy mistakes. I actually cover happy coding
mistakes a little later on as well. Java’s history is also relevant in regard to a deeper under-
standing of Processing. Have I convinced you? Hope so.

Java, originally named Oak, was developed in the early 1990s as a language to be used to
program devices other than personal computers—things like microwave ovens with
embedded processors—not terribly sexy stuff, but as you’ll see, pretty visionary. However,
appliance manufacturers didn’t embrace the idea. So to save face, the Sun engineers went
back to their drawing boards and came up with a plan to remarket Oak as a language to
control “set-top boxes” for interactive TV. But alas, the cable companies passed on that idea
as well. Things were not looking good for Oak. To make matters even worse, it was discov-
ered that the name “Oak” had already been trademarked by another technology company.
Before I tell you how Java was reborn out of this very inauspicious beginning, let me explain
the basic problem the Sun engineers were trying to address in the design of Oak in the first
place. Then you can try to guess (if it is not already obvious) what saved Java.

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

36

617xCH02.qxd 2/27/07 10:52 AM Page 36

Without getting too geeky, the main objective in the design of Oak was to develop a rela-
tively simple-to-program, high-level, universal programming language. The really key word
here is “universal.” A proprietary technology (and a refusal by companies to respect and
adhere to standards) creates a difficult landscape to work in. This problem is not limited to
the computer industry. A number of years ago my wife and I invested in a water filter sys-
tem that attaches directly to our kitchen faucet. Over the years we’ve moved a lot, drag-
ging our filter with us. In almost every new home, we’ve had to contact the filter company
to request yet another odd-sized adapter (we’ve got a quite a collection by now). Lack of
standardization has up until recently been especially frustrating and difficult for web
designers, who were forced to develop multiple sites, limit design concepts, and create
crazy workarounds to ensure that their sites worked across all the different web browsers
(this is no longer so much of a problem because of the advent of web standards, better
development practices, and better and more consistent support for those standards across
browsers).

One of the benefits of a program like Flash is a universal Flash player that ensures consis-
tent content delivery across different platforms (operating systems and web browsers).
The history of Flash, originally called FutureSplash Animator, arguably would have been
quite different had Java not a few years earlier pioneered the concept of a portable,
universal language.

So the emergence of the Internet saved Java. Java’s now well-known slogan, “Write once,
run anywhere,” turned out to be the perfect strategy for the Internet. And by 1996, Java
was also embedded in Netscape’s browser, ushering in a revolution in online multimedia-
based content and development. Interestingly, in the ten years since this development,
Flash has far surpassed Java as the online multimedia-based (front-end) content tool of
choice, and Java has moved to the back end of the Web—to the server side. Java is also
widely used on mobile and wireless devices, such as PDAs and cell phones. With the devel-
opment of Processing, Java is again being used for online content creation. So arguably,
Processing has saved (or at least resurrected) the Java applet. Although unlike Flash, which
is used to enhance/develop entire websites, Processing (currently) is being used primarily
for aesthetic exploration. Of course, as more Processing tools and code libraries are devel-
oped, this could change. OK, so that’s a nice story, but how do Java and Processing work?

Java is considered both a compiled and interpreted language. Unfortunately, the terms
“compiled” and “interpreted” don’t quite mean the same thing in programming as in gen-
eral parlance. To compile, in computer-speak, is to convert a (usually high-level) program-
ming language into something lower level. Remember, a computer likes zeros and ones
(the lowest-level language), but most people find it frustrating to communicate in binary
code. It is easier to write programs in the same natural language we speak (the highest-
level language), but a spoken language is extremely complex and would demand tons of
processing to be able to interpret it. Therefore, in the design of a programming language,
there is a trade-off between ease of use and performance.

Java was designed with this trade-off in mind. Sun’s Java compiler, javac (Processing actu-
ally uses a similar open source compiler, developed by IBM, called jikes), converts a pro-
grammer’s code (the stuff we write) into a middle-level language called bytecode (that the
compiler writes). This bytecode (also known as class files) is universal, meaning that I can
take my class files compiled on my Mac and run them on a Windows machine, as long as
the Windows machine has a Java Virtual Machine (JVM). As most operating systems and

CREATIVE CODING

37

2

617xCH02.qxd 2/27/07 10:52 AM Page 37

browsers have a JVM, I can use my class files in any of these environments, regardless of
where they were written. Thus, you can see the power of Java’s “Write once, run any-
where” strategy.

In Java’s early days, it was considerably slower than non-interpreted languages like C or
C++, which don’t use a middle compilation state (the bytecode). These languages compile
directly to machine code specific to the native underlying system. Thus, these languages
are highly efficient, but not easily portable. If you write a program in C++ on a Mac, it will
only run on a Mac. You have to literally go in and change some of your code to create a
second version of your program (referred to as porting your program) if you want it to run
on a different platform. Today, based on certain advances in compilers, such as “just-in-
time” compilers (in which some of the Java bytecode is compiled to native machine
language instructions during runtime), Java’s speed is comparable to lower-level, non-
interpreted languages like C and C++. This gap continues to narrow, or become insignifi-
cant, as computers continue to get faster. So Java’s strategy seems to be really paying off.

Processing has all the benefits of Java with a much simpler and optimized environment for
creative coding. As an example, following is the original five-line rectangle drawing pro-
gram written in Processing. I’ve also written the same program as a Java applet.

Here’s the original Processing program:

size(400, 400);
background(255);
noStroke();
fill(0);
rect(width/4, height/4, width/2, height/2);

Here’s the same program as a Java applet:

import java.awt.*;
import java.applet.*;

public class MyStage2 extends Applet{
public void init(){
setSize(new Dimension(400, 400));
setBackground(Color.white);

}
public void paint(Graphics g) {
g.setColor(Color.black);
g.fillRect(getSize().width/4, getSize().height/4, ➥

getSize().height/2, getSize().height/2);
}

}

The Java applet requires about twice as much code as the Processing sketch. However, as
you write more complex programs in Processing, the number of required lines of code to
write the same program in pure Java begins to increase exponentially. So if Processing is
essentially Java, how does it do the same thing with less code? It does it by using a software
framework that does a lot of the extra (non-creatively oriented) work under the hood,
leaving you to just concentrate on the fun stuff.

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

38

617xCH02.qxd 2/27/07 10:52 AM Page 38

A framework is just a concept for bundling precompiled code together for use in devel-
oping a related family of programs. From a programmer’s standpoint, a good framework
allows you to write less code and focus more on the higher-level concerns of your program.
Java relies on many frameworks. For example, Java’s Collections framework allows differ-
ent types of groupings of objects (collections) to be manipulated in a uniform way, and, as
Sun says, “independently of the details of their representation.” This is a huge advantage
to a coder, who now only has to learn one approach (a single pattern) to getting or setting
a value within a collection of objects, even though internally these collections may use
very different implementations. The Processing framework does a similar thing, but in the
area of creating and manipulating graphics and images. Graphics programming is complex,
and using pure Java involves ascending a pretty steep learning curve. In addition, after
learning how to create some graphics (shapes and text), you would still need to learn a
whole new set of procedures for working with images, not to mention video, animation,
and so on. Using the Processing framework, these disparate and complex operations are
standardized into a uniform and simplified set of commands.

Procedural OOP (“poop”) approach
I suspect by now, if you’ve stuck through this chapter, you’re in need of a little diversion,
so a short story might be refreshing. A number of years ago I was preparing for a show of
my paintings. I was very excited about the show, as I was only a few years out of grad
school and had this romantic vision of being discovered, and picked up by a major New
York gallery. The fact that my show (actually a two-person show with my friend David) was
at a small cooperative gallery in Piermont, New York, didn’t seem to have any effect on my
fantasy. In preparing for the show, I stretched up a number of large, impressive looking
canvases on which to create my “serious” work. Besides preparing for my show, I also had
a brain-numbing job doing mostly print production work for an aesthetically bankrupt
(though not at all financially bankrupt) corporation. My one fun indulgence was a
Thursday night drawing group I frequented in Manhattan.

When I first moved to New York City, I looked up an old professor who invited me to a
weekly drawing group at his studio. I was of course thrilled and went to my first session
expecting to bask in all the intense aura of professional, established New York artists at
work, but instead found a party-like atmosphere with free-flowing wine, loud music, and
continuous conversation. In time, I became quite accustomed to this new approach and
had a great time listening to the older artists tell stories about the good old days, and of
course we did make art.

So each week I would go to the drawing group, crank out a bunch of work, come back to
my studio, and pile the work in the corner. During the days, when I wasn’t slogging
through Quark at the mind-numbing job, I painted my “serious work.” This went on for
nearly a year, until I began final preparations for my show. When it got down to selecting
the actual paintings to put in the show, I had a major revelation (it actually felt more like
a kick in the head). My serious work, well, kind of sucked. It was self-conscious and forced.
I was pretty desperate and had no time to create new work, so I went to the corner with
my “non-serious” work piled high from the Thursday night drawing parties and started
rifling through the pile. I was shocked—the work was really interesting and fresh, but also
accomplished in its own way. The work had spontaneity and energy, but it also had

CREATIVE CODING

39

2

617xCH02.qxd 2/27/07 10:52 AM Page 39

structure and clarity. The “serious” day painting that I thought was my real work was actu-
ally something else altogether. In retrospect, although the work was self-conscious and
forced, the discipline of doing the serious painting contributed to my skills and technique,
allowing me to let go on Thursday night to really express myself. It was this combination of
discipline and freedom that I attribute to the quality of the work. I ended up only putting
the Thursday night work in the show, and got a very positive response. Of course I didn’t
get famous, but I certainly kicked butt in Piermont.

So what the heck does that story have to do with Processing? Well, when it comes to writ-
ing creative software, there are a number of ways to approach it. There is the “serious”
way and there is the Thursday night party way. It is not so much a specific set of techniques
I’m talking about, but rather an attitude. Some programming languages and environments
demand a highly structured and rigid approach that doesn’t favor spontaneous expressive
shifts. OOP, which is a beautiful construct that I will go into later in the book, requires
planning and a well-thought-out plan; Without such a plan, a “by the seat of your pants”
OOP approach can lead to piles and piles of code and excess complexity, taking you away
from self-expression and burying you in pure digital craft, or worse—damage control. The
other extreme, pure gut hacking of unstructured spaghetti code, can yield fast effects and
little teasers, but it becomes overwhelmingly difficult to carry a creative impulse through
to a more realized form. So there needs to be a middle way, combining structure with fast
prototyping capabilities. This yin/yang approach is possible in Processing, which provides a
fast, loose, procedural coding environment with a highly structured and powerful object-
oriented backbone. That is not to say there aren’t pitfalls to working in such a flexible
environment, in which it’s easy to develop nasty hacking habits. My recommendation, and
the way I’ve structured the upcoming tutorial sections in the book, is to begin coding with
passion. Don’t let the fear of doing it right or learning everything first get in the way of
expressing yourself, but at the same time, study the language (first Processing and then
eventually Java) and OOP; it will ultimately empower you to create larger, more expressive
works.

Algorithms aren’t as scary as they sound
1. Buy a new copy of Processing: Creative Coding and Computational Art.

2. Open the book to page 1.

3. Begin reading at the top of page 1.

4. Stop reading at the bottom of the last page of the book.

5. Write a glowing review of the book on Amazon.com.

6. Go to step 1.

These six steps constitute an algorithm. They are not a computer program—they are just
specific directions on how to achieve something. The term algorithm comes from Abu
Abdullah Muhammad bin Musa al-Khwarizmi (referred to just as al-Khwarizmi), a Persian
supergenius (with a really long name) from the early part of the ninth century. We get the
word algorithm from the al-Khwarizmi part of his name. al-Khwarizmi worked near
Baghdad as a scientist, mathematician, astronomer/astrologer, and author. He is also com-
monly referred to as the father of algebra. You may have first been introduced to the word

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

40

617xCH02.qxd 2/27/07 10:52 AM Page 40

algorithm in a math class in high school, but you may have been daydreaming at the time
(or, if you’re anything like me, drawing a less-than-flattering picture of your math teacher).
Algorithms are fundamental to mathematics, but they are also essential to pretty much
any other planned activity. If you go to Google and type define:algorithm, as of this writ-
ing, 28 definitions come up. One definition I like in particular, from http://images.rbs.
org/appendices/d_glossary_geometric.shtml, is “A step-by-step procedure used for
solving a problem.” I like this definition because it is so incredibly simple and universal,
and can be applied to practically any problem. The only thing I might add to the definition
is the limit on the number of steps. My new definition is “A finite step-by-step procedure
used for solving a problem.” When you’re dealing with programming—or really, any task—
an infinite number of steps is almost always a bad thing. For example, in the preceding
algorithm I wrote, experienced coders probably saw a major logic problem; the algorithm
never ends. Intellectually this might be an interesting idea, like a hall of mirrors endlessly
reflecting one another, but in programming we call this an infinite loop. Loops are central
to programming, but we usually want them to end when some condition is met. For
example:

1. Buy a new copy of Processing: Creative Coding and Computational Art.

2. Open the book to page 1.

3. Begin reading at the top of page 1.

4. Stop reading at the bottom of the last page of the book.

5. Write a glowing review of the book on Amazon.com.

6. If Ira’s still not a millionaire, go to step 1.

7. Stop following this algorithm (and thank you)!

The logic in the algorithm will no longer generate an infinite loop. Instead, at step 6, only
if the condition is not met (alas, I’m still not a millionaire) does the algorithm repeat. But
eventually the condition will be met, step 6 will be skipped, and step 7 will end the loop.
Unless there is some specific direction to go somewhere else (e.g., go to step 1), the pro-
gram keeps executing from top to bottom. This is why the program falls through step 6
when the condition is no longer met and executes line 7, ending the loop.

Computers are inherently dumb machines. They are super-quick at processing data and
have awesome memories, but they have no innate intelligence. For example, if I asked a
computer to hold a 1,000-pound weight over its head (just assume computers have arms),
it would eventually destroy itself by dropping the weight on its head when its arms gave
out. Why? Because computers are perfect literalists; they do only and exactly as they are
told, without any assumption, reflection, or self-awareness. Unless I instructed the com-
puter to put the weight down when it felt its arms getting tired, it wouldn’t do it. One of
the difficulties in learning to code is not that we have to think so brilliantly, but rather that
we have to think so mind-numbingly literally—without the benefit of emotion, assump-
tion, or intuition. For example, if I want to ensure that you will continue reading this book,
I could tell you that you must keep reading this book. However, because people are intel-
ligent and not robotic literalists, the majority of you will likely tell me to go to hell.
Generally speaking, if we want human beings to do something, we need to make an appeal
with a more complex strategy, taking into account feelings, social conventions, personal
history, favorite baked goods, and so forth.

CREATIVE CODING

41

2

617xCH02.qxd 2/27/07 10:52 AM Page 41

http://images.rbs

Humans are excellent at intuiting. We can meet someone for the first time and within a
couple of minutes build a complex initial profile of the person; not that all these assump-
tions hold up—but it’s amazing, with so little data, that any do. We seem to be able to
remember subtle general patterns of behavior that let us build composite types.
Psychologists have named this organizing function gestalt. Gestalt is also commonly
defined as the sum of the parts being greater than the individual parts. For example, when
you show someone a picture of Elvis, they don’t think “two eyes, a nose, lips, sideburns,
sequins, etc.” They don’t even think “man” or “human being”—they think, “It’s Elvis!” The
gestalt allows our minds to generalize object-oriented models based on our memories and
sensory data. The gestalt makes us highly efficient at processing vast amounts of complex
information without going insane. Imagine if we were constantly aware of all the sensory
data surrounding us? However, this amazing organizing ability we have can also cause
major problems when we think our limited mental models reflect all of reality. Teaching
drawing for many years, I felt my hardest job was convincing the students to let go of the
way they thought they saw the world, to be able to learn to see it again freshly and expand
their perceptual paradigm. When people first start out learning to program, they typically
make some common intuitive assumptions because of the gestalt. These types of assump-
tions, which work more or less in the real world, fail miserably when applied to program-
ming. Computers innately lack an internal gestalt to discern the whole from the parts.
They are essentially just dumb (although ridiculously powerful) calculators. If computers
have any intelligence at all, it is at the software level. Software—operating systems, pro-
gramming languages, and applications—to some degree create a gestalt-like reality in the
computer, the so-called spirit in the machine. Thus, perhaps the passion people feel for
their machines is really a connection to the spirit imbued within the machine (the soft-
ware)—which of course is the human presence.

Here’s a concrete example that illustrates how our sophisticated brains can get us into
trouble when we first start writing code. An exercise I always cover early in my creative
coding class is how to generate a simple moving object programmatically (meaning using
code). The problem is pretty simple: Create a small rectangle—we’ll name her “recty”
(she’s a female polygon). Make recty move around the screen and have her bounce off the
edges of the frame, never letting any part of her go out the frame.

The first challenge students generally encounter in this problem if they have no program-
ming experience is simply moving recty. For this example, let’s assume that recty is already
on the screen in a frame and has an x property. This means that recty’s x position (her hor-
izontal position) on the frame can be set and retrieved by using her x property. Also
assume that recty’s registration point—a point or pixel on recty that the x property is
measured from—is in her top-left corner, and there is also a variable named speed that
controls how fast recty moves. I’ll assign a value of 3 to the speed variable using the
expression speed = 3, and I’ll also start a loop running that continues to update the frame
(and recty’s position). I’ll be covering all this stuff in more detail later on, so it’s OK to be
a little out of breath at this point—but just avoid operating any heavy machinery.

To move recty, most new coders try this first: recty.x = speed, which I think makes per-
fect sense because they’re assigning speed to recty’s x property. Unfortunately, this expres-
sion doesn’t get recty moving; although something else happens—recty gets moved to the
left edge of the screen (to 3 pixels to the right of the left edge of the frame) and stays
there, because recty.x = speed doesn’t increment recty’s x position by speed, but rather
assigns the value of speed (which is 3) to recty’s x position—putting her at that point in the

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

42

617xCH02.qxd 2/27/07 10:52 AM Page 42

frame. The loop keeps running and keeps assigning 3 to recty.x, so she doesn’t move
(poor recty), even though the frame is being refreshed continuously. So why do people do
this (besides just to annoy their teachers)? I think it’s because it is so easy for us to under-
stand how to move that we don’t waste any brain cells thinking about it.

Let’s imagine you and I were standing across a room from one another and I’d like you to
come join me on my side of the room. More than likely, I’d just say “please come over
here.” Your brain would fill in all the details on how to pull this off, which it would then
communicate to your body and you’d begin walking across the room, most likely in a
direct path toward me. Even though I didn’t tell you a rate or direction to move, you’d
know exactly what to do. Of course, my one-year-old daughter would probably not
respond to the same verbal cue. However, if I held up a shiny object from across the room,
she’d likely begin crawling over to me, also in a straight path no less. One of our challenges
in programming is thinking beneath our intelligence. Although moving across a room may
seem like a really simple task, there are a tremendous number of assumptions and calcu-
lations we make to achieve it, not to mention some pretty insane physics. When we model
even simple behavior on the computer, we need to account for these assumptions—which
is difficult. The correct solution to the movement problem is the following expression:

recty.x = recty.x + speed

Now this expression often looks a little confusing to people in the beginning. Why would
something be equal to itself? It seems illogical. First of all, in programming, the symbol =
doesn’t mean equals, but rather assignment. The symbol == means equals—I know this
seems weird. It might help if I write in English what’s going on in the expression recty.x =
recty.x + speed: “Add the value of the variable speed to recty’s current x property, then
assign that value back to recty’s x property, and then do it again and again. . .” Thus, after
each loop cycle, recty’s x property will increment by 3. By writing the logic out as an algo-
rithm, you can better understand what’s happening. In this case, recty.x keeps increasing
each loop cycle of the program, moving her across the screen. Will recty stop when she
hits the end of the frame? Nope, we didn’t tell her to. In fact, recty would continue mov-
ing until we quit the program, but of course you won’t see her, because she’s out of the
frame. If this is still unclear, don’t worry at all. This is difficult stuff to begin to get your
head around. Another trick to help you understand this stuff is to do the calculations man-
ually. For example

Remember speed equals 3.

Start recty.x out at 0.

First, loop recty.x = recty.x +speed.

Now recty.x equals 3.

Second, loop recty.x = recty.x +speed.

Now, recty.x equals 6.

Third, loop recty.x = recty.x +speed.

Now recty.x equals 9.

See the pattern.

CREATIVE CODING

43

2

617xCH02.qxd 2/27/07 10:52 AM Page 43

I hope that helps; it will come in time if it’s still a bit fuzzy. If you’re anything like me, It just
takes some time to restart the brain after years of turpentine exposure and bad TV. When
you get stuck on a programming problem, it really does help to write out a simple algo-
rithm. Later on, when you begin cranking out thousands of lines of dense code, creating
algorithmic roadmaps before you start coding might even eventually begin to feel like
conceptual brainstorming or preliminary sketching—of course, by then you will also be a
certifiable geek.

Happy coding mistakes
After my diatribe about algorithms, how can a coding mistake be seen as happy? Well, I
don’t mean “computer bug” when I write “mistake.” A bug is usually not happy. Bugs are
when stuff happens that is not very interesting and usually annoying. Bugs are the things in
software—such as missing semicolons, misspelled variable names, or infinite loops—that
can drive you insane and make you try to physically impale your keyboard. Happy coding
mistakes, on the other hand, are nonfatal things that happen, often revealing unforeseen
possibilities. As a painter, it took me a long time to be comfortable with my mistakes
(which were many). I wanted to control the paint—which of course is pretty much impos-
sible. In time, I began to realize that the so-called mistakes I was making were often the
best parts of the paintings. This phenomenon occurs in all creative pursuits, as somehow
our unconscious mind seems to assert itself when we least expect it. Arguably, this is also
where our inspiration lies. I think more experienced artists just learn how to better utilize
this capability as well as gain the ability to more selectively recognize the happy accidents
from the bugs. Coding is a creative process, and thus code art can benefit from these
happy mistakes. However, because the process of coding involves many more rigid rules
than painting, it is not as easy to understand the concept of happy coding mistakes. In
addition, when starting out coding, it is easy to get caught up in the technical aspects or
craft of coding and lose sight of its power as an expressive medium.

There is a macho aspect to coding, as well as to painting. You begin to feel powerful and
capable of describing all kinds of interesting behaviors; plus, you have access to a secret
language that most people don’t understand. Coding can become like a giant, multidi-
mensional crossword puzzle, and you can easily get consumed in these really dense,
abstract worlds—losing site of expressive possibilities or what you need to say (in an artis-
tic sense). You need craft in coding; the more mastery you have of your medium, the wider
the scope or range of your work. You also need a creative vision; without it, coding can
become an analytical quagmire. I can’t say that I always navigate clear of the quagmire
myself, as I often get caught in trying to solve these endless, albeit interesting, technical
problems. But when I let myself play with the code and let things happen that are not
completely in my control, I often have more fun and even experience the same kind of
(warning; new-agey phrase coming) transcendent feeling I get when I am in the flow of
painting. I also think the work is more original and expressive. Ultimately, I think it is about
finding flow in the coding process that takes you to new places and allows you to turn
your so-called mistakes into new and fertile investigations.

OK, let’s assume you buy some of this; a logical question for a new coder to ask is “How
do you begin to find or embrace happy coding mistakes when you don’t even know the
fundamentals (or basic craft) of programming?” I think the answer is to always try to find

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

44

617xCH02.qxd 2/27/07 10:52 AM Page 44

the time to play at whatever level you are at. This is a really important approach that
teachers are sometimes lousy at implementing. It is easy to get caught up in teaching the
pursuit of mastery, focusing on achievement goals for students and checking off the req-
uisite material covered. The school system reinforces this approach with standardized test-
ing, creating crammers and compartmentalizers who separate work and play, craft from
art. Is it any wonder that many of us (especially creative types) felt bored and frustrated in
the traditional classroom, especially in subjects that required methodical drilling or rote
memorization (like math)? Sadly, as we get older, we eventually label these subjects as the
problem, not the non-integrated teaching approaches. My experience in the classroom has
been that I find most people receptive to learning anything when it’s taught effectively.
And my vision of effective teaching always involves finding a way of integrating aspects of
play and work into the learning process. Before I launch into yet another whiny soliloquy,
I’ll sum it up with the following: real code art (whatever the heck that means) can be
made at any level—by a newbie coder learning the basics or a seventh-degree Java black
belt—and happy coding mistakes help us see the expressive possibilities at whatever level
we are at.

Before I end this chapter, I think it might be helpful to illustrate this point with a short
example of how I approach happy coding mistakes in my own process.

Algorithmic tree
I used to paint a lot of trees. Originally, I painted the entire landscape, but gradually over
time, I found myself zooming in closer on the trees, until one summer, I painted an entire
series of large paintings based on part of one tree. It is interesting watching your neigh-
bors’ reactions as you spend more and more time standing in your backyard, staring up at
the same tree.

So in honor of my favorite tree, I thought I’d illustrate some creative coding by generating
a tree with code. Let me also preface this by saying that you shouldn’t try to follow this
code unless you already know how to program; it may seem totally overwhelming. My
main point here is to reveal my creative process, not to teach the code; the rest of the
book is for that. Feel free to run this sketch and make changes to the code to see what
happens. If you get any really cool results, I hope you’ll e-mail me some screenshots.

In considering the problem, I decided to think about trees some and to break the problem
down into simple parts. In a moment of brilliant clarity, I concluded that trees have a
trunk, branches, and leaves. OK, I know I can probably make a trunk (think straight verti-
cal line). Branches could be a little harder, and leaves, well, probably too hard (actually too
much work). Branches, I concluded, could be simplified as a thin trunk, splitting off to
another series of thinner trunks, splitting off to another series of thinner trunks, and so on.
Thus, it seemed branches could be made from a single branch machine, in a fractal pro-
gression (huh?). By fractal progression, I mean the branches are self-similar and repeat.
Each branch’s ending point is a starting point for more branches, with a decreasing scale.
Thus, the tree thickness decreases from trunk to branch—which seemed pretty consistent
with real trees. I decided to put the leaves on hold for now. I was ready for a little sketch
of my branch plan (see Figure 2-2).

CREATIVE CODING

45

2

617xCH02.qxd 2/27/07 10:52 AM Page 45

Figure 2-2. Initial schematic sketch of tree branching structure.
The numbers represent the algorithmic branching order.

The drawing is a basic symmetrical tree structure in a purely schematic form. Between
each branch is a node. I added some numbers for the nodes to think a little how the com-
puter would sequentially draw the structure. So I was now ready for an algorithm that
would help me write code to generate the tree form. Again, the tree trunk was just going
to be a line, so I figured I’d come back to it. Here’s the branching algorithm:

1. Draw two or more opposing diagonal branches from the top of the trunk.

2. At the ends of these branches, continue adding two or more opposing diagonal,
slightly thinner branches.

3. Go back to step two until a specific limit is reached.

The algorithm seemed simple enough, and I noticed that it could possibly loop back on
itself—or even call itself. We call such an approach in programming recursion, where a
function calls itself. Recursion is a somewhat advanced concept, even though it is not that
difficult to implement. Recursion will lead to an infinite loop (a bad thing) unless some
explicit limit is set. For example, I could tell the program to run until one of the branches
touched the top of the frame, or until there are 700 branches on the tree, and so on.

After a couple of well-placed slaps to my head, I finally got the basic branching code writ-
ten (please note that this code fragment will not run in Processing yet):

void branch(Point2D.Float[] pts){
int stemCount=2;
if (counter2<branchLimit){

for (int j=0; j<stemCount; j++){
line(pts[counter2].x, pts[counter2].y, ➥

pts[counter2].x+xg, pts[counter2].y-yg);
pts[counter+1] = new Point2D.Float(pts[counter2].x+xg, ➥

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

46

617xCH02.qxd 2/27/07 10:52 AM Page 46

pts[counter2].y-yg);
xg*=-1;

counter++;
}
counter2++;
branch(pts);
}

}

I don’t want to spend too much time on the code here, as lots of coding is coming up in
subsequent chapters. I’ll just give a quick overview of how the function works. If you feel
overwhelmed at any point, just skip the code parts. In Chapter 3, I’ll begin with a very
gentle introduction to the fundamentals of coding, so don’t panic. What I’m really inter-
ested in illustrating is a creative process using code.

The branch function expects an array, of type Point2D.Float, as an argument (the stuff
between the parentheses at the top of the function). An array just holds a bunch of values,
as opposed to a variable, which only holds a single value. I chose to use Java’s Point2D.Float
class because it has built-in x and y properties and can handle real numbers (as opposed
to only integers). The stemCount variable controls how many branches each subsequent
branch gets. I hard-coded it to 2 just for now. The for loop draws the diagonal lines and
updates the pts array with the new branch locations. The variable xg controls whether the
branches lean left or right. By continuously multiplying xg by –1, it keeps toggling
the branches from right to left—not terribly organic, but efficient. The counters keep
track of stuff, and then I recursively call the same function, passing in the updated pts
array. At this point, you are probably either like “Cool, that makes sense,” or “Is it too late
to return this book? This guy is nuts!” Well, I may be nuts, but I don’t expect most of
you to be able to follow this code. However, hearing some of these terms over and over
will help with the “stick in your brain” part. What is really much more important and inter-
esting is how to turn this cold schematic diagram into a tree (see Figure 2-3).

Figure 2-3. Initial code implementation of the branching algorithm

CREATIVE CODING

47

2

617xCH02.qxd 2/27/07 10:52 AM Page 47

After being somewhat satisfied with the branch algorithm, I started playing with the code.
The first thing I did was add some random functions that moved the branches in slightly
different places. The random functions contribute to the happy mistakes. Sometimes, I’ll
put in values that are outside of a reasonable range just to see what happens. Already this
started looking better (see Figure 2-4).

Figure 2-4. Randomness added to the branch structure

Next, I added thickness (using the radius variable) to give the tree some form. Beginning
with a larger radius value—not really a radius, but more like thickness—for the trunk, I
decremented the radius variable slowly each time the function ran, letting the branches
slowly attenuate. This began looking a little more tree-like, as you can see in Figure 2-5.

Figure 2-5. Stroke weight variation begins to create a more realistic-
looking tree.

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

48

617xCH02.qxd 2/27/07 10:52 AM Page 48

The overall movement was good, but the tree seemed too stiff, so I wrote a little redraw-
ing function that added some waviness to the main trunk, and I set this up as a random
value. Using randomness is really helpful for generating organic-esque type effects. One of
the potential pitfalls of using code as a creative medium is its inherent precision, since it’s
ultimately based on math. In the real world, “stuff” (friction, gravity, our ineptitude, etc.)
intervenes between intention and implementation—the happy accidents. Adding random-
ness is one (easy) way to introduce some happy chaos into an otherwise highly predictable
process (see Figure 2-6). Normally when I use random values, I set a base number that I
add to the random part. For example, if I were creating a random number of branches,
and I used a random function, such as random(12), I would get a number returned
between 0 and 12. However, if I needed a minimum of two branches, I would change the
expression to “2+random(10)”—this way, I would get a random number between 2 and 12.
Processing has a handy random function that allows you to pass two arguments, as in
random(2, 12), which does the same thing.

Figure 2-6. Waviness added to the main trunk

Things were beginning to look pretty good, but I still needed to deal with those darn
leaves. Then, a really happy coding accident happened. As I began to play with the code,
setting weird numbers in the functions, I found a way of generating leaves by really upping
the number of iterations and using a couple of conditional statements (if and else) that
would at specific times in the branch-creation cycle decrement or increment certain val-
ues. Then I added some color the same way, and finally used a similar wavy function for
each branch, like I used on the trunk. Figure 2-7 shows a couple of finished trees.

CREATIVE CODING

49

2

617xCH02.qxd 2/27/07 10:52 AM Page 49

Figure 2-7. Some finished trees

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

50

617xCH02.qxd 2/27/07 10:52 AM Page 50

Obviously, there are a lot of things I could still do with the tree code, but hopefully one of
you will eventually take the code and improve upon it. I hope I was able to illustrate in this
example how you can play with the code and even find stuff in the process of coding. Yes,
there is some thinking involved, but there is also a lot of play and discovery. I’ve included
the entire tree program following, with code comments for your hacking pleasure. If you
want to try running this, launch Processing and type (or paste) the code into the
Processing text editor.

/*
algorithmic tree sketch
Ira greenberg, August, 2005
*/

/* import Handy Java class with
public x and y float props */

import java.awt.geom.Point2D;

// declare/define global variables
int counter;
int counter2;
float xg = 58;
float yg = 46;
int trunkSegments = int(random(7))+5;
int nodeLimit = 20000;
Point2D.Float[]pts = new Point2D.Float[nodeLimit];
int branchLimit = 620;
float trunkLength = int(random(50))+130;
float[]lean2 = new float[trunkSegments+1];
float radius = 26;

// initialize sketch
void setup(){
size(900, 600);
background(255);
stroke(30, 10, 5);

// create tree turnk
trunk();

}

void trunk(){
//draw trunk
for (int i=0; i<trunkSegments; i++){
float lean = myRand(22);
strokeWeight(radius+12);
line(width/2+lean2[i], height-(trunkLength/trunkSegments)*i, ➥

width/2+lean, height-(trunkLength/trunkSegments)*(i+1));
lean2[i+1] = lean;

}

CREATIVE CODING

51

2

617xCH02.qxd 2/27/07 10:52 AM Page 51

// set inital branch point from top of trunk
pts[0] = new Point2D.Float(width/2+lean2[trunkSegments], ➥

height-trunkLength);

//create branches
branch(pts);

}

//main function that draws branches and leaves
void branch(Point2D.Float[]pts){
int stemCount=2;

// global variable branchLimit controls complexity of tree
if (counter2<branchLimit){

//set branch thickness
strokeWeight(radius);

// some conditionals change branches as
// they get further away from the trunk
if(counter2<200){
yg-=random(.354);
xg-=random(.625);

if (radius>2) {
radius*=.931;

}

} else if(counter2>=200){
// at top of tree branches get thinner and more numerous
stemCount = 2+(int)(Math.random()*15);
// leave color
stroke(random(60), 50+random(90), random(20), 230);

yg-=myRand(.65);
xg+=random(1.5);

radius*=(.91);
}
for (int j=0; j<stemCount; j++){
// randomize branch positions
float xx= myRand(30);
float yy= myRand(40);

/* commented out line below generates straight branches
line(pts[counter2].x, pts[counter2].y, pts[counter2].x+xg+xx,➥

pts[counter2].y-yg+yy);
*/

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

52

617xCH02.qxd 2/27/07 10:52 AM Page 52

// generates organic looking branches
orgLine(pts[counter2].x, pts[counter2].y, ➥

pts[counter2].x+xg+xx, pts[counter2].y-yg+yy);

/* fill up pts array to be passed back
recursively to branch function */

pts[counter+1] = new Point2D.Float(pts[counter2].x+xg+xx, ➥

pts[counter2].y-yg+yy);

// alternate branches left and right
xg*=-1;

// keep track of nodes
counter++;

}

// keeps track of branches
counter2++;

//recursive call
branch(pts);
}

}

// generates organic-looking branches
void orgLine (float x1, float y1, float x2, float y2){

int sections = 8;

float xd = x2-x1;
float yd = y2-y1;

float twist;
float[]twist2 = new float[sections+1];

for (int i =0; i<sections; i++){
twist = myRand(5);
line(x1+xd/sections*i+twist2[i], y1+yd/sections*i, ➥

x1+xd/sections*(i+1)+twist, y1+yd/sections*(i+1));
twist2[i+1] = twist;

}
}

//generate a random val between (-n, n)
float myRand(float val){
return random(val)+random(-val);

}

CREATIVE CODING

53

2

617xCH02.qxd 2/27/07 10:52 AM Page 53

Summary
In this chapter, I introduced creative coding as an approach to programming that inte-
grates both analytical and creative processes. Using my friend Mark as an example, I
described some of the stereotypes and biases that can make this cross-brain integration so
challenging—a problem often (and sadly) reinforced in the classroom, which helped moti-
vate me to teach creative coding and eventually write this book.

I gave a very top-view description about how Processing works, built on top of the Java
programming language, and I described some ways of structuring your code, including
procedural and object-oriented approaches—both utilized within Processing. I tried to
demystify the term “algorithm” and show the relationship between an algorithm and its
implementation in code. I also discussed the challenge of learning to think like a “dumb”
machine.

Finally, I covered the important role of happy accidents in the creative coding process, and
I illustrated the point with an algorithmic tree example. In the next chapter, you’ll begin to
explore the actual nuts and bolts of coding.

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

54

617xCH02.qxd 2/27/07 10:52 AM Page 54

617xCH02.qxd 2/27/07 10:52 AM Page 55

617xCH03.qxd 2/27/07 10:57 AM Page 56

3 CODE GRAMMAR 101

617xCH03.qxd 2/27/07 10:57 AM Page 57

This is where the techie stuff really begins! Hopefully, in the last two chapters you’ve got-
ten some context and maybe even inspiration and are ready to dive right in. This chapter
looks at the nuts and bolts of programming in general. I make the assumption that you
have no experience with coding at all, so for those of you coming to Processing from
another language, you may want to skim this chapter. In Chapter 4, I cover the basics of
graphics coding, and in Chapter 5, I discuss the details of the Processing environment.

For new coders, my recommendation is to read this chapter at least once, but to not worry
about retaining all this info before continuing on. The material will sink in as you begin
programming, and you can refer back to this chapter from time to time as a reference.
Most of what I cover in this chapter is general programming theory and basic syntax and
semantics using Processing and to some degree Java. By syntax, I mean the way language is
put together to form actual statements, functions, classes, and so on. Semantics refers to
the actual meaning of the code we write. Most of what I cover here, especially the theo-
retical stuff, is applicable to other languages besides Processing, but of course each lan-
guage has its own syntax, so the actual code will look different. Without further ado, I
present: Coding . . . really, really simplified.

Structure and abstraction
There are a couple of ways to think about structure in coding. On the simplest level, you
can think of structure in terms of the syntax you use to write a single line of code. For
example, ball.x = width-ball.width;. On the other end of the spectrum, structure can
involve applying complex rules and protocols for integrating large, convoluted software
systems. Fortunately for your needs, most of the structural issues will be pretty straight-
forward. You will use basic syntactic structure to order a program, not unlike how you
would structure any written document, using punctuation, sentence structures, para-
graphs, and so on. In coding, there are some other more abstract notions of structure that
I will discuss as well.

Our brains like some sense of order—although the range of chaotic tolerance among dif-
ferent people’s brains seems pretty wide (as my office usually attests to). When a program
gets overly complicated, it becomes hard to keep track of what’s going on. This often
becomes an especially vexing problem when you take a break from a project and then
pick it up some time later. There are a number of structures or abstractions commonly
used in coding to help order the process. The two major programming approaches I will
cover are procedural programming and object-oriented programming (OOP). I introduced
and defined both briefly in Chapter 2. Procedural programming relies on reusable blocks
of code that work like processing machines, which you call when you need them. These
reusable blocks of code are referred to as functions. The second approach, OOP, is a far
more ambitious and abstract approach that models a programming problem using con-
cepts from the real world. For example, if you were writing an object-oriented program to
generate a virtual garden, you would create code structures, called classes, to organize
your program. The classes might each describe a garden concept from the real world: leaf,
vine, flower, sunlight, water, and so forth.

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

58

617xCH03.qxd 2/27/07 10:57 AM Page 58

Your first program
In most programming books, the first program written is called “Hello World” (see
Figure 3-1). This spectacular program spits back the words “Hello World” to the screen—
yawn! Needless to say, I find this program extremely boring and also think it sets the wrong
tone for an entire book on creative coding. I for one need more encouragement and inspi-
ration before attempting to learn something as scary and potentially boring as program-
ming. Thus in breaking with tradition, which this book is all about, the first program you
write will be entitled “Hello Earth.” Here it is:

/*
Program Title: "Hello Earth"
Program Description: Blue circle on black background
By Ira Greenberg, August 5, 2005
Comments: Our first Processing program- yippee!
*/
size(200, 200);
background(0);
// keep stroke from showing up around circle
noStroke();
fill(80, 220, 255);
ellipse(100, 100, 100, 100);
print("Hello Earth!");

If you haven’t done so yet, download Processing from http://processing.org/download/
index.html. I recommend selecting the standard download option. The installer will
create a Processing directory. Within this directory, you’ll find the Processing application
icon. Launch it, and type the “Hello Earth” sketch code into Processing’s text editor (the
big, white area in the middle of the application); then press the right-facing arrow in the
circle, at the top of the application.

Figure 3-1. Your first Hello Earth program

CODE GRAMMAR 101

59

3

617xCH03.qxd 2/27/07 10:57 AM Page 59

http://processing.org/download/

Congratulations! OK, so maybe it wasn’t a huge improvement to “Hello World,” but you
got to make a pretty, blue circle. Let’s look at the program line by line.

/* and */ are block comment tags, used to comment out multiple lines of information so
that it is ignored by the compiler. // can be used to comment out a single line. It is typical
at the top of a program to put some info about what your program does, who created it,
the creation date, and any other special notes. This is not required, but most people put
something up there. In fact, some people put a lot of stuff up there, including specific
code usage rights. How much you include up there doesn’t really matter because it won’t
affect how your program functions. However, novellas, mission statements, and manifestos
should probably be put other places. Here are some more examples of comments:

// this is a valid comment

/* this is a valid comment */

/*
this is a valid comment
*/

// this
// is also
// a valid
// comment

After the comments, I skipped a line. This is called whitespace. Whitespace in Processing
and Java is disregarded, as it is in many other programming languages. You can put as much
whitespace as you like to help you visually organize your code. The next line in the pro-
gram, size(200, 200); is a function call (I spoke about functions in Chapter 2—functions
are reusable blocks of code that you call when you need them). You know this because of
the parentheses after the word size. As stated in Chapter 2, a function call . . . well . . .
calls a function—in this case, a function named size. The numbers within the parentheses
are called arguments—things that are passed to the function, which the function expects
to receive and makes use of. In this case, the numbers represent the width and height of
the sketch window. When more than one argument is passed to a function, as in
size(200, 200);, commas are used to separate the individual arguments. There is no limit
to the number of arguments you can pass to a function, as long as the function has the
same number of parameters to receive the arguments. In addition, they must be sent to
the function in the same order that the function expects to receive them. In the case of
the function calls in the Hello Earth example, the functions I called are all built into the
Processing language, and thus you can’t see the actual function definitions. I’ll be
discussing functions in much greater detail later on in this chapter. For now, let’s keep
moving.

At the end of the size(200, 200); call, you should notice a semicolon. Semicolons in
coding are like periods in normal human language. They let the compiler know where the
end of the statement is. A statement is simply a command to the program to do some-
thing. In Processing, failure to include a semicolon results in a compiler error—an error

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

60

617xCH03.qxd 2/27/07 10:57 AM Page 60

message comes up on the bar in the message area of the Processing editor window that
says Expecting SEMI Fortunately, the Processing/Java compiler is smart and keeps you
from making too big a goof-up. If you happened to try this, just put the semicolon back,
and the program should compile fine. You’ll notice almost all the rest of the lines of the
program have the same basic structure, each calling a function. As I mentioned previously,
the line // keeps a stroke from showing up around the circle is a single-line comment.

The line noStroke(); is a function call that doesn’t pass any arguments. noStroke()
affects how things are painted to the screen. The function call disables a stroke or outline
from being rendered on a shape. I’ll be covering Processing’s drawing and painting func-
tions a lot in future chapters. The line print("Hello Earth!"); is a call to the print()
function that expects an argument of type String. In this case, you passed in your "Hello
Earth!" argument. You should have seen the words Hello Earth come up in the black text
area at the bottom of the Processing editor window. String is a type of data in Processing
(or most any program) for referencing groups of characters. print() is an important func-
tion that you’ll use all the time in Processing to help you debug your code. Processing has
an alternate version, println(), which does the same thing as print(), but adds a return
after printing the string argument within the parentheses. For example, if you run the fol-
lowing code:

print("hello");
print("earth");

the output will be as follows:

helloearth

If you use the println() version, as follows:

println("hello");
println("earth");

the output will look like this:

hello
earth

The rest of the function calls in the program, Background(0), fill(80, 220, 255), and
ellipse(100, 100, 100, 100), set the background color, set the shape fill color, and cre-
ate the circle, respectively. I will be covering these and other Processing graphics functions
in more depth beginning in Chapter 6.

Curly braces

Another important and widely used syntactical structural element is the curly brace: { }.
Curly braces, which always work in balanced pairs (an open and closed pair), are used to
structure blocks of code. Following are some code examples that show the use of curly
braces.

CODE GRAMMAR 101

61

3

617xCH03.qxd 2/27/07 10:57 AM Page 61

Here’s a conditional if...else example:

if (thisBook == bestSeller) {
sleepWellAtNight();

} else {
addMorePictures();

}

Here’s a function example:

void sleepWellAtNight() {
println("one sheep, two sheep...");

}

Here’s a for loop example:

for (int i = 0; i < totalPictures; i++) {
makeSomeInterestingPictures();

}

You’ll be looking at a lot more examples that make use of curly braces shortly. You’ll notice
that I structured the blocks of code between the curly braces using indentations. Indenting
is not necessary for the code to work, but it is the conventional way to write blocks of
code. Indenting makes it easier for other coders to read your code. In the examples in this
book, each indentation is created by hitting the spacebar twice.

Dot syntax

The last syntactical structure you’ll see in Processing is the dot (.) It looks like a period
(and it technically is a period), but it’s referred to as a dot; it’s the same dot in .com. The
dot is an advanced syntactic structure used in OOP.

As I mentioned earlier, there are two approaches to structuring a program in Processing:
procedural programming and OOP. Procedural programming uses functions to organize a
program. You just saw an example of a function in sleepWellAtNight. When you need to
use a function, you explicitly call it—for example, sleepWellAtNight()—pretty simple.

In OOP, you build much more complex structures called classes. To use a class, you create
instances of it, known as objects. Classes contain properties and methods. You can think of
the properties as the traits of the object and the methods as actions you perform on/with
the traits. For example, if you create a class called Cat, some of the properties might be
color, weight, and markings, and a method might be getBreed(). You use the dot syntax
as a way to connect an object with its properties and/or methods. For example, if you
create an object myCat from the Cat class, the object can call the getBreed() method
using dot syntax, like this:

String breedName = myCat.getBreed();

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

62

617xCH03.qxd 2/27/07 10:57 AM Page 62

Since the getBreed() method would return the name of a breed, you call the method as
part of an assignment statement so that the returned named will get assigned to the vari-
able breedName. I’ll be covering OOP in much more detail in Chapter 8.

Naming conventions

Perhaps you noticed that a bunch of the fictitious names I used in the examples were com-
binations of multiple words—for example, sleepWellAtNight() and getBreed(). This is
referred to as camelback notation. It is common to use it in case-sensitive environments.
By capitalizing the initial character of the multiple words, you can read them more easily.
Notice that the initial letter of the first word isn’t capitalized. Camelback notation is not
required, but highly recommended. However, there are some required naming rules.

Legal names can only contain letters, underscores, numbers, and the dollar sign. The initial
character must be a letter, underscore, or dollar sign—not a number. I recommend only
using a letter as your initial character. Following the initial letter, it’s fine to use numbers.
It’s also strongly suggested that you use names that are descriptive. For example, which is
easier to understand: getAge() or abdi()?

The names you define are called identifiers. Based on the preceding rules, here are some
legal identifiers:

String myBall

float speed

int ballCount

float theBallSpeed

boolean YouCanActuallyMakeYourVariableNamesAsLongAsYouLike

String BALL_MANUFACTURER

Here are some illegal ones. Can you tell why?

String Ball 1

int 100bjs

float -weight

int myBall#

The reasons are as follows: Ball 1 is illegal because of the space in the identifier; 100bjs
is illegal because you can’t begin an identifier with a number; and -weight and myBall#
are illegal because both use illegal characters: - and #, respectively.

CODE GRAMMAR 101

63

3

617xCH03.qxd 2/27/07 10:57 AM Page 63

Literals
As you will learn in the next section, a variable is something that can mean different things
in different parts of the program. However, a literal is simply an explicit number or string
constant (words or characters) used in programs. Here are some examples:

"Sophie"

25

10346

"abc"

Note that string literals are enclosed in quotes (usually double quotes) and numeric liter-
als are not. In some cases, if you need a string within a string, you surround the inner string
with single quotes. Here’s an example:

"One of Shakespeare's most famous lines 'to be or not to be'
is in Hamlet"

Here’s a sketch that outputs some literal values:

String announceDate = "I'm writing this on: ";
String currentMonth = "March ";
int currentDay = 5;
String currentDayName = "Sunday";
int currentYear = 2006;
String comma = ", ";

print(announceDate);
println(currentDayName);
print(currentMonth);
print(currentDay);
print(comma);
println(currentYear);

This sketch will output the following:

I'm writing this on: Sunday
March 5, 2006

Notice how I used the print() and println() statements to help me format the out-
putted lines combining the literals.

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

64

617xCH03.qxd 2/27/07 10:57 AM Page 64

Variables
Variables are essential to programming, and it is hard to imagine coding anything without
them. In Processing and Java, there are two types of variables: primitive variables and
object reference variables. The major differences between these two categories of vari-
ables are the kind of data they can be associated with and how this data is stored and ref-
erenced in memory. I’m only going to cover primitive variables here; I’ll discuss object
reference variables when I cover OOP in Chapter 8.

A primitive variable is a simply a name assigned a specific value in memory that you can
recall and change. Here are a couple of examples of primitive variables:

int age = 6;
String name = "Ian";
boolean isABoy = true;

The first part of each of the statements (int, String, and boolean) declares what type of
primitive data the variable can hold: int holds integers, String holds words, and boolean
holds true or false. The next part (age, name, and isABoy) is the identifier of the variable,
and the last part is the actual value (6, "Ian", and true) assigned to the variable.

Variable names in Processing and Java are case sensitive, meaning that xSpeed is a differ-
ent variable than xspeed. A variable’s name is created by the coder and needs to be a legal
identifier, which was described previously. Regardless of whether you are naming a primi-
tive variable, object reference variable, function, method, class, or object, the same legal
identifier–naming rules apply. There are also some reserved keywords that you should
avoid using when naming things. The reserved keywords can be found here: http://
java.sun.com/docs/books/tutorial/java/nutsandbolts/_keywords.html. In addition, I
would also strongly recommend not naming your custom variables, functions, objects, and
so forth with any of the built-in function names in Processing; it will lead to, at best, unex-
pected results.

When I initially create a variable by writing int ballCount, I am not yet specifying a spe-
cific value to be assigned to the variable, but only letting the computer know what type of
data is allowed to be assigned to the variable (in this case, an integer). Every variable must
be associated with a data type. Some common primitive data types in Processing are int,
float, char, and boolean. Data types tell the variables what they can or can’t do, and also
how much memory should be allocated for them. For example, a boolean type variable
can only hold the values true or false, requiring only 1 bit of memory to store either a
single 0 (false) or a 1 (true). It would be a waste of memory to store it any other way. A
byte can hold a number between –128 to 127 (that’s 256 different possible values), which
requires 8 bits, or 1 byte, of memory.

CODE GRAMMAR 101

65

3

617xCH03.qxd 2/27/07 10:57 AM Page 65

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/_keywords.html

When you write the variable data type and identifier (name)—for example, int
ballCount—you refer to this as declaring the variable. When you give a variable a specific
value—for example, ballCount = 3—then you say you are initializing the variable. These
two activities can be done together in one step (e.g., int ballCount = 3), or separately,
depending upon your program needs. Because variables are by default mutable, once you
initialize a variable you can still change its value whenever you need to (as long as
you assign it a value consistent with its originally declared data type). For example, try run-
ning the following code:

int ballCount = 15;
println(ballCount);
ballCount = 10;
println(ballCount);
ballCount = 100;
println(ballCount);

When you run this sketch, you’ll get the following output:

15
10
100

Strict typing

I remember first learning Java and being confused that I had to keep writing the data types
as I declared my variables, not to mention the whole case-sensitivity issue. I was used to
old-school ActionScript, where variables could hold anything at any time. However, I’ve
come to understand and appreciate the benefits of what’s referred to as “strict typing” of
variables. Interestingly, ActionScript, which some of you may know, now uses explicit typ-
ing of variables as well—so much for the good old days. So int ballCount can only hold
integer values and float ballSpeed can only hold float values. But why is this helpful?

You might be curious as to why you can get 256 unique values from a single byte (8
bits) of memory. If you get scared by this explanation, don’t worry. It’s not essential to
know! It’s because in base 2 (as opposed to the base 10 system our minds are accus-
tomed to), a byte is an 8-digit binary number, made up only of a combination of zeros
and ones. The number of distinct values of a binary number can be calculated by tak-
ing 2—only two possible values for each digit, 0 or 1—and raising it to the power of
the number of places or digits in the number. So 2 to the 8th power equals 256. ints
can hold up to 4 bytes (or 2 to the 32nd power), and thus can hold numbers between
–2,147,483,648 and 2,147,483,647. If you’ve been involved in digital design for some
time, you’ve probably converted images from 24-bit color to 8-bit color, going from 2
to the 24th power, or 16,777,216 possible colors, to 2 to the 8th power, or 256 possi-
ble colors. The old web-safe palette of 216 colors was just a subset of the 8-bit palette
that looked somewhat consistent on different platforms/browsers.

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

66

617xCH03.qxd 2/27/07 10:57 AM Page 66

It’s because strict typing helps create more precise and ultimately faster-running code. If
you try to assign a float value—for example, 3.2—to int ballCount, Processing will spit
back a compiler error that says

The type of the right sub-expression, "float", is not assignable to
the variable, of type "int".

This may seem obnoxious and a royal pain, especially if you are used to a loosely typed
language, but it really is a useful (or at least justifiable) language feature. Save for the
strange worlds of quantum physics, we would expect distinct whole balls to be held in
ballCount—not parts of balls. If the compiler let you assign 3.2 (maybe entered due to a
typo) to ballCount, your program would probably crash later on. To debug your program,
you would then have to track down a tiny but fatal type conversion error (definitely not a
happy coding accident). Additionally, in languages that do permit on-the-fly data type
assignment, it takes more work for the computer to figure out what type of data is held in
a variable.

Because you set the data type of variables when they are declared in Processing and Java,
and that information gets put in the compiled bytecode, the virtual machine (the language
interpreter) needs to do less work. Languages like Processing and Java that work this way
are called statically typed languages. Languages like Python, on the other hand, are
dynamically typed, and, due in part to dynamic typing, run slower than Java and
Processing. Now, at the risk of really getting you rankled, what do you think would happen
if you tried to assign 3 (an integer) to ballSpeed (declared as type float)? Surprisingly,
you wouldn’t get a compiler error. Huh! That seems to go against what I just wrote about
how static typing works. The reason the compiler allows it is because the compiler con-
verts the 3 to 3.0 automatically. Let’s test this out. If I try running the following code:

float ballSpeed;
ballSpeed = 3;
println(ballSpeed);

I get the following output:

3.0

The reason the compiler lets me get away with this is because there is no danger, nor any
real change, to the value. 3, 3.0, and even 3.0000000000000 are all equal. Not to get too
geeky, but this type of implicit conversion is called a “widening conversion,” where an int
is automatically converted into a float. The rule is that any primitive type will be con-
verted implicitly (without any help from you) into any other type only if that type supports
a larger value; a float supports a larger value than an int. In regard to Processing, that
would include byte to int and int to float. Bytes can become integers and integers can
become floats. Converting the other way, from a float to an int to a byte (a “narrowing
conversion”) can actually also happen, but you have to do it explicitly (which involves a
little work on your part), with something called type casting, which I’ll cover later in the
book. For now, let’s put this theory stuff to bed and play with variables a little.

Here’s a little program to create a stepped radial gradient (see Figure 3-2). Later on when
I cover loops, I’ll simplify this program, and also show you how to generate a more elegant
continuous gradient. You’ll create the program in three stages. The first stage will fill the

CODE GRAMMAR 101

67

3

617xCH03.qxd 2/27/07 10:57 AM Page 67

display window background with black. The second stage will add a white ellipse, and
the third stage will create the gradient. In stages 2 and 3, you just need to add the new
code shown in bold. Also, try running the sketch at each stage to see the effect of adding
the new code.

Stage 1 just generates a black 200-by-200-pixel display window:

/*
title: fun with variables
description: stepped radial gradient
created: August 7, 2005
by: Ira Greenberg
*/

// set the sketch window size and background
size(200,200);
background(0);

Stage 2 utilizes some variables and draws a white ellipse in the middle of the display window:

/*
title: fun with variables
description: stepped radial gradient
created: August 7, 2005
by: Ira Greenberg
*/

// declare some global variables
int xpos;
int ypos;
int gradientWidth, gradientHeight;

// set the sketch window size and background
size(200,200);
background(0);

// radial width/height
gradientWidth = gradientHeight = width;

//radial center pt
xpos = width/2;
ypos = height/2;

//turn off stroke rendering
noStroke();

//create ellipses
ellipse(xpos, ypos, gradientWidth, gradientHeight);

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

68

617xCH03.qxd 2/27/07 10:57 AM Page 68

Stage 3 adds the gradient:

/*
title: fun with variables
description: stepped radial gradient
created: August 7, 2005
by: Ira Greenberg
*/

// declare some global variables
int xpos;
int ypos;
int interval;
int gradientWidth, gradientHeight;

// set the sketch window size and background
size(200,200);
background(0);

// define variable values
// controls banding of gradient
interval = 255/5;

// radial width/height
gradientWidth = gradientHeight = width;

//radial center pt
xpos = width/2;
ypos = height/2;

//turn off stroke rendering
noStroke();

//create ellipses
//set fill color and render ellipse
fill(interval);
ellipse(xpos, ypos, gradientWidth, gradientHeight);
fill(interval*2);
ellipse(xpos, ypos, gradientWidth-interval, gradientHeight-interval);
fill(interval*3);
ellipse(xpos, ypos, gradientWidth-interval*2,➥

gradientHeight-interval*2);
fill(interval*4);
ellipse(xpos, ypos, gradientWidth-interval*3,➥

gradientHeight-interval*3);
fill(interval*5);
ellipse(xpos, ypos, gradientWidth-interval*4,➥

gradientHeight-interval*4);

CODE GRAMMAR 101

69

3

617xCH03.qxd 2/27/07 10:57 AM Page 69

Figure 3-2. Completed stepped radial gradient

I begin the program with my standard “about the program” comments. Then I declare
some global variables at the top of the program. Global, as opposed to local, means that
the variables will be available from any place within the program. Later, when I cover func-
tions, I’ll discuss this concept, called scope, further. You’ll notice I declared all the variables
as type int. The line int gradientWidth, gradientHeight; declares both gradientWidth
and gradientHeight variables as type int in one line. When declaring and initializing vari-
ables, you can put them on individual lines or bunch them together. For example, the
following line is perfectly legal:

int var1 = 3, var2 = 5, var3 = 6, var4 = 0;

I declare four variables of type int, while also initializing them with initial values.

After declaring variables, I set the size properties and background color of the sketch
window:

size(200,200);
background(0);

You might recognize these as function calls, in which dimensions (width and height) and
color arguments are passed to the respective Processing functions. These functions are
built into the Processing language, which is why you don’t see the functions defined in the
program anywhere. After you set the sketch window dimensions using the size(200, 200)
command, you can then retrieve the sketch window size using Processing’s built-in global
properties: width and height. You’ll notice these words turn a reddish color in the editor
when you type them in, letting you know they are built-in properties in Processing.

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

70

617xCH03.qxd 2/27/07 10:57 AM Page 70

Next, I assign values to some primitive variables:

// controls banding of gradient
interval = 255/5;

Because the gradient will go from black to white, I made the interval variable a factor
of 255 (255 equals white). This way, I can step from black to white an equal number of
steps—in this case, five. The next line may look a little strange:

// radial width and height
gradientWidth = gradientHeight = width;

If I write it out in English, its meaning will be clearer: the value of width is assigned to the
variable gradientHeight, which is then assigned to the variable gradientWidth. When you
use the single-equal sign (=), it means assignment, not equals. Assignment statements are
evaluated right to left, which is why this compound assignment statement works. Also,
remember that width is a built-in Processing property that holds the width I made the
sketch window with the function call size(200, 200). gradientWidth and gradientHeight
are variables I declared that will hold the width and height of the gradient. I could have
written the statement in two lines, as well:

gradientHeight = width;
gradientWidth = gradientHeight;

Setting the center of the gradient, I defined the variables xpos and ypos with the expres-
sions width/2 and height/2, respectively. If you’ve never coded before, it may look odd to
use a mathematical expression as something to be assigned, but it’s perfectly legal and
common in programming. Remember, computers are really just super-powerful (and
expensive) calculators.

xpos = width/2;
ypos = height/2;

The line noStroke(); turns off any stroke rendering, which is on by default in Processing
when you render an ellipse or rectangle. noStroke() is another built-in Processing func-
tion. The rest of the program paints the gradient:

fill(interval);
ellipse(xpos, ypos, gradientWidth, gradientHeight);
fill(interval*2);
ellipse(xpos, ypos, gradientWidth-interval, gradientHeight-interval);
fill(interval*3);
ellipse(xpos, ypos, gradientWidth-interval*2, ➥

gradientHeight-interval*2);
fill(interval*4);
ellipse(xpos, ypos, gradientWidth-interval*3, ➥

gradientHeight-interval*3);
fill(interval*5);
ellipse(xpos, ypos, gradientWidth-interval*4, ➥

gradientHeight-interval*4);

CODE GRAMMAR 101

71

3

617xCH03.qxd 2/27/07 10:57 AM Page 71

The fill(interval) lines are calls to Processing’s built-in fill() function. The calls pass
an argument to the function that controls the fill color of the shapes. In this case, I’m
working with grayscale values between 0 and 255. The ellipse(x, y, w, h) function call
has four arguments for the x and y position and width and height of the ellipse. You’ll also
notice that the arguments I pass to the ellipse functions are both other variables and
expressions that include variables. Try running the program, if you haven’t already done
so, and changing some of the values and/or expressions to see what happens. See also if
you can increase the number of steps in the gradient, making it a little smoother. When we
get to loops, I’ll recode this for you, and you’ll really see the power of code for doing
repetitive tasks or iteration.

Operators
Some of you may remember the word operator from math class. Operators are the
symbols you use when you write mathematical expressions. Technically speaking, opera-
tors perform a function on operands. In the expression x + 3, x and 3 are the operands and
+ is the operator. In terms of coding, you’ll primarily use the same four operators you
learned about in grade school: +, –, *, and /. Just using these operators, you’re able to
perform almost all the math you need to create amazing visuals. Processing and Java
have additional operators besides these four, some of which I’ll go over as well. Beginning
to use operators is pretty simple. Coding can get complex, however, when you’re figuring
out the right combinations of operators needed in forming more complex expressions.
You’ve already seen a bunch of operators in action in the last section on variables.
For example, in the function call ellipse(xpos, ypos, gradientWidth-interval*4,
gradientHeight-interval*4), the third and fourth arguments passed to the ellipse
function, gradientWidth-interval*4 and gradientHeight-interval*4, each used two
operators (– and *). Because operators return a value, you are able to use them as argu-
ments, as shown previously.

Here are some assignment operations utilizing the four basic operators. I’ll also go over
some basic rules that control the order in which operators do their thing, which is referred
to as operator precedence.

int x = 4+3-6;
float y = 14*3/5-2.34;
float z = 14*3/(5-2.34);

The order of calculation is as follows:

Parentheses

Multiplication and division

Addition and subtraction

When operators have the same precedence level, the expression is evaluated from left to
right.

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

72

617xCH03.qxd 2/27/07 10:57 AM Page 72

In the first preceding example, addition and subtraction have the same precedence level,
so the right side of the assignment statement is evaluated from left to right. (The assign-
ment itself still occurs from right to left.)

The second example combines multiplication, division, and subtraction. Multiplication and
division operations occur before subtraction. Since multiplication and division are at the
same precedence level, this expression is evaluated left to right.

The last example uses the same operands and operators as the second example, but uses
parentheses to group. Since parentheses have the highest precedence, the subtraction in
the parentheses happens first, and then the multiplication/division occurs from left to right.

I’ve covered all the arithmetic operators but one: %, called the modulus operator. When I
first learned about this operator, I found it confusing and a little scary looking and sound-
ing. It’s actually not such a big deal. The modulus operator doesn’t mean percent, but
rather returns the remainder of the division between two operands. The remainder is the
part left over after the division.

For example, 7 % 2 would evaluate to 1, since 2 goes into 7 three times, leaving a remain-
der of 1. Here are some more examples:

17 % 9 evaluates to 8.

6 % 3 evaluates to 0.

23.4567 % 5 evaluates to 3.4567.

In addition to the five arithmetic operators you just looked at, there are quite a few oth-
ers. However, you only need to concern yourself with the most common ones for now.
These operators can be broken down into three categories: the equality and relational
operators, the conditional (also sometimes referred to as logical) operators, and the
assignment operators.

Relational operators

The relational operators are very important, and you will use them often. Most of these
operators should look familiar to you from grade school (although probably not the last two):

> (greater than)

>= (greater than or equal to)

< (less than)

<= (less than or equal to)

== (equal to)

!= (not equal to)

The greater than and less than arrows work the same way you remember them from
school. They can also be used in conjunction with the = sign, which simply tests if one
operand is greater/less than or equal to another operand. When you test with any of these
operators, you’re testing whether the condition is true. For example, if(4<=5) or
if(3>6)—the first test is true, since 4 is less than 5, and the second test is obviously false.

CODE GRAMMAR 101

73

3

617xCH03.qxd 2/27/07 10:57 AM Page 73

With regard to the last two operators (== and !=), the double-equal sign (==) tests for
equality, and the symbols != test for inequality; therefore, in the following (non-code)
lines:

if(3==3) would be true.

if(3!=3) would be false.

if(3!=5) would be true.

Conditional operators

The relational operators are often used in conjunction with two conditional operators for
creating somewhat more complex conditions to evaluate. The two operators are

&& (logical and)

|| (logical or)

One minor warning: The operator terms relational and conditional (and also logical) are
used inconsistently, especially around the Web. I’m classifying the operators as specified
on Sun’s site. See http://java.sun.com/docs/books/tutorial/java/nutsandbolts/
opsummary.html for more info.

Following are some examples. To check if x is greater than 3 and less than 10:

if (x > 3 && x < 10) {
//code in here would only
//execute when condition is true

}

To check if x is less than 20 or greater than 50:

if (x < 20 || x > 50) {
//code in here would only execute
//when condition is true

}

To check if the boolean variable myLecturesAreBoring is not true:

if (!myLecturesAreBoring) {
//code in here would only execute when
//condition is true-which is always!!

}

By putting the exclamation symbol in front of myLecturesAreBoring, you are actually
checking for the value to be false.

The relational and conditional operators are used to control the logical flow of your pro-
gram. In addition to using the keyword if, you can combine it with the keyword else.
These types of statements, which control the branching logic in your programs, are called
conditional statements. I’ll discuss them in more detail a bit later in this chapter.

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

74

617xCH03.qxd 2/27/07 10:57 AM Page 74

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/

Assignment operators

The only other operators you need to look at for now are used for assignment operations.

The simplest assignment operation just uses the = operator. For example, to assign the
value 55 to the int variable speed, you’d simply write the following:

int speed = 55;

Again, the = sign is used for assignment, not equality. When you test for equality in
Processing and Java, instead of writing if(speed=55), you need to write if(speed==55).
The first way actually assigns the value 55 to speed; the second way tests if speed is actu-
ally equal to 55. Using the single-equal sign when testing for equality is a very common
mistake new coders make. We’ve been conditioned to think of equality as =, not ==, so it
makes sense that new coders find it confusing.

When I write an assignment statement, for example

x = 4;

I am assigning 4 to x. So now the value of x evaluates to 4. Let’s say I want to add 3 to x—
I could write x + 3, right? Let’s try it.

Write the following two lines of code in Processing and click run.

int x = 4;
x + 3;

Surprised you got an assignment error? It’s because you’re adding 3 to x, but not assigning
the solution anywhere. Remember that computers are really dumb. If they can’t put the
value anywhere, they don’t know what to do. Fortunately, the Processing compiler sends
out a compiler error letting you know this.

You can fix the preceding assignment in a couple of ways—but the easiest way to add 3 to
x, and then assign the value back to x, is as follows:

x = x + 3;

Now this may look a little odd, having something assigned to itself. But reading the expres-
sion in English helps: add the value of x and 3 and then assign that value to x. Assignment
operations happen from right to left. It may take a little time playing with this to get it
clear in your brain. These operations work the same way for the other mathematical oper-
ators as well. Here’s a division example:

float y = 10.4;
// divide by 1.25
y = y / 1.25;

CODE GRAMMAR 101

75

3

617xCH03.qxd 2/27/07 10:57 AM Page 75

These operations are so common in programming that there is a shortcut syntax more
commonly used. The shortcut simply joins the mathematical and assignment operators.
For example, the last expression (y = y / 1.25;) could be shortened to the following:

y /= 1.25;

The other mathematical operations follow the same structure. Here are some examples:

float temp = 98.6;
temp += 5; // temp now equals: 103.6
temp -= .6; // temp now equals: 103
temp *= 2; // temp now equals: 206
temp %= 23; // temp now equals: 22

The last expression may look odd; it’s using the modulus operator. Remember, modulus
returns the remainder of division; 23 goes into 206 eight times, leaving a remainder of 22,
which then gets assigned back to the temp variable.

In the assignment operations you’ve been looking at thus far, the operator(s) have been
surrounded by two operands. The geeky way to refer to these types of operators is as
binary operators. Processing also uses some operators that only require one operand,
which are referred to as unary operators. Two of these very useful operators are actually
shortcuts for two other shortcuts.

If I want to add 1 to the int variable x using the shortcuts just shown, I could write the
following:

x += 1;

Using a unary operator, the expression can be shortened to the following:

x++;

You’ll also see this expression written as ++x;. It does matter, in some contexts, on which
side you put the two operators, which I’ll discuss the subtlety of later on. Besides incre-
menting by one, you can also decrement by one, using x-- (also --x). I recommend learn-
ing to use the shortcuts as soon as you can—they will save you keystrokes (possibly staving
off carpal tunnel) and make you look like you’ve been coding for years.

Conditionals
Next, I want to cover conditional statements, which you got a sneak peak of when you
looked at the relational and conditional operators. A conditional statement is sometimes
referred to as a decision statement. Essentially, is says that if a certain condition is true,
then do something; but if it is not true, do something else.

I think by now you’re probably in need of some visual digression, so we’ll cover the condi-
tionals by creating a little sketch (see Figure 3-3), which creates a bouncing ball:

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

76

617xCH03.qxd 2/27/07 10:57 AM Page 76

/*
title: Bouncing Ball
description: ball deflects off sketch window edges
created: August 9, 2005
by: Ira Greenberg
*/

// declare global variables
int xspeed, yspeed;
int xpos, ypos, wdth, ht;

//initialize sketch
void setup(){

//set sketch window size and background color
size(400, 400);
background(0);

//ball speed
xspeed = 3;
yspeed = 6;

//ball size
wdth = 10;
ht = 10;

// turn off shape stroke rendering
noStroke();

//initial ball placement
xpos = width/2;
ypos = height/2;

frameRate(30);
}

// begin animation loop
void draw(){

//update background
background(0);

//draw ball
ellipse(xpos, ypos, wdth, ht);

//upgrade position values
xpos+=xspeed;
ypos+=yspeed;

CODE GRAMMAR 101

77

3

617xCH03.qxd 2/27/07 10:57 AM Page 77

/*conditionals
detects ball collission with sketch window edges
also accounts for thickness of ball
*/
if (xpos>=width-wdth/2 || xpos<=wdth/2){
xspeed*=-1;

}
if (ypos>=height-ht/2 || ypos<=ht/2){
yspeed*=-1;

}
}

Figure 3-3. Screen capture of the Bouncing Ball program

When you run the Bouncing Ball program, you should see a little white ball moving in the
sketch window and deflecting off the window edges. The code may look a little scary at
first glance, but most of it has been covered (at least in theory). I suggest taking a little
time and messing around with some of the values and seeing what happens. The worst
thing you’ll do is break the program. When you’re done getting a little well-deserved play
out of your system, you can read the brief discussion of the program that follows. Don’t
worry if this sketch seems over your head. I don’t expect most readers to be able to fully
grasp it yet. I’ll be going over sketches like this many times in future chapters. My main
goal here is just to give you something interesting to look at and play with.

As usual, I start the program with some comments and then declare global variables. The
setup(){ ... } function is built into Processing and is used to initialize the program and
define variables that may be needed later on; it runs just once. The draw() { ... } func-
tion is also built into Processing and is used for animation. When you have a single CPU in
your computer, it can only really do one thing at a time. However, it can execute processes
so fast that, to our slow brains, it seems like many things are happening simultaneously.

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

78

617xCH03.qxd 2/27/07 10:57 AM Page 78

Animation is a perfect example of this effect. If at least 12 images per second move in
front of your eyes, you begin to see continuous movement. But of course, you are really
only looking at a series of static images.

The frameRate(30) function call at the bottom of the setup() function controls the rate
at which the animation runs. You can pass different values to the frameRate() call as a
single argument between the parentheses to change the speed of the animation. If you
don’t include the frameRate() call, the default speed is 60 frames per second. I suggest
trying some different values in the call to see how it affects the speed and smoothness of
your animation. The draw() function below setup() controls animation in Processing.
Simply by including it, an animation loop is created in your sketch, which I’ll cover in a lot
more detail later.

In the draw() function, I update the background color, which helps create the illusion of
the bouncing ball. Try commenting out the background(0) line by putting two forward
slashes (//) in front of the command, and watch what happens. The effect is actually
pretty cool, and what you would do if you wanted the background to be incrementally
painted, rather than entirely updated each loop iteration.

Next I call the ellipse function, ellipse(xpos, ypos, wdth, ht);, passing in the four vari-
ables for the ball’s x position, y position, width, and height. Then I increment the xpos and
ypos variables using the assignment shortcut operators. This gets the ball moving.
However, the ball will never stop, so I need to do some thinking for the computer and set
up some conditions for when the ball should deflect or bounce off the frame.

The two conditional statements are essentially identical, except of course one controls the
x movement and the other the y movement. So what I describe following for x also applies
to y.

I begin the conditional with if. if is a reserved word in Java and Processing that expects a
condition to follow it surrounded by parentheses. Conditional statements rely on Boolean
logic (true or false) to decide how to respond. The default test is for truth. So when I write
if(someStatement == true), I could also just write if (someStatement), which automat-
ically checks for truth. If the conditional statement is true, program execution occurs on
the next line following the test statement. For example:

if (5>4)
print("hello");

The program should output hello. Although you can write your statement the way I did
previously without curly braces, when there is only one line of code after the if statement,
I don’t recommend it. Instead, I recommend always writing it like this:

if (5>4) {
print("hello");

}

The curly braces make it easier to read your conditional statements, and as you begin to
write more complex statements, you’ll need the curly braces anyway. If you do not use the
curly braces, then only the next line of code will be executed if the condition is true.

CODE GRAMMAR 101

79

3

617xCH03.qxd 2/27/07 10:57 AM Page 79

Again, I always use the curly braces and will throughout the book. Getting back to the con-
ditional statement in the bouncing ball sketch, I am actually checking for either of two
conditions at the same time:

if (xpos>=width-wdth/2 || xpos<=wdth/2){
xspeed*=-1;

}

This may look a little scary. Sorry, I had to choose between four separate conditional state-
ments or two scary looking ones. In actuality, it’s not too bad. The two vertical lines in the
middle of the parentheses (||) are used to write “or” in Processing/Java. The way “and” is
written is &&. So the test statement is checking to see if either statement is true. If either
is true, then the ball is hitting the right edge or the left edge of the frame window, and the
code between the curly braces executes.

What’s important to remember in this sketch is that the event loop is continuously run-
ning; that means all the code within the draw() block is running around 30 times per sec-
ond, so the test is running continuously as the ball moves. If the conditional test were up
in the setup() function, it would only run once, and the window edge detection wouldn’t
occur. When the ball’s position (really the xpos value) is greater than or equal to the width
of the frame minus half the width of the ball (or xpos is less than or equal to half the width
of the ball), the xspeed variable is turned positive or negative, depending on what its cur-
rent state is. Remember from grade school math that when you multiply a positive and a
negative number you get a negative, but two negatives multiplied equals a positive. Since
xpos keeps adding the value of xspeed to itself, if the speed is positive, the ball moves to
the right, and if it is negative, it moves to the left—creating the illusion of it being
deflected off either of the frame wall edges. Everything I just described works the same
way for the conditional statement to check the ball’s y position.

I realize that this still may be confusing. I suggest playing with the code a little, setting
some more extreme values to see what happens. I will be covering animation in a lot more
detail later in the book, so this information will be revisited. For now, I want you to grasp
how and why to use conditional statements.

Sometimes when you are checking for a condition, you want to offer one execution path
if you find a condition to be true, and another one if you don’t. For example:

if (hunger>=starving){
eatAnything();

} else {
eatWhatIsHealthy();

}

The if statement will execute the lines between the first pair of curly braces
({ eatAnthing(); }) if the condition between the parentheses (hunger>=starving) is true.
If the condition is false, the code following the else statement will execute
({ eatWhatIsHealthy(); }). The conditional statement has two paths. You’ll soon realize
that there are a number of ways in coding to do the same thing. Some uptight computer
scientists might tell you that there is a most efficient way to write code, but I don’t totally
buy that. Efficiency is a good thing, but you also need to find a style that suits your per-
sonality. For example, I could rewrite the preceding statements as follows:

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

80

617xCH03.qxd 2/27/07 10:57 AM Page 80

if (hunger<starving){
eatWhatIsHealthy();

} else {
eatAnything();

}

The code works the same way—although it could maybe execute a little faster if most
people are not starving. However, it is also more difficult to think about something not
being equal vs. something being equal. Do what feels right to you, and don’t obsess about
efficiency or writing perfect code; it doesn’t exist.

The last conditional example sent you down two possible pathways, depending on
whether something was true or not. However, there are ways of checking among multiple
possibilities by using a series of if...else if statements. For example:

if (hunger >= starving) {
eatAnything();

} else if (hunger <= starving && belly < full) {
eatWhatIsHealthy();

} else if (hunger <= starving && belly==full) {
eatDessert();

} else {
stopEating();

}

When the code is run, each conditional statement will be checked until a condition is true,
at which time the code between the curly braces following the true conditional statement
will execute. For example, if my hunger is less than starving and my belly is full, the code
eatDessert() will execute. If none of the of the conditional tests are true, the code
following else ({ stopEating(); }) will execute. The final else statement, which is not
required, will always execute when none of the proceeding if...else if statements eval-
uate to true.

One word of caution: When you begin getting your coding legs and cranking out all kinds
of conditional tests, pay close attention to the logic in your statements. If you make a logic
error, your sketch may run without any compiler error, but you may not get the results you
wanted. Logic errors are sometimes tricky to track down, because the compiler doesn’t
help you. Using println() statements and checking the values of your variables is nor-
mally the way to track down a logic bug.

switch statement

When you find yourself writing long if...else if statements, you may want to think
about using a switch (sometimes also referred to as a case) statement. switch statements
are just like if...else if statements, except that each conditional test usually has a built-
in exit strategy. Here’s an example switch statement:

CODE GRAMMAR 101

81

3

617xCH03.qxd 2/27/07 10:57 AM Page 81

switch (numberOfBurritosEaten){
case 0:
orderSuperBurrito(2);
break;

case 1:
orderSuperBurrito(1);
break;

case 2:
orderGrandeBurrito(1);
break;

case 3:
orderRegularBurrito(1);
break;

case 4:
orderTacos(2);
break;

case 5:
orderTacos(1);
break;

case 6:
orderDessert();
break;

default:
seekHelp();
break;

}

switch statements, unlike if...else if statements, can’t check a range, but rather check
for a specific value match. The condition inside the parentheses after the word switch
needs to be of type int, char, or byte. The int type is for integers (e.g., –5, 0, or 2300),
the char type is for individual characters on the keyboard (e.g., i, a, or /), and the byte
type is a subset of integers—values between 127 and –128. I tend to use int values
between the parentheses of my switch statements to keep things simple. In the newest
version of Java (1.5), as of this writing, you can also use what’s called an enumerated type
within the parentheses of switch statements (not currently in Processing). However,
enumerated types are an advanced concept that I’m not going to cover here.

When the switch statement runs, the value in the top parentheses is compared to each
case, from top to bottom. If there is a match, the code after the colon is executed until it
comes across a break. When it finds a break statement, the program exits the switch state-
ment and goes to the next line below the entire switch block. The break command is
optional, but if you don’t use it, the program will fall through and execute the code of the
next case, and continue checking all the remaining cases until it reaches the bottom of the
statement. In most instances, this would be a waste of processing power. The default
statement (also optional) at the end of the switch executes if no case matches were found.
The last break statement is unnecessary and harmless, but possibly helpful if you happen
to add more statements below and convert it to a case, so you don’t eventually forget to
add the break statement (a common error). I leave the choice to you.

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

82

617xCH03.qxd 2/27/07 10:57 AM Page 82

Ternary operator
The last conditional structure I want to show you is Java’s ternary operator—meaning that
it uses three operands. The ternary operator takes some time getting used to, and some
people never get used to it. I tend to hardly ever use it, but other people use it a lot, so it’s
worth learning. It’s logic is similar to an if...else statement. Here’s an example:

//some variables
int karma;
boolean isStillReadingThisBook;

// Here's the if/else version:
if (isStillReadingThisBook){
karma = 100;

else {
karma = 50;

}
// Here's the ternary operator version:
karma = isStillReadingThisBook ? 100 : 50;

The ternary version looks pretty terse and cryptic. Its form is really a throwback to an older
style of programming. However, as you can see, it is efficient. The condition is tested, in
this case the boolean variable isStillReadingThisBook; if the condition is true, then the
first value after the ? is returned and assigned to the karma variable; if it is false, then
the value after the : is returned. It’s really up to you whether you want to use this struc-
ture. You can always use the more verbose if...else to accomplish the same thing.

Arrays and loops
The next section looks at arrays and loops. I’ve grouped these somewhat large topics
together because of their interconnectedness. Arrays and loops aren’t that complicated as
concepts, but they can get a little hairy for newbie coders to implement. I’ll be using them
to expand on two previous sketches: the stepped radial gradient and the bouncing ball.
These examples will illustrate the power of arrays and loops and also begin to show you
the potential of code as a creative medium.

Arrays

There are times in coding when you’ll want to assign many values to a single variable. For
example, maybe you have 100 balls and you want to keep track of each of their x posi-
tions. The problem with using a primitive variable is that it can only hold one value at a
time. Thus, you would need 100 separate variables to account for each ball’s x position.
Arrays were developed to solve this problem; they are single data structures that hold
multiple values. If I wanted to animate all 100 balls, there are very easy ways to change the
100 x positions stored within the array. You can think of an array as a desk with multiple
drawers. On the one hand, an array is a single entity, referred to by a single name; on the
other hand, the array can hold many separate values, each accessible through an indexing

CODE GRAMMAR 101

83

3

617xCH03.qxd 2/27/07 10:57 AM Page 83

system, which I’ll discuss shortly. Arrays are a little difficult to get your head around at first,
but they are absolutely critical to coding, and you’ll be using them lots throughout the
book. So if some of this explanation feels a bit abstract, don’t worry—you’ll be revisiting
these concepts again and again.

Arrays don’t have a default data type, but rather are declared with a data type just like
variables are. Following is an example of an array declaration:

int[] xpos;

The declaration is done the way you’d declare a regular int variable, with the addition of
the two brackets. Here are two more array declarations:

float[] xspeed;
String[] names;

You see the pattern—the type comes first, then the brackets and then the identifier or
name of the array. You’ll notice in the two declaration lines that I wrote “float” in all low-
ercase, but “String” with an initial cap. This was not an arbitrary decision on my part; float
is a primitive data type and needs to be all lowercase. String is the name of a class, and
the convention is to name a class with an initial cap. I’ll be covering classes later in the
book, but for now you can think of a class as representing a unique data type—which you
can use when you declare a variable, or in this case an array.

Arrays can be any size (actually as large as the int data type, which is big enough) and
hold any legal type. However, once they are declared, their type cannot change, and once
they are initialized, their size cannot change. Therefore, if I declare

float[] xspeed;

then the xspeed array can now only hold values of type float (real numbers). Here’s how
to initialize the xspeed array:

xspeed = new float[100];

The keyword new reserves space in memory for the array. You‘ll be using the keyword new
a lot more when we get to OOP.

Now the xspeed array has 100 places in memory reserved for float values. Its size, like its
data type, is now immutable, meaning that it can’t be changed. The array now has space in
the computer’s memory reserved for it, although it still doesn’t have any specific values
assigned to those 100 places. The two lines can be put together into one declaration and
initialization statement:

float[] xspeed = new float[100];

Here are a few more examples of declaring and initializing arrays:

int[] items = new int[50];
String[] itemNames = new String[10000];
Object[] obs = new Object[0];

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

84

617xCH03.qxd 2/27/07 10:57 AM Page 84

The items array has 50 places reserved in memory for ints. The itemNames array has
10,000 places reserved in memory for Strings, and the obs array has 0 spaces in memory
for Objects. In general, you wouldn’t initialize an array with 0 items, but you could. Finally,
there is one additional way to initialize an array, when you know ahead of time what will
be in it:

int[] speeds = {2, 4, 445, -120, 3, 90, 54};

This array will have a length of 7, and, like all arrays, its size can’t be changed. Here’s
another example with a String array:

String[] names = {"Lulu", "Ivan", "Myrna", "Pookie"};

So, once you declare and initialize arrays, how do you use them? An index system is used
to access the values (called elements) stored at the different positions in the array. It’s a
very simple system with one caveat: arrays are zero-indexed, which means the first posi-
tion in the array is at position 0, not 1. There are some benefits to this, which you’ll see
shortly when we get to for loops, but in the beginning it can be confusing.

Going back to the previous array, int[]speeds = {2, 4, 445, -120, 3, 90, 54}, to
access the first item—the value 2—I use speeds[0]; to access the third item, 445, I use
speeds[2]; and for the last item, 54, I use speeds[6]. Make sure you understand this
before you move on; it’s important. Arrays also have a built-in length property that you’ll
use often. You access the property with dot syntax. To find the length of the speeds array,
you write speeds.length.

The length of the array is the actual number of items in the array, so speeds.length is
equal to 7, even though speeds[6] gives you the last item in the array. You should see how
working with arrays is both simple and a little complicated.

Finally, if you try to access an index that is out of range—for example, if you try to access
speeds[7], which doesn’t exist—you’ll get a compiler error. This may seem like a pain, but
again it’s there to help you.

Loops

One of the best uses for computers is handling repetitive, redundant tasks that are too
tedious for most people. This is accomplished in programming by using structures called
loops. Loops are structures that continue to run, or execute, until some condition is met
that causes them to stop. The two types of loops listed in the Processing language refer-
ence are while loops and for loops. In addition, we’ll look at one other variation on the
while loop called a do...while loop.

while
Here’s an example of a while loop, (which I don’t recommend you run):

while (true) {
println ("help I'm in an infinite loop");

}

CODE GRAMMAR 101

85

3

617xCH03.qxd 2/27/07 10:57 AM Page 85

while is a reserved keyword in Processing, like the keywords if and else, which you’ve
already looked at. A while loop will execute the code between its open and closed curly
braces as long as the condition between the parentheses is true. In the example, the con-
dition will always be true. true is actually another reserved keyword in Processing and Java
that always means, well . . . true. Can you see why I didn’t want you to run this loop exam-
ple? It will never stop running, as there is no exit condition (i.e., a condition that when
reached will cause the code to continue past the loop). Nasty loops like this are called
infinite loops, and they are to be avoided. Of course, you can force the Processing appli-
cation to quit, so don’t panic if you did try running it (against my sage advice). Here’s an
improved and safe version of that last demonic loop:

int x = 0;
while (x<100) {
println (x);
x += 1;

}

If you run this, you should see the numbers 0 through 99 printed in the text output area
at the bottom of the Processing application. The while loop runs as long as x is less than
100. With each cycle of the loop, the value of x is incremented by 1. Here’s one more
example:

int x = 1000;
while (x>=0) {
println (x);
x -= 100;

}

This loop outputs the values 1000 through 0, decrementing by 100 each cycle, or iteration,
of the loop. Also, I set the condition using >=, so 0 was output as well.

do . . . while
A while loop will only execute if the condition is true. However, there are times when
you’ll want a loop to execute at least once no matter what. The do...while loop is sort of
a backward while loop that always executes at least once, regardless of whether the con-
dition is true. After the first iteration of the loop, though, it behaves just like a regular
while loop. Here are two examples:

//example 1.
int x = 50;
do {
println(x);
x += 1;

}
while(x<50);

//example 2.
int x = 40;
do {

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

86

617xCH03.qxd 2/27/07 10:57 AM Page 86

println(x);
x += 1;

}
while(x<50);

In the first example, the condition is false. Yet if you run this code, you’ll get a single out-
put of 50, because the loop will always execute at least once. In the second example, the
condition begins true, and you get an output from 40 to 49, just as you’d expect using a
standard while loop.

for
The for loop is my favorite loop (if that doesn’t sound too pathetic). It does basically the
same thing as a while loop, but I find the process of using it more elegant, especially in
regard to dealing with arrays, which is where this whole discussion is going. Here’s a for
loop example:

for (int i=0; i<50; i++){
println(i);

}

The for loop looks a little odd at first. There are three individual areas within the paren-
theses, in the head of the for loop:

int i=0; (initialization)

i<50; (condition)

i++ (counter)

In the example, I created the variable i of type int and initialized it to 0. The next part of
the loop checks to see if i is less than 50, and the third section increments i by one. The
semicolons terminate each of these distinct sections in the for loop head, just like a nor-
mal end of line. Notice, however, that there is no semicolon after the counter. If you
haven’t yet, try running the example.

You should see output from 0 to 49. Even though the loop incrementation is at the head
of the for loop, the variable i is not incremented until after the code in the block is exe-
cuted. That’s why the first value is 0, not 1.

One of the real benefits of the for loop is that the variable (i), which is declared in the ini-
tialization part of the loop, is sort of a secret variable that can only be seen between the
curly braces of the for loop. This secret status is referred to as local scope. Local scope
means that the variable is only known within the structure it is defined within. Local scope
allows you to use another variable named i somewhere else in the same program or even
in another separate for loop, without having the two names conflict or create ambiguity
in the program. It is very common practice, and a coding convention, to use the letters i, j,
and k as the names of local variables used as counters in loops. Normally, when I write a
program that includes a number of simple for loops, I’ll name each of the counter vari-
ables i. Besides local scope, you can also declare variables with global scope. When you
declare variables outside of any structures (normally at the top of your program), these

CODE GRAMMAR 101

87

3

617xCH03.qxd 2/27/07 10:57 AM Page 87

variables have global scope, meaning that they can be seen from anywhere within your
program, including within loops. In the earlier while loop example, the variable x has
global scope and can be seen anywhere in the program:

int x = 1000;
while (x>=0) {
println (x);
x -= 100;

}

Thus, you would not want to use x again as a counter in another loop later in the same
program, as it could cause unpredictable results. Because the for loop solves this problem
by keeping the counter variable local in scope, I tend to use for loops far more often than
while loops.

In the next section, “Functions,” I’ll go more into detail on local vs. global scope. Here are
a couple of other examples of for loops:

for (int i=1000; i>50; i-=2)
println(i);

}

for (int i=1000, j=200; i>50; i-=2, j++)
print("i = ");
println(i);
print("j = ");
println(j);

}

The top example is just a variation on the for loop discussed previously. It just counts
down by two instead of counting up by one. The second loop example uses multiple vari-
ables and incrementors in the head—which is legal. You just separate the different
variables with commas. Try running this last loop example to view the output; it will help
you understand how the for loop runs.

for loops can add tons of efficiency to your code, and used cleverly can really cut down
on the number of code lines. As an example, I’ve recoded the stepped radial gradient (see
Figure 3-4) using a for loop, converting it into a smoother continuous gradient.

//Continuous radial gradient
size(200,200);
background(0);

for (int i=255; i>0; i--){
noStroke();
fill(255-i);
ellipse(width/2, height/2, i, i);

}

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

88

617xCH03.qxd 2/27/07 10:57 AM Page 88

Figure 3-4. Continuous radial gradient

If you don’t remember, the original stepped gradient example was about four times as
long and not nearly as pretty.

Finally, in the latest version of Java (1.5), as of this writing, there is a new variation on the
for loop, called a for-each loop, or enhanced for loop. I am not going to cover it, as it is
not currently supported in Processing. Information about it can be found on Sun’s site at
http://java.sun.com/j2se/1.5.0/docs/guide/language/foreach.html.

Processing efficiency
You already saw that arrays hold multiple values and loops allow you to repeatedly exe-
cute code. You can use these two structures together to form a powerful and highly effi-
cient data processing system. As an example, here’s a simple mail merge program that
outputs mailing addresses in the text area of the Processing application. The data is stored
in six separate arrays, for first names, last names, street, city, state, and country.

// mail merge program
//create some arrays with address data
String[]firstName = {"Ira ", "Sophie ", "Ian ", "Robin "};
String[]lastName = {"Jed", "Rose", "Isaac", "McLennan"};
String[]street = {"4 Happy Ln, ", "19 Hunan Pl, ", ➥

"104 Hevi Hevi St, ", "1000 Donkey Dr, "};
String[]city = {"Oxford", "Changsha", "Easton", "Edinboro"};
String[]state = {"Ohio, ", "Hunan, ", "Pennsylvania, ", "Scotland, "};
String[]country = {"USA", "China", "USA", "UK"};

// use a for loop to generate merge
for (int i=0; i<firstName.length; i++){
print(firstName[i]);
println(lastName[i]);

CODE GRAMMAR 101

89

3

617xCH03.qxd 2/27/07 10:57 AM Page 89

http://java.sun.com/j2se/1.5.0/docs/guide/language/foreach.html

print(street[i]);
println(city[i]);
print(state[i]);
println(country[i]);
println();

}

The sketch outputs the following:

Ira Jed
4 Happy Ln, Oxford
Ohio, USA

Sophie Rose
19 Hunan Pl, Changsha
Hunan, China

Ian Isaac
104 Hevi Hevi St, Easton
Pennsylvania, USA

Robin McLennan
1000 Donkey Dr, Edinboro
Scotland, UK

The for loop does all the heavy lifting by moving through the arrays, using the counter as
the index to the position in the arrays. Also notice in this example that I alternated
between print() and println() to format the address and line spacing correctly. Using a
for loop to process four elements in each array may not seem too impressive. But imag-
ine if each of the arrays included 10,000 elements. This simple sketch would have just as
easily processed and output all that address data as well (of course, it would have taken a
few more seconds). To better illustrate this, let’s look at a more visually interesting exam-
ple. I’m going to take the previous bouncing ball animation and beef it up some, using
arrays and a loop or two. I’ll also be incorporating one of Processing’s handiest functions:
random(value), which generates a random value between 0 and the value argument.

This example is a little long—try not to panic. You’ll be looking at a lot of code like this
throughout the book. I recommend running the sketch before reading through the code.
You may even want to mess around with some of the values to see how it changes the
output.

Here’s the Many Bouncing Balls program (see Figure 3-5):

/*
title: Many Bouncing Balls
description: balls deflect off sketch window edges
created: August 9, 2005
by: Ira Greenberg
*/
// global variables

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

90

617xCH03.qxd 2/27/07 10:57 AM Page 90

int ballCount = 500;
int ballSize = 8;
int ballSpeed = 3;
float[]xspeed = new float[ballCount];
float[]yspeed= new float[ballCount];
float[]xpos = new float[ballCount];
float[]ypos = new float[ballCount];
float[]wdth = new float[ballCount];
float[]ht = new float[ballCount];

//initialize sketch
void setup(){
//set sketch window size and background color
size(400, 400);
background(0);

//initialize values for all balls
for (int i=0; i<ballCount; i++)

// set varied ball speed
xspeed[i] = random(1, ballSpeed);
yspeed[i] = random(-ballSpeed, ballSpeed);

// ball varied ball sizes
wdth[i]= random(1, ballSize);
ht[i]= wdth[i];

// set initial ball placement
xpos[i] = width/2+random(-width/3, width/3);
ypos[i] = height/2+random(-height/3, height/3);

}

// turn off shape stroke rendering
noStroke();
//set the animation loop speed
frameRate(30);

}

// begin animation loop
void draw(){

/*updates background
comment out to use alternate
fill option below*/
background(0);

for (int i=0; i<ballCount; i++){

CODE GRAMMAR 101

91

3

617xCH03.qxd 2/27/07 10:57 AM Page 91

/*To use this fill option:
1. uncomment fill call below
2. comment out the background
function call above*/
// fill(i*255/ballCount);

//draw balls
ellipse(xpos[i], ypos[i], wdth[i], ht[i]);

//upgrade position values
xpos[i]+=xspeed[i];
ypos[i]+=yspeed[i];

/*conditionals:
detects ball collision with sketch window edges
accounting for ball thickness.
*/
if (xpos[i]+wdth[i]/2>=width || xpos[i]<=wdth[i]/2){
xspeed[i]*=-1;

}
if (ypos[i]+ht[i]/2>=height || ypos[i]<=ht[i]/2){
yspeed[i]*=-1;

}
}

}

Figure 3-5. Screen capture of the Many Bouncing Balls program

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

92

617xCH03.qxd 2/27/07 10:57 AM Page 92

Hopefully, you were able to successfully run this sketch. I created an alternative rendering
option as well, which you can mess with in a bit. When you run the sketch, you should see
many (actually 500) white balls moving randomly around, bouncing off the edges of the
window. This code is not simple, so don’t feel bad if it is a struggle to understand it. You’re
going to be doing a lot more of this type of coding beginning in Chapter 6—so this is really
more like a teaser than something you need to fully grasp at this point. I just thought it
was good to show you something a little more interesting after all the hard work you’ve
been putting in. The main concept I want to reinforce at this point is the power of arrays
and loops. Let’s look at the program in sections:

// global variables
int ballCount = 500;
int ballSize = 8;
int ballSpeed = 3;
float[]xspeed = new float[ballCount];
float[]yspeed= new float[ballCount];
float[]xpos = new float[ballCount];
float[]ypos = new float[ballCount];
float[]wdth = new float[ballCount];
float[]ht = new float[ballCount];

After my comments, I declare and initialize some global variables; these variables will be
accessible throughout the entire program. I chose the specific data type, in this case int or
float, based on the type of value that would need to be stored in the respective
variables/arrays. Obviously, ballCount could be an integer value, but a speed value would
need to be a float value. The arrays are initialized with enough memory to hold the total
number of balls. Remember, I can’t change the arrays’ sizes once they’re initialized (in
truth, you’ll see later that there are indeed functions to do such a thing), so it’s important
to make them big enough at the beginning. Although the arrays are initialized to each hold
500 values (based on ballCount), there is still nothing in them.

//initialize sketch
void setup(){
//set sketch window size and background color
size(400, 400);
background(0);

//initialize values for all balls
for (int i=0; i<ballCount; i++)

// set varied ball speed
xspeed[i] = random(1, ballSpeed);
yspeed[i] = random(-ballSpeed, ballSpeed);

// ball varied ball sizes
wdth[i]= random(1, ballSize);
ht[i]= wdth[i];

CODE GRAMMAR 101

93

3

617xCH03.qxd 2/27/07 10:57 AM Page 93

// set initial ball placement
xpos[i] = width/2+random(-width/3, width/3);
ypos[i] = height/2+random(-height/3, height/3);

}

// turn off shape stroke rendering
noStroke();
//set the animation loop speed
frameRate(30);

}

After declaring the global variables, I do some program initialization in the setup() func-
tion. I set the window size and background color, and then I use a somewhat hairy-looking
for loop. In reality, it’s not that different from the single-ball setup() function, but arrays
can look intimidating until you get used to them. The for loop

for (int i=0; i<ballCount; i++)

uses the counter i, which is conveniently used as the first index slot in the arrays. I use the
global ballCount variable as the loop limit (in this case 500), and I increment the loop by
one each cycle. Thus, each iteration of the for loop will allow me to assign a value to each
position in the arrays; it’s a very efficient system that works similarly to the mail merge
example.

In the speed arrays, I’m getting a little fancy and adding some random numbers. As I men-
tioned previously, I used Processing’s random() function, which can take either one or two
arguments. In the book’s appendix, I go through the Processing API and cover this function
in more detail. Basically, one argument generates a random number from 0 to the argu-
ment value. Two arguments give you a random value between the range of the two argu-
ments. Processing’s random() function returns a float value (a real number).

I initialized the arrays for the balls’ sizes and original positions in a similar fashion to the
speed arrays, utilizing some more random values. Last, I turned off the pesky stroke ren-
dering (noStroke();) and set the frame rate to 30 for smooth animation. Whew . . . almost
done.

// begin animation loop
void draw(){

/*updates background
comment out to use alternate
fill option below*/
background(0);

for (int i=0; i<ballCount; i++){

/*To use this fill option:
1. uncomment fill call below
2. comment out the background

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

94

617xCH03.qxd 2/27/07 10:57 AM Page 94

function call above*/
// fill(i*255/ballCount);

//draw balls
ellipse(xpos[i], ypos[i], wdth[i], ht[i]);

//upgrade position values
xpos[i]+=xspeed[i];
ypos[i]+=yspeed[i];

/*conditionals:
detects ball collision with sketch window edges
accounting for ball thickness.
*/
if (xpos[i]+wdth[i]/2>=width || xpos[i]<=wdth[i]/2){
xspeed[i]*=-1;

}
if (ypos[i]+ht[i]/2>=height || ypos[i]<=ht[i]/2){
yspeed[i]*=-1;

}
}

}

The draw() function is where all the magic happens. Once the draw() function is added to
the sketch, an event loop begins refreshing the screen approximately the number of times
per second specified with the frameRate(30) argument. The first thing I did was refresh
the background so that the balls don’t leave a trail through the window. I set an alternative
rendering approach that utilizes this effect. If you read through the draw structure, I’ve put
instructions on how to get the trails to occur. But don’t do it yet—let’s finish the analysis
first.

Next is the second for loop. This loop draws the ellipses, increments their respective x and
y position values by the speed values, and performs collision detection—which in this case
means that it checks if the ball’s x and y positions go beyond the window boundaries; if
they do, that specific speed value’s sign within the array is reversed (positive to negative or
negative to positive). If xspeed is positive, then the ball moves to the right; if it’s negative,
then it moves to the left. If yspeed is positive, then the ball moves down; if it’s negative,
then it moves up.

Since all the data is housed in parallel arrays with the same number of indices, I am able to
incrementally deal will all this stuff on each iteration of the for loop; this is the real power
of using arrays in conjunction with loops. Now I recommend you go back and try the alter-
native rendering style (see Figure 3-6) and also mess with some of the values in the pro-
gram. If you get something really cool, please e-mail me a screenshot. Finally, let me stress
that this stuff is complicated—especially to new coders. I don’t necessarily expect you to
get all this yet. But hopefully some of it is beginning to stick. Many of the examples and
tutorials throughout the rest of the book deal with similar patterns of coding, so I have no
doubt that if you stay the course, this stuff will gel.

CODE GRAMMAR 101

95

3

617xCH03.qxd 2/27/07 10:57 AM Page 95

Figure 3-6. Screen capture of an alternative rendering of
the Many Bouncing Balls program

Functions
I mentioned functions briefly in Chapter 2, so let’s look at them again in a little more
detail. Functions add structure and flexibility to your sketches, but also a little complexity.
Try not to worry if some of the material seems too abstract—you’ll be using functions
throughout the rest of the book. My main goal here is to give you an overview of basic
programming structures and a glimpse into the potential of creative coding.

In the simplest sense, functions just organize code into reusable blocks. They also have the
ability to receive arguments and return a value. Here are some examples.

This first sketch draws a rectangle based on the x, y, width, and height properties passed to
the drawRectangle() function:

void setup(){
size(400, 400);
background(255);
drawRectangle(150, 150, 100, 100);

}
void drawRectangle(float x, float y, float w, float h){
rect(x, y, w, h);

}

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

96

617xCH03.qxd 2/27/07 10:58 AM Page 96

If you run this, you should see a 100-by-100-pixel square in the middle of the display
window.

When you write your own function, you need to include Processing’s setup() function, or
you’ll get a compile error when you try to run the sketch. A function begins with a return
type (either void or a legal data type); an identifier (the name of the function); open and
closed parentheses, with any optional declared parameters; and open and closed curly
braces.

Here’s the structure of a function:

return type (void or legal datatype) function name(optional ➥

parameters){
code to execute when function is called;

}

The drawRectangle(float x, float y, float w, float h) function in the preceding
sketch expects four arguments to be passed to it when it’s called, as I specified four
parameters between its parentheses. You’ll notice that I use both the terms parameter and
argument. This can be confusing to new coders (and even some experienced coders); I
prefer to call the values between the parentheses in the function definition parameters,
and the values passed to the function arguments. I know this may sound like an issue of
semantics (or worse), but I find it easier to discuss and teach this stuff by using the two dif-
ferent terms.

This last example didn’t do much more than Processing’s plain old rect() call. The next
example (see Figure 3-7) makes better use of the drawRectangle() function and also
revisits for loops—yippee!

void setup(){
size(400, 400);
background(255);
for (int i=0; i<100; i++)
drawRectangle(random(width), random(height), random(200), ➥

random(200));
}

}

void drawRectangle(float x, float y, float w, float h){
rect(x, y, w, h);

}

CODE GRAMMAR 101

97

3

617xCH03.qxd 2/27/07 10:58 AM Page 97

Figure 3-7. Random rectangles

This example begins to reveal the power of functions. By passing, or inputting, different
values to the function, you can generate very different results. Functions create efficien-
cies by helping you avoid writing redundant code. They also free you from having to write
all your code linearly, from top bottom, in your sketch. Once you define a function, you
can call it when you need it, as well as multiple times, as I did in the last example. The next
sketch uses Processing’s built-in draw() function to move a box across the screen.
Processing’s draw() function is called automatically when you include it in your sketch.
The draw() function increments the value of two speed variables I created (xspeed and
yspeed), which are assigned to two position variables I created (xpos and ypos). xpos and
ypos control the x and y positions of the box.

// simple ball
int xpos, ypos;
int xspeed=3;
int yspeed=5;

void setup(){
size(400, 400);

}

void draw(){
background(0);
rect(xpos, ypos, 10, 10);
xpos+=xspeed;
ypos+=yspeed;
if (xpos>=width-10 || xpos<=0){
xspeed*=-1;

}
if (ypos>=width-10 || ypos<=0){

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

98

617xCH03.qxd 2/27/07 10:58 AM Page 98

yspeed*=-1;
}

}

Within the draw() function of this last sketch, I include very simple collision detection,
used to reverse the direction of the box if it collides with any of the edges of the display
window. Imagine if there were a lot more detection code—it could get pretty confusing
looking. A better way to organize this would be to write a separate block of code (a func-
tion) to check the collisions. Not only will this code be cleaner looking, but the detection
will be in a sense encapsulated (a word I’ll discuss more when I get to OOP). Modularizing
the code like this in a function gives the ability to potentially plug the function into other
programs. Also, once I develop a template for this collision detection, I can develop varia-
tions on it, building a cool detection library—but I’m getting a bit carried way. Here’s the
sketch with the collision detection function added:

int xpos, ypos;
int xspeed=3;
int yspeed=5;
void setup(){
size(400, 400);

}
void draw(){
background(0);
rect(xpos, ypos, 10, 10);
xpos+=xspeed;
ypos+=yspeed;
checkCollisions(xpos, ypos);

}

void checkCollisions(int xp, int yp){
if (xp>=width-10 || xp<=0){
xspeed*=-1;

}
if (yp>=width-10 || yp<=0){
yspeed*=-1;

}
}

This new, improved code should execute exactly the same as the first version. Let’s go
through the function line by line.

checkCollisions(xpos, ypos); probably looks familiar to you by now. It’s a function
call—similar in form to size(400, 400). I pass two arguments (xpos and ypos) to the
function. Also, since the function is not being assigned to some other variable, nor being
used in the place of a variable, you can assume a value is not being returned by the func-
tion. If the function does not return any value, you use the reserved keyword void when
you declare it; void takes the place of a data type that would need to be declared if the
function did return a value. The function itself is almost exactly the same as the code that
was inside the draw structure in the original version:

CODE GRAMMAR 101

99

3

617xCH03.qxd 2/27/07 10:58 AM Page 99

void checkCollisions(int xp, int yp){
if (xp>=width-10 || xp<=0){
xspeed*=-1;

}
if (yp>=width-10 || yp<=0){
yspeed*=-1;

}
}

You’ll remember that a function head needs to have a data type or void; a legal identifier
(name); and balanced (open/closed) parentheses, with any required parameters, including
their data types, between the parentheses. The parameters, declared between the paren-
theses, in a sense catch the arguments passed to the function, and they need to match up.
If the argument count or the data type doesn’t match what’s in the function head, the
compiler will let you know. You can also use multiple versions or variations on the same
named function in your program, as long as the parameter lists are different—meaning a
different number of parameters or different data types. For example, the following three
functions could all be included in the same program without any ambiguity:

void myFunction(int x, int y){
}
void myFunction(int x, int y, int z){
}
void myFunction(float x, float y, float z){
}

Since the first function uses only two parameters and the second and third functions use
different data types for the parameters (int and float, respectively), the compiler will see
these as unique functions. To call the functions, I could the use the following lines:

myFunction(2, 5);
myFunction(2, 5, 7);
myFunction(2.0, 4.2, 1.23);

If this looks strange to some of you who have experience with another language, this
works in Processing because of an object-oriented feature built into Java called method
overloading, which I’ll discuss when I get to OOP in Chapter 8. Next, let’s look at another
function that returns a value to our current sketch. Here’s the new sketch code:

int xpos, ypos;
int xspeed=3;
int yspeed=5;
void setup(){
size(400, 400);

}
void draw(){
background(0);
rect(getXMotion(), ypos, 10, 10);
ypos+=yspeed;
checkCollisions(xpos, ypos);

}

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

100

617xCH03.qxd 2/27/07 10:58 AM Page 100

void checkCollisions(int xp, int yp){
if (xp>=width-10 || xp<=0){
xspeed*=-1;

}
if (yp>=width-10 || yp<=0){
yspeed*=-1;

}
}

int getXMotion(){
xpos+=xspeed;
return xpos;
}

void checkCollisions(float yp, float yp2){
if (yp<=0){
xspeed*=-1;

}
if (yp<=0){
yspeed*=-1;

}
}

I changed the first argument in the rect() function call, rect(getXMotion(), ypos, 10,
10), from a variable to another function call—which is legal, as long as the function
returns a value. If you try to pass a function call as an argument that doesn’t return a
value, the compiler will give an error. The new function is declared with a return type of
int, instead of void, and the last line is a return statement.

int getXMotion(){
xpos+=xspeed;
return xpos;

}

You must have a return statement as the last line in any function with a return type other
than void. If you don’t, you guessed it, the compiler will spit at you. There are times when
you will use additional return statements in a function—for instance, when you have
if...else statements—but you still must have a return statement as your last line.

I want to make one more improvement to the sketch. The getXMotion() function handles
the x position only, but what about the y position? Well, I’m sure you can see that I could
just easily copy the getXMotion() function and convert it to a getYMotion() function.
However, that seems like too much work, and the behavior of the two functions is identi-
cal. When you find yourself repeating things or making fine adjustments to similar struc-
tures, you should be thinking that there’s got to be a better way. In this case, there is. I can
return an array of ints instead of a single int and convert the getXMotion() function to a
getXYMotion() function. Here’s the new function:

CODE GRAMMAR 101

101

3

617xCH03.qxd 2/27/07 10:58 AM Page 101

int[] getXYMotion(){
xpos+=xspeed;
ypos+=yspeed;
int[]xypos = new int[]{xpos, ypos};
return xypos;

}

The function return type is now an int[] array, not a primitive int. The function creates
an xypos array each time it’s called, and then returns the array. The other important aspect
to this approach is knowing how to receive the array that’s passed back. When I was orig-
inally just returning an int back, it was simple, because it was the only value returned. But
to really benefit from this approach, the rect() call needs to be changed from:

rect(getXMotion(), ypos, 10, 10);

to

rect(getXYMotion()[0], getXYMotion()[1], 10, 10);

Does this make sense? I know it looks pretty strange. Remember, arrays are indexed,
beginning at [0]. When the array is passed back, it’s being received as a multivalue struc-
ture, with xpos at the 0 index and ypos at the 1 index. These values are retrieved using
getXYMotion()[0] and getXYMotion()[1], respectively. If this is still not making sense,
imagine replacing getXYMotion() with the array. To get the value in the first position of
the array, you’d use arrayname[0]. To get the value in the second position, you’d use
arrayname[1]. I hope that helps. You’ll be doing stuff like this in future chapters, so try not
to freak out if this stuff is hurting your head—it’s supposed to in the beginning.

The last thing I want to say about functions relates to a nasty habit many coders get into.
Now don’t get any wrong ideas here. I’m talking about the use of magic numbers—what
were you thinking of? Magic numbers are values we hard-code into a program that make
the program difficult to change or customize. Using magic numbers is generally not the
way to develop a modular system, but it can be a fast way of hacking out a solution with-
out thinking of the big picture. In general, you’ll want to avoid them. Following are two
simple examples—the first using magic numbers:

//sketch using magic numbers:
size(200, 200);
background(255);
strokeWeight(5);
stroke(20);
fill(100);
rect (50, 50, 100, 100);

The second example improves upon this sketch, using a parameterized function instead of
the hard-coded values:

// sketch using a nice parameterized function
void setup(){
size(200, 200);
background(255);

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

102

617xCH03.qxd 2/27/07 10:58 AM Page 102

createRect(50, 50, 100, 100, 20, 5, 100);
}

// parameterized function
void createRect(int xpos, int ypos, int wdth,
int ht, int strokeCol,
int strokeWt, int fillCol) {
stroke(strokeCol);
strokeWeight(strokeWt);
fill(fillCol);
rect (xpos, ypos, wdth, ht);

}

Both sketches should output the same centered rectangle, as shown in Figure 3-8.

Figure 3-8. Rectangle generated initially using magic
numbers and then with a function

Do you see how the second approach will allow you to create any rectangle, while the first
only creates one? The more modular and general you can make your code, the greater the
chance you can reuse it or easily expand it. However, this type of approach takes more
planning and analysis, and sometimes you just want to get coding. Because this book is
about creative coding, I think it is perfectly acceptable to sometimes hack out poorly
structured, “ugly” code, especially if it allows you to express yourself and find new solu-
tions more effectively. I suspect if you’re like me, you’ll eventually discover things that you
want to build out into larger projects, and that’s where the rules and best practices stuff
becomes important. So basically you have permission from me to write nasty code when
necessary (to remain creatively engaged), but don’t rat me out to your teacher or boss
when they give you a hard time about it.

CODE GRAMMAR 101

103

3

617xCH03.qxd 2/27/07 10:58 AM Page 103

Summary
That ends the procedural programming boot camp part of the book. I hope you’re not too
bleary-eyed or despondent. This information takes time to assimilate, and again I suggest
you treat this chapter as a reference or cheat sheet to return to as you need it. Everything
covered in this chapter will resurface in examples to come throughout the book, so you’ll
have lots of opportunities for practice. Later, in Chapter 8, I’ll cover OOP, which will be
your “code boot camp part 2” experience. But of course by then, you’ll be a grizzled and
seasoned codehead. The next chapter will look at some of the fundamental issues involved
in graphics programming.

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

104

617xCH03.qxd 2/27/07 10:58 AM Page 104

617xCH03.qxd 2/27/07 10:58 AM Page 105

617xCH04.qxd 2/27/07 11:01 AM Page 106

4 COMPUTER GRAPHICS, THE FUN,
EASY WAY

617xCH04.qxd 2/27/07 11:01 AM Page 107

This chapter gives a simplified and highly abridged overview of computer graphics.
Graphics and visualization is one of the major research areas in computer science and has
a reputation for being highly complex and mathematically demanding. However, there is a
wide range of research being conducted under the heading “graphics and visualization”—
with varying degrees of complexity. Dr. Edward Angel, in his widely read textbook
Interactive Computer Graphics, lists four major application areas within computer graphics:

Display of information

Design

Simulation and animation

User interfaces

Display of information involves data visualization, which can range in complexity from
basic charting or plotting of simple data sets (e.g., business graphics), to visualizing molec-
ular interactions or biological processes, to real-time mapping of complex dynamic
systems (e.g., modeling of the weather).

Design (really, computer-aided design) is applied in manufacturing, engineering, and archi-
tecture. It integrates the visual (form) requirements with the analytical or structural (func-
tion) requirements. For example, an architect can design a part of a structure visually,
through the manipulation of planes and cubes and other simple geometry, while the sys-
tem calculates underlying structural issues.

Simulation and animation is similar to display of information, but involves time—often real
time—and verisimilitude, or the appearance of reality. For example, a pilot can practice
emergency landings more safely in a flight simulator than in a real plane. Haptics, another
related research area in computer science, involves tactility, or touch, that complements
visual and aural (sound) data used in simulation to create an immersive, real-feeling virtual
experience.

User interfaces, sometimes referred to as GUIs (graphical user interfaces), make up the
area of computer graphics research that people are most familiar with. We are surrounded
by interfaces—not just on our PCs, but on our watches, phones, cameras, appliances, auto-
mobiles, and so forth. Yet, for all its ubiquity and apparent simplicity, user interface
research is complex, because it deals with human interaction. An entire area of computer
science research is devoted to this important and challenging area, called HCI (human-
computer interaction).

Processing is being used, to varying degrees, in all four of these areas, and as additional
code libraries are developed by readers like you, Processing’s application in graphics and
visualization research and development will continue to expand. Unlike proprietary lan-
guages like ActionScript and Lingo, built primarily around a specific market-driven appli-
cation area (e.g., web development, CD-ROM/Kiosk development), Processing’s Java core
and open source status give it a vast breadth of application possibilities.

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

108

617xCH04.qxd 2/27/07 11:01 AM Page 108

Some of the reasons coding graphics gets a reputation for being difficult is the math
involved in dealing with 3D space and the low-level algorithms needed to manipulate mil-
lions of pixels in real time. 3D math is somewhat complicated, especially if you don’t have
a basic grounding in linear algebra and trigonometry, neither of which are really that com-
plicated, but are usually purged from most artist’s brains by the time they leave high
school (if it ever got in there in the first place). Because computer monitors are 2D sur-
faces, there is a need in 3D to always convert 3D geometry back to a 2D projection, so we
can see it on the screen.

Computationally, graphics requires a fair amount of low-level processing and lots of mem-
ory storage. For example, on a monitor with 1920 ✕ 1200 resolution, over 2,300,000 pixels
are redrawn about 70 times per second. Each pixel is made up of three color components
(RGB), giving each of the 2 million–plus pixels a range of 16.7 million different colors.
Once you add the actual calculations needed to generate 2D or 3D geometry, virtual light
sources, textures, special effects, animation, virtual cameras, and event processing (user
interaction)—well, you develop a lot of respect for engineers! As computers have gotten
faster and memory has gotten cheaper, graphics programming has benefited greatly and
things have gotten a little simpler, but less is definitely not more when it comes to graph-
ics, and in spite of the technological advances, users continuously demand more from
their games, films, software, and personal devices. In this chapter, I am only going to deal
with 2D graphics and some basic math. In spite of all the complexity I just mentioned,
Processing makes it pretty easy to get started with graphics (and of course I’ll continue to
take things slowly). Although this chapter only deals with 2D, everything I cover is applica-
ble to 3D, which I’ll cover near the end of the book.

Coordinate systems
A coordinate system is simply a numbered grid that allows you to locate a point in space.
Two French mathematicians, René Descartes (1596–1650) and Pierre de Fermat (1601–1665)
get credited with developing the Cartesian coordinate system; although Descartes gets
most, if not all, of the credit. The Cartesian coordinate system is really just an extension of
a number line. The number line has a 0 position; values to the right of 0 are positive and
values to the left of 0 are negative—pretty basic stuff. In the coordinate system most of us
remember from math class, there is a horizontal axis, usually referred to as x and a vertical
axis, referred to as y. The vertical axis has its own number line, and where these two per-
pendicular number lines intersect (0, 0) is the origin. In the coordinate system we use in
math, above the y-origin is positive and below the y-origin is negative. In computer graph-
ics, this is often flipped, as it is in Processing—above the y-origin is negative and below the
y-origin is positive. Figure 4-1 illustrates the coordinate system in Processing, in relation to
the monitor. You’ll notice that the origin is at the top-left corner of the coordinate system.

COMPUTER GRAPHICS, THE FUN, EASY WAY

109

4

617xCH04.qxd 2/27/07 11:01 AM Page 109

Figure 4-1. In Processing, the x-axis increases from left to right and
the y-axis increases from top to bottom. The origin is in the top-left
corner, at (0, 0).

If you draw a 40 pixel by 40 pixel rectangle on the monitor at (100, 100), it will be 100 pix-
els to the right of the left edge of the monitor and 100 pixels down from the top edge of
the monitor. Since you can only plot a point to a specific pixel location on the screen, you
also need to consider which point on the rectangle gets placed at (100, 100). This point is
sometimes referred to as the registration point. In most instances, the registration point is
either the top-left corner of the image or the center of the image. In Processing, there is a
function named rectMode() that allows you to specify from what point a rectangle is
drawn by passing different arguments to the function. For example, rectMode(CENTER)
orients the rectangle at its center point, while rectMode(CORNER) uses the rectangle’s top-
left corner; there is also a third argument, rectMode(CORNERS), which draws the rectangle
by specifying two points: the top-left and bottom-right corners of the rectangle. In Figure
4-2, the rectangle on the left is drawn from its top-left corner at (100, 100), and the one
to the right is drawn from its center point.

Figure 4-2. The square on the left uses its top-left corner for registration, while the one on
the right uses its center point. You can explicitly set the registration point using Processing’s
rectMode(MODE) command.

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

110

617xCH04.qxd 2/27/07 11:01 AM Page 110

When working in a 3D coordinate system, you just add another axis, called z, which follows
the same rules I’ve been discussing for 2D. The z-axis goes into the screen and is perpen-
dicular to both the x- and y-axes—but rest assured, for now you only need to deal with the
x- and y-axes.

One other issue to consider when dealing with coordinate systems is local vs. world coor-
dinates. For example, when you draw a rectangle on the screen at (100, 100), you can think
of the rectangle living on the screen world at pixel address (100, 100). However, let’s imag-
ine you then want to put a small circle on the rectangle 3 pixels to the right of the rectan-
gle’s left edge and 3 pixels down from its top edge. What is the circle’s screen pixel
address? You can consider the circle’s world address as (103, 103), and the circle’s local
address, in relation to the rectangle, as (3, 3). Now this may sound a little confusing and
like an obscure point, but it is something that comes up fairly often. For example, it is
often easier to work with a local coordinate system when you are assembling components
on a larger structure. If you are drawing windows on a house, isn’t it easier to just worry
about where the windows fit in relation to the rectangle of the of building, rather than
keeping track of where the windows are in relation to the edges of the screen? This way, if
you ever move the building, the windows will stay in the right place in relationship to the
building.

Anatomy of an image
A computer screen is (very simply put) a matrix, or grid, made up of rows and columns of
pixels that can each glow a certain color, giving the illusion, when enough pixels are glow-
ing the right color, of a continuous tone image (e.g., a photograph). Fortunately, the reso-
lution of most of our monitors is high enough and the refresh rate fast enough to allow
this matrix of pixels and constant screen redrawing to remain hidden, giving the illusion of
image persistence—you see what looks like a still, smooth image. When you zoom way
into an image in a program like Photoshop, you can see the pixel matrix, made up of little
blocks of color. If you look under a magnifying glass at printed materials, you can also see
a matrix of dots of color that, when zoomed back out, creates the same illusion of a con-
tinuous image as on a monitor. Some well-known artists, such as Roy Lichtenstein and
Chuck Close, both exploited this phenomenon in their paintings, albeit in very different
ways. Lichtenstein painted the dot pattern as an explicit visual element in his pop art work,
directly referencing the commercial printing process. Close utilized a matrix structure orig-
inally as a production tool, dividing his images up, similar to a monitor, into small rectan-
gular cells. Eventually his work began incorporating the grid as an explicit element as well.

Refresh rate is the rate at which the monitor redraws the screen image. Although images
on a screen look constant, they’re not. If you’ve ever shot video of your television, you’ve
probably seen the screen flickering or jumping. The frequency of the video camera’s
refresh rate and the frequency of the monitor’s refresh rate are not synchronized, allow-
ing you to catch the screen refreshing. Properties like screen resolution and refresh rates
are hardware-dependent and determined by the monitor and video card in your com-
puter. You can usually select from numerous monitor display configurations through sys-
tem control panels to change these properties, but actually communicating directly with
the video card or monitor through the code you write in Processing is lower level than you
go. Java does have a DisplayMode class, allowing you the ability to mess with this stuff

COMPUTER GRAPHICS, THE FUN, EASY WAY

111

4

617xCH04.qxd 2/27/07 11:01 AM Page 111

(if you really want to). Above the hardware level is where you’ll do most of your graphics
coding in Processing.

No matter how high level the process of drawing to the screen is made for you, either
through a programming language like Processing, or even more simply, a pencil tool in a
graphics application, the same underlying stuff still needs to happen. These underlying
processes can be quite complex in a language like Java, and involve low-level processing,
pretty close to the hardware. For example, there’s a class in Java called BufferedImage that
provides access to much of the procedural and structural anatomy of an image. Happily,
you don’t need to understand the BufferedImage class to work with images in Processing;
but it can be helpful, or at least interesting, to see a little of what goes into creating an
image behind the scenes. I really want to stress that you don’t need to understand any-
thing about the BufferedImage class to work in Processing, but learning a little about it
will give you more insight into how images work in Java and in computer graphics in gen-
eral. The BufferedImage class is composed of a bunch of other classes. Figure 4-3 shows a
simplified diagram of its structure.

Figure 4-3. Simplified BufferedImage class structure

The BufferedImage class diagram looks pretty scary. I’ve had advanced computer science
students brought to their knees trying to unravel it. What makes it so complicated is the
abstraction involved in its design and ultimately the processing required to generate and
manipulate images on a computer screen. If you begin to feel sick to your stomach read-
ing about this stuff, just skip ahead to the “Graphic formats” section.

fill(0, 0, 255);
rect(0, 0, 10, 10);

These two lines of processing code draw a blue rectangle with a black stroke (border) to
the screen. Let’s look a little below the surface at what’s happening. The rect() function
in Processing, which relates to the Rectangle() method call in Java, is a drawing method
built into the Processing language. You simply pass four arguments to the rect() function:
x, y, width, and height, and the function draws a rectangle to those specifications. Drawing
methods usually work by plotting points, called vertices (singular is vertex), and then con-
necting the vertices with some type of line. In Processing, as in numerous other program-
ming languages with graphics capabilities, there are drawing methods to draw points, lines,
and basic shapes (simple polygons). In the preceding rectangle example, four vertices are

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

112

617xCH04.qxd 2/27/07 11:01 AM Page 112

plotted, the vertices are connected with straight lines, and the space between the lines is
filled in with the RGB color (R = 0, G = 0, and B = 255)—which makes blue. So far this is
pretty simple, right?

If the rectangle is 10 pixels by 10 pixels, then you have 100 pixels altogether (10 ✕ 10). You
can also think about the rectangle as a table of 10 rows of pixels by 10 columns of pixels.
The BufferedImage class handles these types of storage issues internally, which can get
complex, as each pixel is made up of other components. In addition, the BufferedImage
class maintains an internal model of an image, rather than generating an actual screen
image—which is the work of a Graphics object or graphics context, which I’ll discuss later
on. The word “Buffer” within BufferedImage refers to a pixel buffer, which simply means
an internal storage structure for the pixel data. Computer graphics relies on these types of
buffers to efficiently manage the vast amounts of data involved in graphics and animation.
There are numerous ways to store pixel data, based on different sample and color models.
For example, pixel data can be stored in an internal table structure, with rows and columns
that are essentially equivalent to the image’s pixel structure on the screen; while another
internal buffer can hold the pixel data organized by color. Some of the composite helper
classes connected to the BufferedImage class organize pixel data into other structural
units such as samples, bands, banks, and rasters, which add flexibility and power to the
class, but also contribute to its complexity—it’s a good thing Processing internally handles
most of this stuff for us. Next, let’s go in a little deeper and explore the pixel.

The pixel
Pixel, short for picture element, is the term used to describe the smallest unit of a digital
image. Essentially, pixels are just little blocks of colors that, when grouped together en
masse, form images. Each pixel on the screen has a range of possible colors dependent
upon the color depth of the monitor, which is a function of both the monitor and the
available memory on the computer’s video card. Modern monitors and video cards are all
generally capable of displaying 24-bit color depth—meaning that each pixel on the screen
can utilize 24 bits of information. Remember, a bit is a unit of measure, representing the
smallest unit of memory on a computer (either 0 or 1), and there are 8 bits in 1 byte. Each
pixel on a color display is composed of three components, representing the colors red,
green, and blue (RGB). Thus, a 24-bit pixel has 8 bits devoted to each of its three compo-
nent colors. Since 8 bits is kind of meaningless to most of us as a unit of measure, let’s
convert 8 bits, which lives in base 2 (binary system) to our familiar base 10 (decimal sys-
tem). To convert base 2 to base 10, you take the base (also called the radix), which in this
case is 2 (only 2 choices for bits—0 or 1), and raise it to the power of the number of places
(number of bits) in your number, in this case 8. Raising 2 to the 8th power (28) gives you
256. So each of the color components in the pixel then has a range of 256 different values,
representing the total number of combinations of zeros and ones in an 8-digit number.

In the preceding Processing function call fill(0, 0, 255);, for each of the arguments (R,
G, B) you can set a number between 0 and 255 (the 0 counts as a value—that’s why it only
goes up to 255, not 256—but the range of values, or the domain of each component, is
256). If you take the three different components (R, G, and B) and multiply each of their
domains together (256 ✕ 256 ✕ 256), you get 16,777,216 possible colors. Another way of
thinking about this (and actually closer to how the computer thinks about it) is that a

COMPUTER GRAPHICS, THE FUN, EASY WAY

113

4

617xCH04.qxd 2/27/07 11:01 AM Page 113

24-bit color value is literally just a 24-digit number, made up of zeros and ones, where the
first 8 bits are used for blue, the next 8 bits are used for green, and the last 8 bits are used
for red. If you raise 2 to the 24th power, you get the same answer as before: 16,777,216
possible colors. If you’ve ever used a control panel device to change your screen resolu-
tion, you’ve probably seen 16.7 million colors—or just “millions of colors”—as a choice.
When I first got involved in computer graphics in 1992, it was common to have systems
that couldn’t handle 24-bit color, and you were forced to use either 16-bit or even 8-bit
color depths, which only permitted a range of 65,536 colors or 256 colors, respectively.
8-bit displays required fixed palettes composed of only 256 colors. 8-bit color is referred
to as indexed color, while 24-bit color is referred to as true color. Working in 8-bit color
space, we were forced to choose the 256 colors we wanted to use for a project, and it was
not easy to change the palette on the fly; it also didn’t help that Windows and Mac had
separate palettes. The web safe palette, which some of you might be familiar with, was one
such made-up palette. It only included 216 of the 256 colors common to both Mac and PC
platforms. These limited palettes led to pretty dithered images. Dithering occurs when col-
ors outside of the range of the palette need to be approximated, which is done through
the grouping of adjacent colors—optically mixing the necessary color. Dithering helps cre-
ate the illusion of a wider color gamut on an 8-bit system, but usually leads to pretty
grainy looking images.

Although contemporary monitors display 24 bits of information for each pixel, internally it
is possible to pack even more information into a pixel data structure. Photoshop, as an
example, supports 48-bit color, as do some scanners and digital cameras, allowing each
pixel to utilize 16 bits for each color component—that’s 65,536 unique values for each
red, green, and blue component, or a total of over 281 trillion (not a typo) different col-
ors. I know 281 trillion colors sounds bizarre, and nobody uses (or needs) all those colors,
but the additional color space supports an increased range of visual detail in areas like
shadows. Digital photographers especially benefit from the increased bit depth, as they
can combine numerous exposures into a single image, creating images with a higher
dynamic range than possible with traditional methods. 48-bit images are also utilized in 3D
as radiance maps for rendering composited images, in which a 3D, computer-generated
model is seamlessly blended into a photographic environment. The radiance maps work as
powerful sources of illumination in the rendering process.

Java’s BufferedImage class can handle 32 bits per pixel, and adds an additional 8-bit alpha
component to the RGB 24-bit structure. Alpha controls the translucency of the pixel, rang-
ing from 100 percent, which is opaque, to 0 percent, which is transparent. The integer data
type in Java and Processing is 32 bits in length, making it very convenient to store pixel val-
ues as individual integers—holding red, blue, green, and alpha, commonly abbreviated as
RGBA. If your head isn’t spinning yet, you can see that, in spite of its complexity, the
BufferedImage class really handles a lot. And in spite of the complexity involved in using
it, coding graphics in Java would still be a lot scarier if you had to deal with all the mathe-
matical calculations and color transformations the BufferedImage class handles internally.
In contrast to using the BufferedImage class in Java, in Processing you can simply call two
or three functions to get some similar low-level access. Of course, you have less access and
flexibility than working in pure Java—but most of the stuff you really need or want to use
is available in Processing, so you really can have your cake and eat it too. As I mentioned
in earlier chapters, as you get deeper into graphics programming, Processing’s genius

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

114

617xCH04.qxd 2/27/07 11:01 AM Page 114

really shines. And remember, as you progress in Processing, you have the freedom and
flexibility to utilize Java classes such as BufferedImage, or even work in pure Java in the
Processing environment.

Graphic formats
Those of you with lots of computer graphics application experience can probably skim this
section. I do cover a little of the inner workings of both raster and vector graphics, which
might be new or of interest, however. In computer graphics, graphic image types are gen-
erally broken down into two basic categories: raster graphics and vector graphics. Raster
graphics are usually continuous tone images, like photographs, that are not delineated
into precise shapes with smooth edges, but are built up as a series of pixels, like a painting.
The pixels blend together to form the illusion of a single image. The BufferedImage class
is a structure designed to handle raster graphics. Vector graphics are usually simpler
images, in terms of number of colors and detail. They have distinct parts, each delineated
with a concise edge. While raster graphics are a matrix of the actual pixels displayed on the
screen (or an approximation), vector graphics are mathematically described shapes, with
color fills, strokes, and other rendering attributes. Vector graphics can require much less
memory compared to raster graphics, as they represent the plots of mathematical expres-
sions. Since the computer is really a glorified calculator, it grooves on equations, but hav-
ing to keep track of millions of pixels in real time is more demanding. Ultimately though,
in the rendering process to the screen, eventually everything must be converted to screen
pixels. However, before the screen rendering, vector graphics are able to be stored as sim-
ple expressions, rather than large arrays of RGBA color values, as with raster graphics.
Raster and vector graphics each have their strengths and weaknesses, and are generally
utilized for different purposes.

Raster graphics

Raster graphics are typically utilized for photographic or other highly detailed continuous
tone images, where edges are not distinct and there is a large variation in color or value.
Common raster graphic image file formats include TIF, BMP, and JPG. Raster formats also
generally utilize some compression algorithms to ease their memory storage require-
ments. Compression can be lossy, in which the image quality is actually degraded with
compression, like in JPG; or lossless, with no image loss, as in LZW compression, used com-
monly with the TIF file format. Raster images have variable resolution, meaning that you
can specify how many dots of image information you want to pack into each inch. The
more dots per inch (dpi), the finer the image detail or resolution, but also the higher the
memory requirements. Monitor screen resolution is 72 dpi (Mac) and 96 dpi (Windows).
That means that it is only possible to see 72 dpi on the screen on a Mac; any higher will not
improve the quality of the screen image. So why would you want more resolution if you
can’t see it? Well, if you are only working on the Web, then you don’t need any additional
resolution—you’re done (assuming the image is the size you want it). However, if you ever
need to print your images, then you need more resolution; how much more is dependent
upon how you’re going to print. Offset printers that print magazines, posters, this book,

COMPUTER GRAPHICS, THE FUN, EASY WAY

115

4

617xCH04.qxd 2/27/07 11:01 AM Page 115

and so forth typically utilize a line screen, composed of dots that lay a dot pattern down
when they print. The frequency of the line screen is measured in lines per inch, or LPI. As
long as the line screen is fine enough, the dot pattern is not noticeable. However, tighter
line screens also require papers that bleed less and can hold the distinct dot pattern. There
is a formula you can use to calculate required dpi, based on the line screen frequency and
image size. A simpler rule, however, is to just double the frequency of the line screen to
determine image dpi. So for grainy newspaper printing, a line screen frequency might be
85 LPI, but for a coffee table art book, the frequency might be 200 LPI; thus the image
would need to be around 170 dpi and 400 dpi, respectively. You would also need to make
sure that your image was at the actual printing size at that resolution. That being said, I
recommend that when you land that huge print job, you discuss the image and printing
resolution issues with the printer.

Vector graphics

Vector graphics are typically used for simple illustrations, logos, and images that require
distinct and precise contours. Computer text is vector-based, normally just wrapped in a
text-based object that includes certain methods for editing the text. In vector-based
graphics applications like Illustrator, FreeHand, and Flash, you can create outlines from
text objects, or break them apart and get down to the vector information. Vector graphics
are made up of vertices (points) and strokes. The lines can be straight or curved, and are
generated mathematically. Straight lines are simple linear equations, like y = 4x + 3. In
Processing, you don’t need to worry about the math; you can simply use the line function
to generate a line:

line(x1, y1, x2, y2)

The first two coordinates in the function are the starting point and the last two coordi-
nates are the line’s endpoint. Processing and Java utilize internal drawing methods that
handle the algebra and draw the line. Curves are a little more complex and require higher-
degree polynomials (don’t scream). The preceding linear equation is a first-degree polyno-
mial, so a second-degree would just have x to the 2nd power. For example, y = 2x2 +
3x – 4 is a simple second-degree polynomial, also called a quadratic equation. (Is this ring-
ing some dusty old bells?) So I’m bugging you with all this math because second-degree
(quadratic) and third-degree (cubic) polynomials are used to generate the smooth curves
that are made with the common Bézier pen tools found in all major graphics applications.
But again, all you have to do is put in the points and Processing will crank out the math
and curves; it is actually a little more complicated than that, but not much. I’ll discuss the
actual implementation in the next few chapters.

The pixels contained within the bounds of the vector shapes do not need to be stored in
memory as they would for raster graphics, because the shapes, including color fills and
strokes, are calculated during runtime (when the program runs). Because vector graphics
are just plots of a set of vertices, they can be moved or transformed very easily. It is no
sweat for the computer to take in the list of coordinates and perform some calculations
on the data and redraw the shapes with the updated vertices. However, since the vertices

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

116

617xCH04.qxd 2/27/07 11:01 AM Page 116

need to be stored in memory, and the computer needs to sequentially plot each of the
vertices, too may vertices can become a performance drain on the computer and even
potentially yield worse performance than with raster graphics.

Vector graphics are also resolution independent—one of their best attributes. You are able
to scale vector shapes up or down without any loss in quality. It is just as easy for the com-
puter to calculate 1000 as 9999, so size is essentially irrelevant with regard to vector graph-
ics. Additionally, you can edit vector graphics by manipulating their vertices individually—so
they may be deformed in real time, leading to possibilities such as character animation or
shape morphing. One of the reasons a program like Flash became so popular was because
of its strength as a vector-based animation program, which allowed it to effectively over-
come the bandwidth issues associated with the Web, especially back in the days when we
all had slow dial-up modems.

Animation
Animation is really just an extension of static imaging, and everything covered thus far in
this chapter applies to animation. In the simplest sense, animation is a series of still images
displayed sequentially. If the rate of change between images, commonly called the frame
rate, is fast enough, our brains can’t detect the transitions, and you see fluid motion. This
effect is referred to as persistence of vision. In actuality, we perceive the physical world in
much the same way. Light enters our cornea, moves through the pupil and lens, and even-
tually reaches the retina. The retina is the light-sensing part of the eye, containing photo-
sensitive structures called rods and cones. The rods detect low light, while the cones detect
color and detail. The received light is transformed, through a chemical process, into electri-
cal impulses, which then pass through the optic nerve into the brain to form vision. Thus,
our vision is not static, but—similar to animation—a perpetual sequence of dynamic 2D
data. When I taught painting, I tried to encourage my students to see two-dimensionally, to
record the actual visual data the eye was seeing, not the interpreted image the brain was
forming. I argued that if you wanted other viewers to read 3D space in the painting, you
needed to record the actual perceptual 2D cues that the eyes were seeing, which would
then naturally lead to the perception of 3D space in the viewer’s brain. Our binocular
vision (two eyes) and our brain provide the illusion that we see three-dimensionally and
that the visual field is constant. One simple way to prove the brain’s giant cover-up of the
true visual chaos surrounding us is to detect the eye’s blind spot. At the back of each of
our eyes, where the optic nerve exits the retina, is a structure called the optic disc. The
optic disc has no rods or cones on it to receive light and thus causes a literal blind spot in
our field of vision—actually a blind spot in each eye. However, each of our clever eyes
compensates for the other eye’s blind spot—blinding us to our own blind spots (ignorance
is bliss). Figure 4-4 provides a little example of how to fool the brain and reveal the holes
in your vision. Close your left eye and stare at the dot on the left in the figure. Don’t look
at the star, but you should be able to see it in your peripheral vision. Slowly move toward
the page and keep looking at the dot. When you get to about a foot away or so, the star
on the right should disappear—that’s your blind spot. For a good article on how vision
works, check out http://science.howstuffworks.com/eye1.htm.

COMPUTER GRAPHICS, THE FUN, EASY WAY

117

4

617xCH04.qxd 2/27/07 11:01 AM Page 117

http://science.howstuffworks.com/eye1.htm

Figure 4-4. Blind spot example

Some persistence of vision begins at a fairly low frame rate. Flip books are a good exam-
ple of this; it doesn’t take too much speed to get some sense of animated motion. Film has
a frame rate of 24 fps (frames per second). NTSC video is about 30 fps (actually, 29.97,
with two interlaced fields each refreshing at that rate to avoid flicker). Web animation/
video ranges from 12 fps to over 30 fps, depending upon connection speed, file size, the
processor, and so on. At 12 fps, you notice a flicker in animation, but 12 fps was about as
good as it got in the early days of the Web. Faster modems and the proliferation of broad-
band now allow web animation to approach comparable frame rates to film and video. In
addition, web streaming technologies and improved codecs (compression algorithms)
were developed to allow motion data to begin playing in the browser while content was
still downloading, increasing image quality and eliminating long download delays. Outside
of the Web, it is also possible to shoot film or generate computer animation with much
higher frame rates than 30 fps, allowing you to do things like slow down the film and still
get smooth motion. This is precisely what artist Bill Viola did in his video art piece The
Quintet of Remembrance, installed at The Metropolitan Museum of Art in New York. Viola
shot 60 seconds of footage for the piece with very high-speed film. He then slowed the
piece down to over 16 minutes. In the piece, five actors, standing in a tight grouping, are
each expressing intense emotion, referencing three important historical paintings. The
silent piece unfolds incredibly slowly, yet with absolute clarity and free of any flicker,
creating a very unique and memorable viewing experience. The high-speed film obviously
captured enough frames to allow it to be played back 16 times slower, while still main-
taining at least a 24 fps frame rate. Here’s a link to the piece: www.metmuseum.org/toah/
ho/11/na/ho_2001.395a-I.htm.

Popular computer animation software applications such as Flash, After Effects, and
LightWave borrow concepts from traditional animation, film, and video. These applications
are timeline-based, in which users specify keyframes—the beginning and ending points of
animated sequences—and the software generates the frames between the keyframes, or
the in-betweens, in animation speak. In the golden days of traditional cell animation, the
master animator created the keyframes, while the apprentice animators (the human in-
betweeners) handled the rest of the frames. In digital animation, it doesn’t matter if the
animated object or effect is an imaging filter, 3D character, ball, light, camera, texture
map, or particle generator; every object has a set of properties (x and y coordinates, width,
height, etc.) that can be changed over time by setting keyframes on the timeline. Some of
the higher-end animation tools even have their own proprietary programming languages
built into the application, allowing code to control these timeline envelopes as well.

Animation software applications can be divided up by their core functionality. For example,
the three popular animation packages I referenced—Flash, After Effects, and LightWave—
are each used for different primary purposes. Flash is used for 2D web-based animation
and web design/development; After Effects is used for motion design, compositing, and
imaging effects for film and video; and LightWave is used for 3D modeling and animation.

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

118

617xCH04.qxd 2/27/07 11:01 AM Page 118

Within each of these application areas are numerous other competitive packages as well.
In addition, there are nonlinear digital editing tools for film and video—Apple’s Final Cut
Pro is one such tool. These tools, often timeline-based as well, are used to edit and output
finished animations, films, and videos. Compared to all these powerful time-based appli-
cations, Processing and Java, or any programming language for that matter, seems pretty
sparse. Processing doesn’t have a timeline, keyframes, or the gazillion other dialog boxes
commonly found in these commercial applications. Theoretically, you could build all these
constructs within Processing and generate your own animation application, but wouldn’t it
be way more productive to just use one of the existing applications? Why use Processing for
animation? (I’ll assume you all have unlimited budgets for new software acquisition, so the
fact that Processing is open source and completely free wouldn’t figure into your decision).

Earlier in the book, I discussed the difference between using Photoshop filters for cool
effects and finding less common and more personally expressive possibilities using code.
Again, let me stress that I am not being critical of Photoshop or the other amazing anima-
tion tools I mentioned earlier; I love these tools. However, in the creative process it is often
helpful to get down to basics and make more fundamental inquiries. Traditionally, artists
have grabbed a pencil and paper or a lump of clay, and scribbled and poked away in the
process of conceptualizing and finding new possibilities. The simplicity of the process and
the directness of the materials lent themselves to the process of discovery. It is often in the
process of playing with the materials, without explicit application, that new approaches
and forms are uncovered. I assert, and know from personal experience, that it is possible
to do this with code. Processing was designed primarily around this approach to coding
and is the reason Processing programs are referred to as sketches. In addition, quality in
art has never been a function of quantity or effect. One can use the most powerful soft-
ware tools imaginable and still make overly simple and uninteresting work. At the other
extreme, artists such as da Vinci, Ingres, and Constable have used simple drawing tools to
produce some of the most complex and beautiful images ever created. Processing fits
somewhere between the software bells and whistles and a pencil in its complexity, and is a
great tool to explore/create time-based art.

The joy of math
The title of this section may seem like an oxymoron. Rather than joy, you may have other
associations with math (dread, boredom, pain, unpleasant memories from high school,
etc.). I can identify with the dread response, as I spent many hours staring out of public
school windows during math class. It wasn’t the subject matter that put me in a zombie
state, it was the way it was presented. Being a creative and process-oriented kid, I wanted
to feel a connection to the stuff I was learning and also wanted to see its relevancy in the
world around me. In an art class, there is a direct response between one’s action and
some tangible result. Even in a science class, there is the possibility of a lab result or some
process making a relevant connection. But in math, back when I was in school, we seemed
to primarily concentrate on drilling, rote memorization, and things being right or wrong.

However, turning 40 (yikes!), I don’t totally trust my memory of those days, so if you hap-
pen to be one of the inspired math teachers I had and selectively forgot, my deepest
apologies. Recently, I decided to sit in a calculus class where I was teaching. I’d retrained
myself in math (just the math I actually needed), and was really looking forward to the

COMPUTER GRAPHICS, THE FUN, EASY WAY

119

4

617xCH04.qxd 2/27/07 11:01 AM Page 119

experience, which I know might sound odd to some of you. I did enjoy the class, and the
professor tried to find some relevant connections, but that old dread came back in spite
of the fact that I wasn’t even enrolled in the class, not to mention that I already had my
degrees and a job. I especially found the tests disagreeable, where rigid constraints of time
and a very limited solution set took most of the joy away. Ironically, I love trying to solve
complex technical and analytical problems, as one finds continuously in programming.
However, in programming, as opposed to a math class, technical problems are directly
linked to the process of creating. Rather than having to plot some nondescript curve I
could care less about (with little or no aesthetic payoff), I’d prefer to create an aestheti-
cally based organic form, generated through a series of curve expressions. In addition,
coding allows you to chart your own procedural course when solving a problem. For
example, five different coders can each solve the same problem five different ways. I
believe this type of flexibility is essential to the creative process—whether you’re painting
a tree or creating a series of mathematical expressions to plot a tree.

For your purposes, you only need a small part of math, and mostly pretty basic stuff.
However, programming is really a form of applied math—a very creative form! If you want
to move something on the screen, change the color of a pixel, or have the user interact
with one of your Processing sketches, you need to deal with coordinates and usually sim-
ple addition, subtraction, multiplication, or division. For example, if you create a virtual ant
and want it to wander around the sketch window, avoiding some obstacles and searching
for food, you need to continuously add values to the mouse’s x and y coordinates and
keep checking if the ant’s coordinates are interfering with either the obstacle or food
coordinates. If you want the food to slowly disappear as the ant eats it, you can slowly shift
the value of the pixels making up the food to the background color of the screen. This sec-
tion is going to take a quick look at basic math utilized in graphics programming. The
material should be viewed more as a math primer than a proper elucidation of this mate-
rial. If you don’t fully get it here, don’t panic—it will be revisited later on. Some of these
concepts are also expanded upon in Appendix B.

Elementary algebra

Algebra is old. It has been used continuously and developed for over 3,000 years, with early
contributions made by cultures worldwide including the ancient Egyptians, Babylonians,
Greeks, and Chinese. Algebra was first introduced into Europe in the beginning of the 13th
century by Leonardo Fibonacci of Pisa. Fibonacci got famous for trying to figure out the
breeding capacity of rabbits. What he realized was that there is a predictable sequence of
numbers, based on a simple rule, connected to the rabbits’ breeding rates. In fact, this
numeric progression is not only tied to rabbit breeding, but tree growth, numbers of
petals on a flower, the spiral in the golden section, and many other natural phenomena. To
learn more about Fibonacci and his rabbits, check out www.mcs.surrey.ac.uk/Personal/
R.Knott/Fibonacci/fibnat.html#rabeecow.

The actual word algebra comes from a ninth century Persian treatise, written by
al-Khwarizmi (mentioned in Chapter 2 in the discussion about algorithms). Al-Khwarizmi is
widely hailed as the father of algebra (as well as one of the greatest math geniuses of all
time). Al-Khwarizmi, or algoritmi, as his name translates into Latin, is where the word algo-
rithm comes from. Elementary algebra is absolutely fundamental to programming. In many
ways, programming is algebra. However, programming is the kind of algebra you do but

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

120

617xCH04.qxd 2/27/07 11:01 AM Page 120

don’t realize you’re doing it—sort of like the cardiovascular heath benefits you receive
from certain bedroom activities. Algebra relies on variables, numbers, and operators to
form expressions—which is identical to programming. In programming, though, you need
to use slightly different syntax based on the language you are using. For example, Table 4-1
shows some algebraic expressions and the corresponding Processing implementations.

Table 4-1. Algebraic expressions and their corresponding Processing implementations

Algebraic expression Processing implementation

2x + 2 2 * x + 2

x2 – 3x + 4 x * x – 3 * x + 4

(5 * pow(x, 3)) / 4

Elementary algebra also has some very basic rules or laws that help us solve equations.
Some of these laws are also central to programming. For your purposes, though, you just
need to apply them—you don’t have to worry about formal definitions or proofs.
Following is a list—sort of a cheat sheet—of the elementary algebraic laws that most apply
to beginning graphics programming.

Operation order (a.k.a. operator precedence)
Operations happen in a certain order, which can have a direct effect on results. For most
operations, simply remember that what’s inside the parentheses is evaluated first, then mul-
tiplication and division, and then addition and subtraction. If the operators have the same
precedence in a compound expression, and there are no parentheses (e.g., 4 + 20 + 5), then
the expression is evaluated from left to right. The following list provides some examples:

6 * 3 – 4 = 14: The multiplication is done first, and then the subtraction.

7 – 9 / 3 = 4: The division is done first, and then the subtraction.

(7 – 9) / 3 = –2/3: The operation inside the parentheses is done first, and then the
division.

4 * 5 / 2 * 3 = 30: The precedence of each operation is equal, so the equation is
solved from left to right.

4 * 15 / 2 – 13 * 9 + 5 = –82: The multiplication and division are done first, and then
the subtraction and addition, from left to right.

For a complete list of operator precedence in Java and Processing, check out http://
java.sun.com/docs/books/tutorial/java/nutsandbolts/expressions.html.

Associative property
When performing addition, grouping doesn’t matter, so you don’t need parentheses, but if
you include them, it won’t do any damage:

(a + b) + c = a + (b + c) = a + b + c

COMPUTER GRAPHICS, THE FUN, EASY WAY

121

4

617xCH04.qxd 2/27/07 11:01 AM Page 121

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/expressions.html

In multiplication, grouping doesn’t matter, so you don’t need parentheses in this case
either:

(a * b) * c = a * (b * c) = a * b * c

Non-associative property
Most of your expressions will be non-associative, and will therefore require grouping. In
the examples in the following list, notice how the placement of the parentheses changes
the value of the expression. (Remember, what’s between the parentheses is evaluated
first.) Please also note that the operator != means “does not equal.”

(a * b) + c != a * (b + c)

(4 * 5) + 6 = 26

4 * (5 + 6) = 44

4 * 5 + 6 = 26 (Multiply first, and then add)

(a – b) – c != a – (b – c)

(8 – 5) – 4 = –1

8 – (5 – 4) = 7

8 – 5 – 4 = –1 (Solved from left to right)

When in doubt, use parentheses to group; it can never hurt.

Distributive property
When multiplying an expression involving addition or subtraction (which is just addition of
a negative number) by another value, you need to multiply all the different elements in
the expression by the value, as the following three examples show:

4 * (a + b) = 4a + 4b

–(a + b) = –1(a + b) = –1a + –1b

6 * (a + b – c + d) = 6a + 6b – 6c + 6d

You can use the distributive property to multiply two binomials, as shown following:

(2x + 3) * (3x – 2)

= (2x * 3x) + (2x * –2) + (3 * 3x) + (3 * –2)

= 6x2 + 5x – 6

This is a second-degree polynomial, or a quadratic equation.

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

122

617xCH04.qxd 2/27/07 11:01 AM Page 122

Geometry

Like algebra, geometry dates way back to ancient Egypt and Babylonia (2000 to 500 BC),
where knowledge of geometry was demonstrated through building and development proj-
ects. However, it was Greek influence, beginning with Thales and Pythagoras in around 600
BC, through to Archimedes in around 200 BC, that gave us what we think of as Euclidian
geometry today. Of all the Greeks, it was Euclid of Alexandria, in around 300 BC, who
would leave the most lasting mark on Greek geometry with his famous 13-book treatise,
The Elements of Geometry. This treatise formalized Greek thought on geometry up to that
point, and is even considered by some to be the first textbook ever written. It is certainly
one of the most important and influential books ever written on mathematics, with ver-
sions of it still in print—over 2,500 years after it was written—that would be a lot of royal-
ties for Euclid!

The word geometry comes from the Greek words for earth and measure, and suggests its
original use in building, surveying, astronomy, and other real-world applications. Geometry
was introduced to Europe during the early Renaissance, and its influence is obvious and
ubiquitous, especially in Renaissance architecture and the visual arts. However, with regard
to computer graphics, the major development in geometry didn’t occur until the 17th cen-
tury, with the advent of analytical or coordinate geometry, developed by René Descartes
and Pierre de Fermat. Analytical geometry utilizes the Cartesian coordinate system (also
developed by Descartes) as a system to study geometric curves and shapes plotted utiliz-
ing algebraic equations, which is precisely what is done in computer graphics. (Thankfully,
most of the math is actually done behind the scenes for us.)

Points
The point is the most basic geometric element we deal with. A point has 0 dimensions;
although in Processing, you do see a 1 pixel by 1 pixel output to the screen when you write
the following command (making this technically a 1-pixel-long line—but we’ll let it pass).

point(x, y);

Points, as data structures, are primarily used to store coordinate locations for plotting
curves and shapes. Java has some convenient data structures, or classes, for this very pur-
pose, such as the aptly named Point class. Remember, in Processing, you have the option
of using Java classes as you see fit.

Lines
Lines occupy one dimension, as they have length, but no width. Lines can be expressed
algebraically with the expression y = mx + b.

This equation for a line is referred to as the slope-intercept form, where m is the slope of
the line and b is the y-intercept (the place where the line intercepts the y-axis). x and y are
the two components of any point on the line. Slope is an important property of a line or
curve in math and computer graphics, and often relates graphically to motion and accel-
eration. For example, the graph of the line in Figure 4-5 shows an object moving at a con-
stant rate. The vertical axis of the graph is distance, and the horizontal axis is time. The
slope of the line can be found by looking at the change in y (∆ y) over the change in x
(∆ x) at any two points on the graph. People commonly refer to the slope as rise over run.

COMPUTER GRAPHICS, THE FUN, EASY WAY

123

4

617xCH04.qxd 2/27/07 11:01 AM Page 123

Since the graph is of a line, the slope will be constant for any two points, and thus the
speed will be continuous, without any acceleration. This issue will become more relevant
later on, when you begin to animate objects. If you want to create more natural motion,
you need acceleration and deceleration; thus, lines and linear equations are not typically
used to generate organic motion. However, you can animate any property; and for some
of these properties, linear equations are the perfect solution (e.g., an object floating in
space or a mechanical device operating at a steady speed). Figure 4-5 graphs speed as a
linear equation, with distance and time as the y- and x-axes.

Figure 4-5. Plotting constant speed (distance/time) as a line

Curves
Curves are much more complex than lines, and there are many varieties. Here’s a link with
a collection of over 850 different curves: www.2dcurves.com/. For your purposes, you just
need to understand some basic aspects of curves and how to generate a few. As a simple
rule, you can generate a smooth, continuous curve with any second-degree (or higher)
polynomial. In addition, you can predict the type of curve you’ll get for some of these,
especially second-degree (quadratic curve) and third-degree (cubic curve) polynomials. By
predicting curves, I mean knowing how many changes in direction (or turning points) the
curve can have. For example, an arc or parabola would have one change of direction,
while an s-shaped curve would have two. The rule is that an even-degree curve—like a
second-degree polynomial—can have an odd number of turning points one less than its
degree, and an odd-degree curve—like a third-degree polynomial—can have an even
number of turning points one less than its degree. I know this sounds a little confusing, but
if you read it again, you’ll see it’s pretty simple. What this rule means is that a quadratic

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

124

617xCH04.qxd 2/27/07 11:01 AM Page 124

(second-degree) curve has one turning point and a cubic (third-degree) curve can have
either zero or two turning points. This info will become more relevant when you get to
Chapter 7 and see how curves are actually generated in Processing. Here are two little
Processing sketches that generate the quadratic and cubic curves shown in Figures 4-6 and
4-7, respectively:

/*
Simple Quadratic Curve
equation: f(x) = x*x - 20x + 200
Ira Greenberg, October 10, 2005
*/

float x, y;
// adjusts y to fit in sketch window coordinate space
float curveFittingFactor = .03;

void setup(){
size(400, 400);
background(255);
fill(0);
for (int i=-102; i<124; i++){
x = i;
y = pow(i, 2)-20*x+200;
ellipse(x+200, y*curveFittingFactor, 4, 4);

}
}

Figure 4-6. Quadratic curve

COMPUTER GRAPHICS, THE FUN, EASY WAY

125

4

617xCH04.qxd 2/27/07 11:01 AM Page 125

/*
Simple Cubic Curve
equation: f(x) = .2*x*x*x - 50*x*x - 50*x + x-100
Ira Greenberg, October 10, 2005
*/

float x, y;
// adjusts y to fit in sketch window coordinate space
float curveFittingFactor = .0001;

void setup(){
size(400, 400);
background(255);
fill(0);
for (int i=-102; i<300; i+=2){
x = i;
y = pow(i, 3)*.2+x*x*-50+x-100;
ellipse(x+100, y*curveFittingFactor+200, 2, 2);

}
}

Figure 4-7. Cubic curve

Smoothness and continuity are two other important characteristics of curves. Smoothness
means there are no cusps, or sharp kinks, in the curve, and continuity means that the curve
doesn’t stop and start again, which happens with a tangent function, for example. These
properties are significant in things like calculus, but that’s obviously not your concern.
When a curve has a cusp or stops abruptly, and you are using it to animate or control some
aspect of a program, there will be, at best, an abrupt jolt to otherwise smooth movement

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

126

617xCH04.qxd 2/27/07 11:01 AM Page 126

or possibly even a complete crash of your program. You’ll experiment with these proper-
ties in later chapters. For now, there are two simple curves worth looking at that will help
you code organic motion—one describes acceleration and the other deceleration.

Figures 4-8 and 4-9 show an acceleration curve and a deceleration curve, with time on the
x-axis and distance on the y, as in the previous linear example.

Figure 4-8. Acceleration curve

Figure 4-9. Deceleration curve

COMPUTER GRAPHICS, THE FUN, EASY WAY

127

4

617xCH04.qxd 2/27/07 11:01 AM Page 127

Notice that the acceleration curve is concave, like the front of a spoon, while the shape of
the deceleration curve is convex. As you look at the figures, think about how much dis-
tance is being covered over what time period. Is distance increasing more rapidly than
time or vice versa, and is the rate of change constant, increasing, or decreasing at differ-
ent parts of the curve? Is the curve smooth and continuous? The graph shows smooth
acceleration and deceleration beginning at point (0, 0), meaning that no time or distance
have elapsed.

In Figures 4-8 and 4-9, I divided each of the curves into four straight segments, between
the white points. These straight segments, approximating the curve, are called secant lines.
By looking at the slope of these lines, labeled m1 through m4, you can predict how the
rate of speed is changing in the graphs. It is also possible to more precisely calculate
the slope of each of these secant lines by using the x and y components of the points at
the ends of each of the secant lines and dividing the change in the two y components
(∆ y) by the change in the two x components (∆ x). For example, to calculate the slope of
the first secant line (m1) in the deceleration curve, you can do the following:

m1 = ∆ y / ∆ x

m1 = 30 – 0 / 1 – 0

m1 = 30

If you take the time to calculate the remaining slopes of m2, m3, and m4, you’ll get 10, 5,
and 3.33, respectively. Since this is a deceleration curve, it makes sense that the slopes of
the secant lines decrease over time. (Of course, it’s a lot less work to simply guess how the
rate of change is affected based on how vertical the secant lines are.)

It is a little confusing thinking about rate of change vs. speed. Speed is the rate of motion,
which is simpler to think about. Speed is simply distance divided by time. If I move a rec-
tangle 30 pixels in 3 seconds, the rectangle is moving 10 pixel per second (pps); that’s its
speed. For example, the following simple Processing sketch moves a rectangle across the
screen at approximately 30 pps:

//linear motion
int w = 20;
int h = 10;
int x = 0;
int y;

void setup(){
size(400, 400);
y = height/2;
frameRate(30);

}

void draw(){
background(255);
rect(x++, y, w, h);

}

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

128

617xCH04.qxd 2/27/07 11:01 AM Page 128

This linear motion would plot as a straight line, as its rate of change is constant. If, how-
ever, I initially move a ball 30 pps, and then I keep doubling the rate at which I move the
ball (1 second equals 30 pps, 2 seconds equals 30 pps, 3 seconds equals 120 pps, 4 seconds
equals 240 pps, etc.) based on a geometric progression, I end up with acceleration. Here’s
the same sketch converted from linear motion to accelerated motion. However, to keep
the speed down, rather than continuously doubling the rate, I continuously increase it by
10 percent—which still gets the rectangle cruising. Don’t worry if you can’t follow the
code yet—I’ll be going over this again later in the book, in painstaking detail.

//Example 1: accelerated motion using multiplication
int w = 20;
int h = 10;
int x = 0;
int y;
float speed = 1;

void setup(){
size(400, 400);
y = height/2;
frameRate(30);

}

void draw(){
background(255);
speed*=1.1;
rect(speed, y, w, h);

}

There is another simple way to code acceleration, which uses addition and double imple-
mentation. I’ve included it here for your viewing pleasure:

// Example 2:
// accelerated motion using addition
int w = 10;
int h = 10;
int x = 0;
int y;
float speed;
float acceleration = .1;

void setup(){
size(400, 400);
y = height/2;

}

void draw(){
background(255);
speed += acceleration;
rect(x+=speed, y, w, h);

}

COMPUTER GRAPHICS, THE FUN, EASY WAY

129

4

617xCH04.qxd 2/27/07 11:01 AM Page 129

When you run the sketches, notice how the box actually accelerates. If you plotted the
equations that generated this motion, you’d get approximations of the acceleration curve.
Later in the book you’ll experiment with both constant and accelerated motion more, as
well as add cool features like gravity, collisions, and springs. One final point about working
with these types of equations is the potential of generating extremely large or small num-
bers very quickly—approaching positive or negative infinity. Actually, you don’t have to
worry about reaching infinity, forgetting about the obvious paradoxical aspect, as
Processing will give you an error way before that. As an exercise in futility, but perhaps also
some small interest, try running the following sketch, which simply begins with the value 1
and continues doubling it for 100 steps (if smoke begins pouring out of your computer,
I’m sure it’s just a sad coincidence):

double n = 1.0;
for (int i=1; i<=100; i++){
println("step " + i + " = " + (n*=2));

}

If you were scared to run the sketch, don’t worry—I pasted steps 70 through 80 of the out-
put following:

step 70 = 1.1805916207174113E21
step 71 = 2.3611832414348226E21
step 72 = 4.722366482869645E21
step 73 = 9.44473296573929E21
step 74 = 1.888946593147858E22
step 75 = 3.777893186295716E22
step 76 = 7.555786372591432E22
step 77 = 1.5111572745182865E23
step 78 = 3.022314549036573E23
step 79 = 6.044629098073146E23
step 80 = 1.2089258196146292E24

The E in the numbers means exponential notation. The number at step 80 is
1.2089258196146292 to the 24th power. If you want to get rid of the exponential notation,
just move the decimal point to the right 24 places.

In 2003, our known universe got much bigger. Prior to 2003, reports of the known uni-
verse’s diameter were estimated to be between as little as 10 billion light years to nearly
40 billion light years. Now, don’t get me wrong, that’s pretty far. However, in 2003, Neil
Cornish of Montana State University estimated the known universe’s diameter to be 156
billion light years—now that’s big! (I should also note that prior to his current position at
Montana, Dr. Cornish worked in Stephen Hawking’s research group at Cambridge—so his
credentials are decent.) Well, how long is a light year? Light travels at 186,000 miles per
second. There are 60 seconds in a minute, 60 minutes in an hour, 24 hours in a day, and
365 days in a year. If you multiply these together, you can determine that light travels
5,865,696,000,000 miles in a year. Multiplying that by 156 billion gives you 1.091019456E24
miles. This makes the diameter of the known universe a little less than step 80 in the pre-
ceding code output. Remember how the output was generated—I simply started with 1

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

130

617xCH04.qxd 2/27/07 11:01 AM Page 130

and began doubling. By step 80, the output had surpassed the diameter of the known uni-
verse—but it goes way beyond that. In fact, each step from 80 to 100 is another doubling
in size—my head’s beginning to hurt, and I think you get the point.

Trigonometry

The Latin word trigonometry, coined in the 16th century, was formed from three Greek
words that translate to “three-angle measure,” and simply means the study of triangles.
This is precisely what trig was used for in the second century BC, when the astronomer
Hipparchus of Rhodes created one of the first tables of trigonometry values (it was called
a table of chords back then). Unfortunately, most of Hipparchus’s work has been lost, and
we mostly know of him through the writings of others, especially Ptolemy, who based
much of his work on Hipparchus’s earlier work. Ptolemy, you may remember, is the guy
who said that Earth was at the center of the universe, which was eventually refuted by
Copernicus 1,400 years later. Hipparchus apparently used his chord tables to help him pre-
dict things like eclipses, star positions, distance to the moon, and the length of a year,
which he predicted to within 6.5 minutes. I think it’s time we give Hipparchus his due.

Hipparchus’s reputation aside, solving for angles and sides of triangles is not terribly inspir-
ing, and precisely what contributed to my dazed stare out the classroom window when I
first studied it. Since ancient times (even before I was in junior high school), trig has
emerged as a fundamental tool in many fields, from astronomy to architecture to engi-
neering to 3D gaming, and yes, also to code art. Trig is much more than the study of tri-
angles; it figures significantly in the study of waves, impacting our understanding of sound,
radio, and light, among other physical phenomena.

Trigonometry is also really simple. I know this may sound odd, but aside from having to
learn a couple scary Greek symbols and basic theory, trig is really just an extension of the
Pythagorean theorem (at least the part of trig you’ll need). Although some basic theory is
helpful to begin to grasp the full power of trigonometry, it is possible to begin playing with
the trig functions almost immediately, learning experientially as you experiment with
them. The trig functions that you’ll mostly use are sine, cosine, and tangent. There are a
few others you’ll look at later on in the book, but an amazing amount of stuff can be done
with just these three.

I like to think of the trig functions almost as dabs of paint on my palette. I begin playing
with the trig dabs, inserting different values here and there, and watching what happens.
Sometimes I end up with really long and convoluted expressions, completely outside of my
understanding, that make engaging, beautiful images or animations; other times I get a
garbled mess. Part of the fun is in not exactly knowing what you’re going to get.
Fortunately, as an artist, I can get away with this aesthetically driven, semi-clueless
approach to trig. I also can’t help wondering, had math been taught this way when I was in
school, perhaps I would have enjoyed math class more and done less window gazing.
Interestingly, as I’ve gotten older, I’ve found the more I play with stuff like trig, the more
interested I get in understanding the underlying theory. I also think this aesthetic approach
to learning math increases retention, especially for artists.

COMPUTER GRAPHICS, THE FUN, EASY WAY

131

4

617xCH04.qxd 2/27/07 11:02 AM Page 131

The best way to get a sense of what trig can do is to see it in action. The three code
examples that follow are not intended as a lesson on trig in Processing—that begins in
Chapter 6. These examples are intended just to, hopefully, spark your latent zeal for trig
(or at least make you hate it less). I don’t intend newbie coders to be able to follow the
code in these examples (yet).

The first trig example is of a simple repeating sine curve that creates a wave pattern, as
shown in Figure 4-10.

Figure 4-10. Repeating sine curve

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

132

617xCH04.qxd 2/27/07 11:02 AM Page 132

/*Simple Repeating Wave Pattern
Ira Greenberg, October 13, 2005
*/

float y = 0;
float angle = 0;
float amplitude = 5;
float waveGap = 24;
float frequency = 5;

void setup(){
size(400, 400);
background(255);
noFill();
frameRate(30);

}

void draw(){
// stop drawing at the bottom of the sketch window
if (y<height){
float py = 0;
for (int i=0; i<width; i++){
py = y+sin(radians(angle))*amplitude;
point(i, py);
angle+=frequency;

}
y+=waveGap; //step waves down

}
}

This sketch creates a simple sine curve across the x-axis and then repeats it down the win-
dow. I’ve created variables for some of the settings, which you can experiment with. One
of the cool things about wave patterns is what happens when they get close together or
even cross. Try changing the amplitude in the example code as well as the waveGap and
frequency. Figure 4-11 was created with these altered settings:

amplitude = 72;

waveGap = 14;

frequency = 6;

COMPUTER GRAPHICS, THE FUN, EASY WAY

133

4

617xCH04.qxd 2/27/07 11:02 AM Page 133

Figure 4-11. Repeating distorted sine curve

When patterns overlap and interfere with each other, interesting things happen, such as
moiré patterns. In printing, moiré patterns are usually an unwanted phenomenon, occur-
ring from interfering line screen frequencies. However, these patterns can also be quite
beautiful, causing interesting visual distortions and secondary patterns to emerge. In the
following example sketch (shown in Figure 4-12), the wave pattern continuously redraws
itself, with some of the waveform properties controlled by the position of the mouse dur-
ing runtime. In addition, a second concentric ring pattern moves around with the cursor,
causing some interesting distortions to occur. You can also press the mouse and hold it,
and the ring pattern will grow; when you let go, it will shrink back to its original size.

/* Interference and moiré pattern
Ira Greenberg, October 18, 2005 */

float interval;
float spacer;

// Experiment with these values
float angle = 0;
float amplitude = .05;

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

134

617xCH04.qxd 2/27/07 11:02 AM Page 134

float waveGap = 10;
float frequency = .1;
float ringGrowthRate = .5;
boolean isInactive = true;

void setup(){
size(400, 400);
interval = width*.03;
spacer = interval;
noFill();
frameRate(30);

}

void draw(){
background(0);
stroke(255);
float py = 0;
/* This nested for loop fills the frame

with a wave pattern. Some of its properties
are controlled, in part, by the mouse position*/

for (int i=0; i<height; i+=waveGap){
for (int j=0; j<width; j++){
py = i+sin(radians(angle))*mouseY*amplitude;
point(j, py);
angle+=mouseX*frequency;

}
}

// draw concentric ring pattern
for (int i=0; i<width/2*spacer/interval; i+=spacer){
ellipse(mouseX, mouseY, 10+i, 10+i);

}

// describe mouse press behavior
if (mousePressed){
angle = 0;
isInactive = false;
// grow rings
if (spacer < interval*2){
spacer += ringGrowthRate;

}
}
// shrink rings
if (isInactive){
if (spacer> interval){
spacer -= ringGrowthRate;

}
}

}

COMPUTER GRAPHICS, THE FUN, EASY WAY

135

4

617xCH04.qxd 2/27/07 11:02 AM Page 135

// allows ring to shrink
void mouseReleased(){
isInactive = true;

}

Figure 4-12. Moiré pattern

The final example simulates organic motion. The development of this example is also
worth describing, as it’s a good illustration of the power of “happy coding mistakes,” as I
described in Chapter 2.

I originally set out to create an example entitled Springy Serpent. I imagined a series of
nodes, connected by tethers, moving around the screen in a snake-like manner, with
springs controlling some of the motion of the serpent’s body. I’d solved similar problems
to this in the past, but I tend to not look at old code when I begin creating, and I couldn’t
quite visualize (or remember) how to pull this off. I don’t necessarily recommend this
“start from scratch” approach, and I’d say most coders take the exact opposite approach—
using snippets of their older code and not repeating the same mistakes over and over
again. One benefit of my illogical approach is the interesting stuff I find along the way. In
the process of developing the springy serpent, I made some initial logic errors in my algo-
rithm. I got some of the behavior, but not all of it. I also realized that I really needed to get

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

136

617xCH04.qxd 2/27/07 11:02 AM Page 136

a piece of paper and do a little more involved math to properly solve the problem. Being
impetuous, manic, and very sleep-deprived, I just kept furiously hacking at the code—hop-
ing for some quick (magical) fix; It wasn’t going too well, and I actually went so far as to
find a pencil. Eventually something emerged, but it didn’t look very much like a serpent.
Instead, I found a strange, smoky, self-organizing blob (see Figure 4-13). In the end, I think
I got something more interesting than I originally planned for, and I learned something in
the process—so embrace the chaos! The code to this sketch, entitled Puff, follows. This is
not simple code, but it is an excellent demonstration of the expressive power of trig.

/* puff
Ira Greenberg, October 22, 2005 */

// for puff head
float headX;
float headY;
float speedX = .7;
float speedY = .9;

// for puff body
int cells = 2000;
float[]px= new float[cells];
float[]py= new float[cells];
float[]radiiX = new float[cells];
float[]radiiY = new float[cells];
float[]angle = new float[cells];
float[]frequency = new float[cells];
float[]cellRadius = new float[cells];

void setup(){
size(400, 400);
// begin in the center
headX = width/2;
headY = height/2;

//fill body arrays
for (int i=0; i< cells; i++){
radiiX[i] = random(-7, 7);
radiiY[i] = random(-4, 4);
frequency[i]= random(-9, 9);
cellRadius[i] = random(16, 40);

}
frameRate(30);

}

void draw(){
background(0);
noStroke();
fill(255, 255, 255, 5);

COMPUTER GRAPHICS, THE FUN, EASY WAY

137

4

617xCH04.qxd 2/27/07 11:02 AM Page 137

//follow the leader
for (int i =0; i< cells; i++){
if (i==0){
px[i] = headX+sin(radians(angle[i]))*radiiX[i];
py[i] = headY+cos(radians(angle[i]))*radiiY[i];

}
else{
px[i] = px[i-1]+cos(radians(angle[i]))*radiiX[i];
py[i] = py[i-1]+sin(radians(angle[i]))*radiiY[i];

//check collision of body
if (px[i] >= width-cellRadius[i]/2 || px[i] <= cellRadius[i]/2){
radiiX[i]*=-1;
cellRadius[i] = random(1, 40);
frequency[i]= random(-13, 13);

}
if (py[i] >= height-cellRadius[i]/2 || py[i] <= cellRadius[i]/2){
radiiY[i]*=-1;
cellRadius[i] = random(1, 40);
frequency[i]= random(-9, 9);

}
}
// draw puff
ellipse(px[i], py[i], cellRadius[i], cellRadius[i]);
// set speed of body
angle[i]+=frequency[i];

}

// set velocity of head
headX+=speedX;
headY+=speedY;

//check boundary collision of head
if (headX >= width-cellRadius[0]/2 || headX <=cellRadius[0]/2){
speedX*=-1;

}
if (headY >= height-cellRadius[0]/2 || headY <= cellRadius[0]/2){
speedY*=-1;

}
}

As always, there are interesting ways to mess with some of the settings in this sketch to get
dramatically different results. I utilized Processing’s random() function a lot throughout
the example. You might remember that the function has two forms and can take either
one or two arguments. The single-argument function generates a random float value
between 0 and the value of the argument. The double-argument version of the function
generates a random number between the two argument values. Try messing with these
numbers to see what happens. Throughout the book, you’ll also look at a bunch of other
interesting trig experiments, but much more slowly and in detail. There is also a section on
trigonometry in Appendix B of the book.

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

138

617xCH04.qxd 2/27/07 11:02 AM Page 138

Figure 4-13. Puff

Interactivity
People take for granted that when a mouse or other pointing device is connected to their
computer, the computer will respond to all their wants and desires—or at least clicks.
Obviously, the computer needs a little more motivation than that. Mouse presses, releases,
hovers, enters, exits, moves, and drags are all loosely classified as mouse events, which can
be further classified more generally as simply events. Event handling is the basis of inter-
activity. Events can be mouse behavior, but they can also be window events (resizing a win-
dow), keyboard events (pressing a key), menu events (selecting from a pull-down menu),
or focus events (selecting a dialog window, palette, or text field as the active area, which
usually then accepts additional input such as filling in a text field with a word). Essentially,
any input or state change that the computer can detect can be processed as an event.
There are two main aspects to interactivity or working with events: event detection and
the event handling.

Event detection

Processing and Java have a built-in low-level event detection mechanism, which is a good
thing. If they didn’t, we would be forced to create an endless event loop, constantly check-
ing to see if events were occurring. This approach, called polling, is complicated and eats
up CPU cycles (CPU processing time). Part of the reason it is potentially confusing deals
with the very nature of how the computer works. A single-processor machine (with one
CPU) ultimately needs to handle one operation or process at a time. The CPU might be

COMPUTER GRAPHICS, THE FUN, EASY WAY

139

4

617xCH04.qxd 2/27/07 11:02 AM Page 139

able to handle billions of operations per second, but each process is still distinct. The illu-
sion that a single computer processor is handling simultaneous events is a function of our
relatively slow eyes and their inability to see the tiny delays.

Event handling

Returning to Processing and Java’s event mechanism, if we don’t need to create our own
loop to detect events, how is it done? Java’s runtime environment, the Java Virtual
Machine (JVM), takes care of it for us. In addition, there is an Event class that encapsulates
event properties and methods. When an event occurs, the Event class detects it and in a
sense broadcasts it throughout the program. How we receive the broadcast and what we
do with it is mostly what we have to worry about. This efficient system makes event han-
dling relatively easy in Java and, as you might suspect, even easier in Processing. Here’s a
simple interactive example in which you can click the screen to randomize the sketch. The
event detection code in the example happens within the if statement in the draw() func-
tion, checking the mousePressed condition. When the mouse is pressed, the condition
evaluates to true and the setRandomStyle() function is called.

// click to randomize
float x, y, squareSize;
color bgColor, strokeColor, fillColor;
float strokeWt;
void setup(){
size(400, 400);
rectMode(CENTER);
x = width/2;
y = height/2;
setRandomStyle();
frameRate(30);

}
void draw(){
background(bgColor);
strokeWeight(strokeWt);
stroke(strokeColor);
fill(fillColor);
rect(x, y, squareSize, squareSize);
if (mousePressed){
setRandomStyle();

}
}
void setRandomStyle(){
bgColor = color(random(255), random(255), random(255));
strokeColor = color(random(255), random(255), random(255));
fillColor = color(random(255), random(255), random(255));
strokeWt = random(5, 100);
squareSize = random(10, 300);

}

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

140

617xCH04.qxd 2/27/07 11:02 AM Page 140

Events will be covered and implemented much more in future chapters. If you’d like to
play with another more elaborate interactive example now, download the Tetherball
sketch from the code download area on the friends of ED website (www.friendsofed.com/).
The sketch includes a fun springing effect, allowing you to drag a bouncy tetherball-like
object around the screen.

Summary
If Chapter 3 was a crash course in coding, this chapter has been a crash course in graphics
programming. I discussed some general theory as well as a few application areas in the
dynamic field of computer graphics. Taking an image apart and looking under the hood at
some low-level graphics processing, you examined the anatomy of computer images down
to the pixel level, as well as some of the underlying mathematical and procedural models
utilized in their creation. You tackled some of the math theory and equations commonly
used in graphics programming, and hopefully you got a sense of the expressive power and
creative potential of some of these relatively simple equations. Finally, you learned a little
about how interactivity works in Java and Processing. Most of the things covered in this
chapter will be revisited throughout the book and expanded upon, so please don’t stress
out if you found this chapter overwhelming. I designed it as a general primer, and I realize
that it contains a lot of technical information—not to mention some scary math. I suspect
that some readers will want to periodically come back to this chapter, especially those
totally new to computer graphics; others might want to review some of the equations or
code examples in Appendix B. In the next chapter, you’ll explore the Processing language
and environment in detail.

COMPUTER GRAPHICS, THE FUN, EASY WAY

141

4

617xCH04.qxd 2/27/07 11:02 AM Page 141

617xCH05.qxd 2/27/07 10:38 AM Page 142

5 THE PROCESSING ENVIRONMENT

617xCH05.qxd 2/27/07 10:38 AM Page 143

Processing, besides being a language of sorts, is an integrated development environment
(IDE)—an IDE created by artists for artists. The Processing development environment is
simple to learn and use, and doesn’t add to the complexity of learning to program, as with
many other IDEs. In fact, the Processing IDE really does substantially simplify the process of
coding, even for absolute beginners. Even Flash, which is another very popular IDE of sorts,
also geared toward artists, has a steep learning curve, and its complexity can get in the way
on pure coding projects. In contrast, the Processing IDE has a well-designed interface and
core functionality that allows you to work efficiently; it’s a huge improvement over work-
ing in your old text editor.

Processing is also a language-specific IDE—a Java IDE—but as you’ll soon see, a pretty
unique one. Processing’s seeming simplicity is deceptive, and in one very significant way,
Processing goes further than most other IDEs. Processing has its own built-in procedural
programming language that enables coders to write Java graphics programs (sketches in
Processing speak) without the complexity or rigid object-oriented structure normally
required to write Java. In addition, Processing has three modes of working, allowing
coders, as they increase their programming literacy, to move from Processing’s simplified
procedural approach, to a hybrid approach that uses some more-advanced programming
constructs, to ultimately working in pure Java—all in the same IDE. This multimode capa-
bility makes Processing a great environment in which to learn graphics programming, and
it’s one of the reasons that it’s being included in more and more digital arts curricula at
schools around the world.

In this chapter, I’ll show you how the IDE works, walk you through the features of the envi-
ronment, and introduce you to various concepts that are useful to know before you get
started.

How it works
When you double-click the Processing icon, the Processing environment opens up, which
as mentioned is a Java program—technically a Java application. Java applications run
through a Java interpreter, or Java Virtual Machine (JVM), installed on your computer. The
JVM was either installed with your operating system, as with OS X, or when you installed
Processing (or Java separately), on other platforms. The virtual machine is part of Java’s
runtime environment, commonly referred to as the JRE. Java also has a software
development kit, or JDK. The JRE includes the JVM, Java’s core classes, and some support-
ing files. The JDK includes everything in the JRE, plus a compiler and some additional tools
and files. The JVM installed on your system was built for your specific operating system
and translates or interprets between your compiled Java programs and your specific oper-
ating system (OS). What’s cool, or at least efficient, about this approach is that, theoreti-
cally, the same code you write on a Mac will run on a Linux or Windows system, with each
of the virtual machines on the different platforms doing the translation at runtime. I wrote
“theoretically” because there are some cross-platform display issues, but it essentially
works. This cross-platform functionality is one of Java’s strengths, allowing Java to be used
across different operating systems, as well as on the Web and in other devices—all that is
required is a JVM.

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

144

617xCH05.qxd 2/27/07 10:38 AM Page 144

Returning to Processing—your launched Processing program is being run by the built-in
JVM on your computer as a regular Java application. Processing sketches, however, are
written within the Processing environment, or from within the running Java application.
How can the sketches you write be compiled and then launched by Java if Java is already
being used to run the Processing application? This is a good question (if I do say so
myself). If you look within the Processing application folder, you’ll notice something called
jikes (see Figure 5-1).

Figure 5-1. Screen capture of the Processing application folder

This is not an exclamation, as in “Holy jikes!” but rather an open source, free Java compiler
from IBM. Compilers take the higher-level code we humans write and convert it to a
lower-level language that machines like. In some languages, like C and C++, compiling
converts your program code to a very low-level machine code that is specific to your oper-
ating system. So compiling C code on a Mac yields different machine code than compiling
the same code on Windows. However, in Java and Processing, the compiled Java code,
called bytecode, will be the same on any platform; and it is the interpreter, or JVM, that is
responsible for translating the bytecode for your specific operating system. If you want to
learn a little more about jikes, check out http://jikes.sourceforge.net/. In the stan-
dard JDK from Sun is another complier, javac, which is also free to use, but not open
source.

When you launch the Processing application, which already comes compiled, it’s executed,
as I stated before, by the JVM installed on your computer. Your Processing sketches, which
you write from within the Processing environment, are compiled into Java bytecode (the
class files that the JVM can read) by jikes when you run your sketch. Running your sketches
causes the Processing application to open a new display window, which is a relatively

THE PROCESSING ENVIRONMENT

145

5

617xCH05.qxd 2/27/07 10:38 AM Page 145

http://jikes.sourceforge.net/

simple thing to do, and executes your compiled sketch code within the new display win-
dow, all by the same virtual machine. From the virtual machine’s perspective, your sketch
is just another process in the larger running program.

Tour de Processing
Figure 5-2 shows most of the Processing application interface. I didn’t include/expand the
top menu bar, which I’ll cover shortly. You’ll notice, at first glance, that the interface is
pretty simple, without extra dialogs, panels, inspectors, and the like cluttering up the envi-
ronment. However, the information you need is visible and accessible. Additionally, the
environment has an intuitive, non-techie look and feel, and doesn’t seem to have a steep
learning curve. As you roll over buttons, you get instant feedback about what they do, in
plain simple language (Run, Stop, New, etc.).

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

146

Figure 5-2. Screen capture of the Processing application interface

617xCH05.qxd 2/27/07 10:38 AM Page 146

The Processing window is divided into horizontal bands of varying height. I’ll deal with
each, from the bottom up.

The line number, at the very bottom of the window, shows you what line of code you are
currently working on, based on your cursor position.

The text area gives you verbose feedback about bugs in your code. It can be scary and
frustrating to new coders to see all these errors come up in the text area when they first
begin coding; rest assured, it happens to all of us. New coders often struggle to even find
the errors in their code, and it can seem impossible that a typo or logic error could still
possibly exist in code you’ve painstakingly gone through numerous times. The errors will
likely also seem annoyingly cryptic, but over time you’ll learn to understand the messages
and more quickly track down your bugs. However, there are times when even experienced
coders struggle to eradicate bugs. I usually find taking a break helps (as well as screaming
obscenities at the top of my lungs). Eventually, you’ll appreciate these verbose error mes-
sages and see how valuable they are in the debugging process. Processing also includes
two commands, print() and println(), that allow you to output information about your
sketch to the text area.

The message area gives you quick feedback during saving and exporting, and tells you in
plain, simple language about errors in your code.

The text editor is where you write your sketch code; it’s essentially your old text editor. If
you play with it, you’ll notice that there are clear feedback color cues, showing you what
line your cursor is on, what text is selected, and if a word you typed is a legal keyword in
the language.

The tabs show you what files you are working with. Tabs are really handy when your sketch
requires multiple files. At the right side of the tabs area is a right-facing arrow button.
Pressing this button opens a pop-up menu that allows you to create and manage your
tabs. When you open an existing sketch in Processing, any Java or PDE files in your sketch
directory will be automatically put into the tabs layout. The benefit of this will become
clearer when you begin to work with external functions and classes. By default, there will
always be at least one tab open, with its name at the bottom of the tab pop-up menu. This
tab will be your current main sketch PDE file (it’s called a PDE file because .pde is just the
suffix that Processing sketches use—it stands for “Processing development environment”).
As more tabs are created, you’ll see the new tab names at the bottom of the tabs pop-up
menu as well. You can select one of these names by clicking on it to give the tab focus
(make it the active window) in the Processing project window. When you click on the tabs
arrow button, the pop-up menu allows you to do the following:

Create a new tab

Rename a tab

Delete a tab

Hide/unhide a tab

Move focus to the previous/next tab

THE PROCESSING ENVIRONMENT

147

5

617xCH05.qxd 2/27/07 10:38 AM Page 147

When you create a new tab, you’ll be prompted to give it a name. Processing requires PDE
and Java file names to begin with a letter or underscore and contain no spaces. You may
use numbers in the name after the initial character, and names should be no more than 64
characters in length. If you try to name a PDE or Java file using an illegal character,
Processing will rename your file automatically, converting the illegal character to an
underscore. For example, the name function 1 will be renamed function_1. In addition,
you have the option of adding a .pde or .java suffix. If no suffix is added, Processing
assumes the new file is of type PDE. You won’t see the .pde suffix displayed in the tabs, but
if you look in your project directory, you’ll see it there. If you specify .java as a suffix, then
the file should be a standard Java file, and you should see the .java suffix in the tab;
although the suffix doesn’t come up at the bottom of the tabs pop-up menu.

Any other suffix you add will be removed and appended to the root of the name, and the
file will be of type PDE. For example, if you accidentally try to save your sketch with the
name newfilename.ppe, the full file name will be converted to newfilename_ppe.pde.
Again, in the tab, you’ll only see the newfilename_ppe part. Finally, if you hide a tab, it
does more than just temporarily change the tab’s visibility. When you run or export your
project, if a tab is hidden, then the file associated with the tab will not be compiled or
included in the applet subdirectory. The Hide function is a convenient way to ensure that
classes and functions not being used in your final sketch do not unnecessarily bloat your
program when you compile. If you accidentally hide a tab, but still reference it in your
code, the compiler will give you an error—either “No accessible method,” for a missing
function; or “Type . . . was not found,” for a missing class. If you look in your sketch direc-
tory (see Figure 5-3), you’ll notice that hidden files get appended with .x after the .pde or
.java suffix.

Figure 5-3. Screen capture of a Processing sketch directory

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

148

617xCH05.qxd 2/27/07 10:38 AM Page 148

The toolbar conveniently contains Processing’s six main control buttons. These buttons
also have equivalent commands in the menu bar, which I’ll cover a bit later. These are not
the only commands in the Processing application, but they are probably the most often
used ones. From left to right, these buttons are Run, Stop, New, Open, Save, and Export.
The following list describes the functions of each (when applicable, I’ve included the Mac
and Windows keyboard shortcuts for each in parentheses after the button name):

Run (Cmd+R on OS X; Ctrl+R on Windows): Compiles your code, launches a display
window, and executes your sketch within this window.

Stop: Terminates your running program, but leaves the display window open.

New (Cmd+N on OS X; Ctrl+N on Windows): Creates a new sketch within a new
project directory. Both the directory and the PDE file (Processing’s own file format)
will share this name. By default, new sketches are saved with the root sketch_, the
date (in the form yy/mm/dd), and a secondary character beginning with the next
alphabetically available character. For example, my current sketch is named
sketch_051024a. If I save this sketch using this name, and then create a new sketch,
that sketch will be named sketch_051024b; the next one will be sketch_051024c.
Be aware that the default preference state in Processing is to delete empty
sketches upon quit. Therefore, if you do not enter any code into the text editor
window, you will not be able to actually save the project to disk—which I guess
makes sense since there’s nothing to save in the file. If you want to change this set-
ting, you can do so in the preferences, found under the Processing menu in OS X
and the File menu in Windows.

Open (Cmd+O on OS X; Ctrl+O on Windows): Displays a menu that lets you choose
between opening a sketch residing on your local hard drive or across a network,
through a standard file navigator; selecting from a list of available sketches, resid-
ing within your sketchbook location directory; or loading an example sketch that
came bundled with the Processing software, from the examples directory residing
within the main Processing directory. You can set the location of your sketchbook,
where the sketches you create will reside, through the preferences—again found
under the Processing menu in OS X and the File menu in Windows.

Save (Cmd+S on OS X; Ctrl+S on Windows): Writes the current sketch to disk. You
will not be prompted to confirm that you are writing over the previous state. If you
want to keep your original sketch and also save the current one, you should use
Save As, found under File menu. Again, please note that Processing requires sketch
names to begin with a letter or underscore and contain no spaces. You may use
numbers in the sketch name after the initial character, and sketch names should be
no more than 64 characters in length. If you try to name a Processing sketch using
an illegal character, Processing will bark at you and rename your file, converting the
illegal character to an underscore.

THE PROCESSING ENVIRONMENT

149

5

617xCH05.qxd 2/27/07 10:38 AM Page 149

Export (Cmd+E on OS X; Ctrl+E on Windows): Creates a Java applet of your sketch
and places it within an “applet” subdirectory, inside your current sketch directory.
Once this subdirectory is created, Processing opens it up for you, displaying five
files, which I’ll discuss in a moment. Applets are Java programs that can be viewed
in any Java-enabled browser, which includes most modern browsers. These
browsers have a built-in Java interpreter, more commonly known as the JVM. Java
programs can run as applets or as stand-alone applications on the desktop.
However, the source code is not identical for applets and applications, so it does
take a little work to convert an applet to an application and visa versa—that is, if
you’re not using Processing. Processing includes the ability to export both Java
applets and stand-alone Java applications.

The applet subdirectory contains these five files:

index.html: The HTML page you load into the browser, with the embedded
applet.

yourfilename.pde: Your original processing file.

yourfilename.jar: A JAR (Java Archive) file, which is downloaded and run by
the browser’s virtual machine. It contains the Processing core classes, other cus-
tom classes, and any media files (images, fonts, etc.) residing within the “data”
subdirectory of your sketch directory. Since everything within the subdirectory
is packed into the JAR file when you export, you should remove unneeded data
from the subdirectory before exporting. If your sketch doesn’t use any external
media, you don’t need a data subdirectory.

yourfilename.java: A Java file created by Processing from the main sketch
(PDE) file. Java files are compiled by the JVM into bytecode (class files). These
class files get packed into the JAR file.

loading.gif: The artwork initially shown as your page loads; it’s replaced by the
applet when it’s loaded.

Finally, if you’re running Processing in OS X, there are three places in which you can alter
the Processing window structure (as shown in Figure 5-2). Some of these adjustments can
be made in Windows as well. You can drag the bar between the text editor and message
area up and down to resize the window panes. You can resize the entire Processing appli-
cation window by dragging the lower-right corner of the window. The “collapse panes”
buttons (OS X) work as follows: if the window is in its default state, showing both the text
editor and the message area, clicking the up arrow expands the message area while col-
lapsing the text editor, and the down arrow does the opposite.

File menu

This menu is pretty straightforward, and most of it should be self-explanatory. In Figure 5-4,
the Sketchbook submenus are exploded. Please note that in Windows, the Processing
menu is contained within the Processing application window, while in OS X, the menu sys-
tem is separate from the Processing application. Aside from appearances, the two menus
on the different platforms have identical functionality and command sets.

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

150

617xCH05.qxd 2/27/07 10:38 AM Page 150

Figure 5-4. Screen capture of Processing’s File ➤ Sketchbook submenus

The File menu contains the following eight commands:

New (Cmd+N on OS X; Ctrl+N on Windows): This has the same functionality as the
New button on the toolbar.

Sketchbook: The top of the Sketchbook submenu includes the Open command,
which has the same functionality as the Open button on the toolbar, discussed pre-
viously. Additional content within the Sketchbook submenu includes sketches
you’ve created, residing at your sketchbook location, specified in the Processing
preferences; and an Examples directory. The Sketchbook submenu checks for PDE
files, each enclosed within their own directory, within the specified Sketchbook
directory. The PDE file and its directory must have the same name. You can also
create additional outer directories (for organizational purposes) around your
related sketches. Processing’s Examples directory, which I’ll discuss in a moment, is
organized this way. PDE files not enclosed within a same-named directory will not
be visible from the Sketchbook submenu. You can still explicitly open them with
the Open command, but Processing will alert you that a directory is required and
will actually create one and move your file into it when you click OK—which is
pretty cool. By default, Processing generates this required directory and naming
structure whenever you create a new sketch, so you only need to mess with this
stuff if you really want to. The Examples directory, at the bottom of the Sketchbook
submenu, is installed with Processing, in the same directory as the Processing appli-
cation. It is possible to expand the Examples directory simply by placing your own
sketch examples within it.

THE PROCESSING ENVIRONMENT

151

5

617xCH05.qxd 2/27/07 10:38 AM Page 151

Save (Cmd+S on OS X; Ctrl+S on Windows): This has the same functionality as the
Save button on the toolbar.

Save As (Cmd+Shift+S on OS X; Ctrl+Shift+S on Windows): This is similar to the
Save function, except that it prompts you for a new sketch name, allowing you to
save the current changed version of your sketch without overwriting the original.

Export (Cmd+E on OS X; Ctrl+E on Windows): This has the same functionality as
the Export button on the toolbar.

Export Application (Cmd+Shift+E on OS X; Ctrl+Shift+E on Windows): This allows
you to export your sketch as a stand-alone, platform-specific executable applica-
tion. Similar to the Export function, Export Application generates an entire directory
structure (in this case, actually three separate directories) with all the required files
to launch an application under Linux, OS X, and Windows. This command also
opens the current sketch directory, revealing the three newly created application
directories (application.linux, application.macosx, and application.windows).

Page Setup (Cmd+Shift+P on OS X; Ctrl+Shift+P on Windows): This opens the stan-
dard Page Setup dialog box to specify printing options. This function has some
known bugs. Please check http://dev.processing.org/bugs/show_bug.cgi?id=435
for bug updates.

Print (Cmd+P on OS X; Ctrl+P on Windows): This prints all the code within the main
tab or the currently selected tab. This function has some known bugs. Please
check http://dev.processing.org/bugs/show_bug.cgi?id=27 and http://dev.
processing.org/bugs/show_bug.cgi?id=28 for bug updates, as well as the
Processing discourse board, at http://processing.org/discourse/yabb_beta/
YaBB.cgi, for the most current information about Processing’s printing capabilities.

Edit menu

Figure 5-5 shows a screenshot of Processing’s Edit menu.

The Edit menu contains the following eight commands:

Undo (Cmd+Z on OS X; Ctrl+Z on Windows): Cancels the previous action, including
any addition or deletion of code within the text editor. To reverse Undo, select Redo.

Redo (Cmd+Y on OS X; Ctrl+Y on Windows): Reverses the last Undo command,
restoring your sketch to the state immediately prior to selecting Undo.

Figure 5-5. Screen capture of
Processing’s Edit menu

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

152

617xCH05.qxd 2/27/07 10:38 AM Page 152

http://dev.processing.org/bugs/show_bug.cgi?id=435
http://dev.processing.org/bugs/show_bug.cgi?id=27
http://dev
http://processing.org/discourse/yabb_beta/

Cut (Cmd+X on OS X; Ctrl+X on Windows): Copies the selected text into clipboard
memory and removes the selected text from the text editor.

Copy (Cmd+C on OS X; Ctrl+C on Windows): Copies the selected text into clip-
board memory and leaves the copied text as is within the text editor.

Paste (Cmd+V on OS X; Ctrl+V on Windows): Adds the contents of the clipboard
memory to the text editor window at the cursor’s position, replacing any selected
text.

Select All (Cmd+A on OS X; Ctrl+A on Windows): Highlights all the text within the
text editor window.

Find (Cmd+F on OS X; Ctrl+F on Windows): Allows you to find and replace key-
words within the text editor window. You can replace individual words or all
instances of words, and optionally specify whether searches should be case sensi-
tive or not.

Find Next (Cmd+G on OS X; Ctrl+G on Windows): Allows quick and persistent
searches of the last keyword you entered into the Find field. For example, if I
attempt to find the keyword “ball” with the Find command, later on I can simply
select Find Next, and the next occurrence of the word “ball” will be highlighted in
the text editor. The keyword used by Find Next does not persist between Processing
sessions—so if you quit and restart Processing, you’ll lose your keyword in the Find
command field.

Sketch menu

Figure 5-6 shows a screenshot of Processing’s Sketch menu.

Figure 5-6. Screen capture of Processing’s Sketch menu

THE PROCESSING ENVIRONMENT

153

5

617xCH05.qxd 2/27/07 10:38 AM Page 153

The Sketch menu contains the following six commands:

Run (Cmd+R on OS X; Ctrl+R on Windows): Has the same functionality as the Run
button on the toolbar.

Present (Cmd+Shift+R on OS X; Ctrl+Shift+R on Windows): Creates a full-screen
display of your executing sketch. The sketch window is centered against a neutral
background. You can stop the display by selecting the Stop command in the lower-
left corner of the screen, or by pressing the Esc key.

Stop: Stops a running sketch.

Import Library: Adds a required import statement to the top of your sketch, allow-
ing you to use the classes in the imported code library. The current core Processing
libraries (which can be selected from the Import Library drop-down menu) include
the following:

candy

dxf

javascript

net

opengl

pdf

serial

videos

xml

If you select Sketch ➤ Import Library ➤ opengl, then the following line of code is
added to the top of your sketch: import processing.opengl.*;. Using import
statements is standard practice in Java, for which related classes of code are
grouped in directories called packages. Packages allow you to organize code
libraries for reuse and distribution. They also provide a way of helping to ensure
that class names don’t collide or interfere with one another. For example, if I cre-
ate a class called Ball, and you create a class called Ball, and both of our classes
are within a common code library, Java won’t know which one to use. We can solve
this problem by putting each of our classes in a uniquely named package (direc-
tory) and then importing the package with the version of the Ball class we need.
Then, even if we use both Ball classes, as long as the class files reside in their own
distinctive packages, there will be no naming conflict.

Show Sketch Folder (Cmd+K on OS X; Ctrl+K on Windows): Opens up the directory
of your current sketch. Normally, your current sketch directory will reside within
your main sketchbook directory. If you remember, your main sketchbook location
is specified in the preferences.

Add File: Opens a file navigator, allowing you to load an image, font, or other media
into a data subdirectory within your sketch directory. If no data directory exists,
Processing will automatically create one for you.

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

154

617xCH05.qxd 2/27/07 10:38 AM Page 154

Tools menu

Figure 5-7 shows a screenshot of Processing’s Tools menu.

The Tools menu contains the following five commands:

Auto Format (Cmd+T on OS X; Ctrl+T on Windows): This command attempts to
format the code layout for optimal readability. Skipped lines, also referred to as
whitespace, are retained. Syntax errors, such as missing semicolons, are not cor-
rected. Auto Format was originally called “beautify,” which is the name of a similar
function in Processing’s forebear, Design By Numbers (DBN). Here is an example of
how Auto Format works. If I type the following code into the text editor and select
Auto Format:

void setup(){}void draw(){}

then the code will be reformatted to the following:

void setup(){
}
void draw(){
}

Create Font: One of the challenges of designing for the Web is the incompatibility
of system resources such as installed fonts, which will often be different from
machine to machine and across platforms. One solution is to use only a very lim-
ited set of fonts that can be assumed to be installed on most systems—such as
Arial, Times, and Sans. However, from a design perspective, this is pretty limiting.
Another solution is to bundle bitmap glyphs (actual raster graphics of each charac-
ter in a font family) with a project to allow the use of fonts that aren’t likely to be
installed on a user’s machine. The Create Font command does just this. The com-
mand opens the Create Font dialog box, which allows you to select any font
installed within your system (see Figure 5-8). This dialog includes the options Size,
Filename, Smooth (for anti-aliasing), and All Characters. The font generated is a copy
of an existing font in your system, created in the VLW font format and installed
within a data subdirectory in the current sketch directory. Similar to loading other
media into Processing, a data directory is automatically created, if one doesn’t
already exist. There are some memory concerns involved in creating fonts this way.
The larger the font size you specify, the more memory the font will use, as each
font includes the actual raster information needed to draw the individual charac-
ters; normally, fonts are created using vector data. In addition, the Smooth option
also requires a little more memory, as does the All Character option, which includes

Figure 5-7. Screen capture of
Processing’s Tools menu

THE PROCESSING ENVIRONMENT

155

5

617xCH05.qxd 2/27/07 10:38 AM Page 155

non-English characters, such as ü and Å. As an example, I generated a series of
fonts, based on the font AbadiMT-CondensedExtraBold, under OS X. At 48 points,
with no options selected, the font was 144 KB; with only the Smooth option
selected, it went up to 164 KB; and with the Smooth and All Character options
selected, it went up to 212 KB. At 12 points, with no options selected, it went down
to 24 KB.

Figure 5-8. Screen capture of Processing’s Create Font
dialog box

Color Picker: This is a simple color picker, showing you the HSB (hue, saturation,
brightness), RGB, and hexadecimal color values of the color selected (see Figure 5-9).

Figure 5-9. Screen capture of Processing’s Color Picker dialog

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

156

617xCH05.qxd 2/27/07 10:38 AM Page 156

Copy for Discourse: It is very common for Processing users, especially those cur-
rently stuck and/or confused (which happens to all of us), to paste code snippets
on the Processing discourse board. Unfortunately, the pasted results don’t always
look very good, as some of the formatting gets lost. Some of us with HTML back-
grounds simply try inserting HTML tags directly in our code, to fix the formatting—
to no avail. The Processing discourse board uses YaBB, a free, open source bulletin
board system. For security reasons, YaBB doesn’t allow the use of HTML tags in
posts. Thus, you’re forced to learn yet another proprietary tag system, called YaBB
Code (YaBBC) to fix your formatting. Or, you can simply select Copy for Discourse,
and Processing will write the YaBBC for you—cool indeed!

Here’s how it works: when you select Copy for Discourse, your sketch code is copied
to your computer’s clipboard and converted into YaBBC for the discourse board;
simply paste to the board to recreate your Processing sketch code. In reality, YaBBC
is pretty darn close to HTML, so it doesn’t take an experienced coder much time to
learn it—but why waste the brain cells? To learn more about YaBB/YaBBC, visit
www.yabbforum.com/community/YaBB.pl?action=help.

Archive Sketch: This command creates a ZIP archive of the current sketch, prompt-
ing you with a Save dialog to choose a location to save the archive.

Help menu

Figure 5-10 shows a screenshot of Processing’s Help menu.

Figure 5-10. Screen capture of Processing’s
Help menu

The Help menu contains the following:

Getting Started: This launches your default web browser, loading information on the
Processing environment. This functionality does not require an Internet connec-
tion, as the information is stored locally within the Processing application directory.
The information is divided into three sections. The first, Overview, covers the
Processing development environment, Processing’s three programming modes, and
the different rendering modes. The second section, Platforms, lists the supported
platforms and some platform-specific information (both the good news and the
less-than-good news). One of the nicest aspects of the Processing community is the
transparency and lack of marketing hype when it comes to what Processing can
(currently) do and not do. The last section, Export, provides information about
exporting your sketches as both applets and applications. For the very latest infor-
mation, refer to http://processing.org/reference/environment/index.html.

THE PROCESSING ENVIRONMENT

157

5

617xCH05.qxd 2/27/07 10:38 AM Page 157

http://processing.org/reference/environment/index.html

Troubleshooting: This page covers many of the common “Help me, something’s not
right with the Processing universe!” concerns voiced on the discourse board; you
can think of this page as the triage FAQ.

Reference: This provides you with reference to the entire Processing language API,
which is stored locally on your hard drive. This is the place to go to learn about
specific commands in the Processing language. Please note that this page opens to
an abridged language reference. You’ll need to select the Extended option to see
the entire language. For the very latest information, refer to http://processing.
org/reference/index.html.

Find in Reference (Cmd+Shift+F on OS X; Ctrl+Shift+F on Windows): Select a word
in your sketch and then select Find in Reference. If the word exists in the Processing
API, the relevant reference information will be opened in your default web
browser.

Frequently Asked Questions: This command opens a list of questions and answers to
some common Processing issues. The online version is at http://processing.org/
faq.html.

Visit Processing.org (Cmd+5 on OS X; Ctrl+5 on Windows): This command launches
your default web browser and loads http://processing.org/.

Programming modes
Processing supports three different modes of coding, allowing users with different skill and
experience levels to work most efficiently and comfortably, all within the same environ-
ment. It is even possible to mix these different modes within the same project.

Basic mode

In basic mode, users simply type individual lines of commands sequentially into the text
editor window, without the added complexity of more complex structures, such as func-
tions or classes. This is an excellent mode for brand new coders to learn about program-
ming fundamentals—such as basic syntax, coordinates, variables, and loops—and also to
get more familiar with the Processing language and environment. The following code is
structured in basic mode and generates a simple tan circle, with a black stroke on a laven-
der background:

size(200, 200);
background(130, 130, 240);
stroke(0);
fill(200, 150, 101);
int x = 100;
int y = 100;
int w = 140;
int h = 140;
ellipse(x, y, w, h);

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

158

617xCH05.qxd 2/27/07 10:38 AM Page 158

http://processing
http://processing.org/
http://processing.org/

Continuous mode

In continuous mode, users build upon what they’ve learned in basic mode, with the edition
of code structures called functions and classes. As you recall, functions are the main build-
ing blocks used in procedural programming, and are simply groupings of lines of code that
execute only when they are explicitly called. Classes are much more complicated struc-
tures than functions, and are utilized in OOP. I’ll cover classes in detail in Chapter 8. In
basic mode, code is executed linearly (line by line). Functions and classes, on the other
hand, allow code to be executed nonlinearly. These structures are only executed when
they are explicitly called, not when they are initially read into memory.

In continuous mode, two basic Processing functions are provided, which allow you to add
your own custom structures (functions or classes). The two functions are as follows:

void setup(){
}

void draw(){
}

The setup() function is called only once, at the start of the program. This is the place
where you normally initialize variables that will be used later in the program. Adding the
setup() function to your sketch allows you to add your own additional custom functions
and classes. The draw() function adds animation capabilities to your sketch and has a
built-in loop, more accurately called a thread or timer. By default, adding the draw() func-
tion to your sketch causes any code between the curly braces of this structure to continu-
ously execute. There are a number of ways of controlling this behavior, which I’ll cover in
Chapter 11. You can also read more about Processing’s draw() function in Appendix A.

The following sketch example is built in continuous mode and uses two custom functions,
fadeScreen() and paintOutlines(). The sketch is a little drawing program. I’ve added
comments throughout the sketch to explain the program flow, although I don’t necessar-
ily expect you to fully grasp the code. The sketch allows you to draw by moving and also
dragging the mouse (holding down the mouse button as you move the mouse). A screen-
shot of the output of the sketch is shown in Figure 5-11.

/*
Drawing Shapes
Ira Greenberg, November 2, 2005
*/

//declare global variables
float radiusX, radiusY;

//controls rate of screen fade
int screenFadeValue = 20;

//controls maximum size of shape
int sizeMax = 30;

THE PROCESSING ENVIRONMENT

159

5

617xCH05.qxd 2/27/07 10:38 AM Page 159

//setup structure runs once
void setup(){
size(400, 400);
background(130, 130, 240);
noFill();

}

/*draw function begins loop
required by mouseMoved and mouseDragged
functions later in the code*/
void draw(){
}

/*custom function incrementally
paints the screen–called when
the mouse is pressed*/
void fadeScreen(){
fill(130, 130, 240, screenFadeValue);
noStroke();
rect(0, 0, width, height);

}

/*custom function paints shapes,
boolean argument 'isDragged' controls
shape style*/
void paintShapes(boolean isDragged){
if (isDragged){
noStroke();
ellipse(mouseX, mouseY, radiusX, radiusY);

}
else {
noFill();
stroke(random(255));
rect(mouseX, mouseY, random(sizeMax), random(sizeMax));

}
}

/* set shape size and
fill color on press*/
void mousePressed(){
// call custom function to clear screen
fadeScreen();
radiusX = random(sizeMax);
radiusY = random(sizeMax);
// set fill color for drawing
fill(random(255), random(255), random(255), 100);

}

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

160

617xCH05.qxd 2/27/07 10:38 AM Page 160

// paint stroked rectangles
void mouseMoved(){
// call custom function
paintShapes(false);

}

// paint filled ellipses
void mouseDragged(){
// call custom function
paintShapes(true);

}

Figure 5-11. Screen capture of the Drawing Shapes sketch

THE PROCESSING ENVIRONMENT

161

5

617xCH05.qxd 2/27/07 10:38 AM Page 161

Java mode

This mode allows you to work in pure Java, from directly within the Processing text editor.
Java mode is extremely flexible, giving you access to the entire Java API. However, this
mode is for advanced users who already have a working knowledge of Java. I’ll discuss
Java mode in more detail in Chapter 14.

Rendering modes
Processing, as of this writing, has three rendering modes: JAVA2D, P3D, and OPENGL. The
mode can be explicitly set as an optional argument within Processing’s size() method. For
example, to use the P3D rendering mode, you would write: size(200, 200, P3D);. The
rendering modes control how visual data is rendered, or converted to pixels on the screen.
In addition to these three modes, there is a fourth mode, called P2D, that will likely be
functional in the near future (it very well may be active by the time you’re reading this).
P2D is an alternative renderer (obviously for 2D rendering) to JAVA2D.

JAVA2D mode

JAVA2D uses Java’s 2D graphics library for creating 2D rendering. According to Sun, Java 2D
is “a set of classes for advanced 2D graphics and imaging.” The library contains over 100
classes organized into packages according to related functionality (e.g., imaging, drawing,
and color). JAVA2D is the default rendering mode in Processing. Thus, when no rendering
argument is explicitly specified within the size() function, JAVA2D is used. Coders nor-
mally don’t bother adding the JAVA2D argument to the size() call for this reason.

Here is a JAVA2D example that generates a polygon, in this case an octagon. You can
change the value of the sides variable to generate other types of polygons. All the exam-
ples in the book thus far have been in JAVA2D mode. Figure 5-12 shows the output of the
example.

/*
Polygon
Ira Greenberg, November 3, 2005
*/

// declare variables
int sides = 8; // change to create other polys
float angle;
float radius = 100;
float px, py, cx, cy;
float[]ptsX= new float[sides];
float[]ptsY= new float[sides];

//initialize sketch
void setup(){
size(200, 200, JAVA2D);

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

162

617xCH05.qxd 2/27/07 10:38 AM Page 162

cx = width/2;
cy = height/2;
background(255);

// collect points to plot shape
for (int i = 0; i< sides; i++){
px = cx+cos(radians(angle))*radius;
py = cy+sin(radians(angle))*radius;
ptsX[i] = px;
ptsY[i] = py;
angle+=360/sides;

}
// call custom function
drawShape();

}

//custom function plots a polygon
void drawShape(){
noFill();
for (int i = 0; i< sides; i++){
// if last point, connect to initial point to close shape
if (i == sides-1){
line(ptsX[i], ptsY[i], ptsX[0], ptsY[0]);

}
else {
line(ptsX[i], ptsY[i], ptsX[i+1], ptsY[i+1]);

}
}

}

Figure 5-12. Screen capture of the Polygon sketch

THE PROCESSING ENVIRONMENT

163

5

617xCH05.qxd 2/27/07 10:38 AM Page 163

P3D mode

P3D mode gives you access to a custom 3D engine in Processing. A 3D engine is just soft-
ware (no oil or gears) that allows you to deal with a z-axis, in addition to the standard
x- and y-axes. In 3D, geometry is calculated in three dimensions, which is just a simple
math problem for a computer. However, the darn computer screen is only 2D, so the
engine has to translate the 3D data back to a 2D screen projection. In the real world, we
perceive images decreasing in size as they move farther away from us. We can simulate this
virtually (both with traditional materials and through software) by using a system of
perspective. I’m sure some of you remember doing simple two and three-point perspec-
tive exercises in an intro art class. Perspective works similarly in P3D mode, but without the
need to grab a ruler or get your hands dirty. 3D-to-2D projections on the computer are
generally tied to the concept of a virtual camera, which is capable of very wide-angle views
(in which things are large, close, and often distorted—think fish-eye lens) as well as very
distant views.

Besides virtual camera capabilities, P3D has virtual lights and simple texture mapping
(image mapping), allowing an image to be attached to the points (vertices) of 3D geome-
try. This capability, called u-v mapping, allows image maps on the geometry to move with
the form. P3D mode is built for speed, a little at the expense of rendering quality.
However, P3D mode is a great and relatively easy way to begin experimenting with coding
3D with a minimal amount of code and complexity. The following short example rotates
three concentric polyhedra (polyhedra are basically 3D polygons) and also responds to
both the x and y mouse positions. Figure 5-13 shows the output of the sketch.

/*
Rotating Polyhedra
Ira Greenberg, November 3, 2005
*/

//declare variables
float rotY;
float rotX;

void setup(){
size (400, 400, P3D);
frameRate(30);

}
void draw(){
background(255);
/* ensures shapes are drawn at the
center of the display window. In addition,
mouse y postion controls the distance
the shapes are drawn along the z-axis.
As the shapes moves further into space,
they will diminish in size*/
translate(width/2, height/2, mouseY-100);

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

164

617xCH05.qxd 2/27/07 10:38 AM Page 164

// rotate around Y and X axes
rotateY(rotY+=.05);
rotateX(rotX+=.1);
// mouse x position controls level
// of detail of sphere geometry
sphereDetail(mouseX/32);
fill(0);
stroke(255);
//draw sphere
sphere(30);
fill(50, 50, 50, 175);
noStroke();
//draw box
box(80);
noFill();
sphereDetail(8);
stroke(0);
// draw larger outer sphere
sphere(80);

}

Figure 5-13. Screen capture of the Rotating Polyhedra sketch

THE PROCESSING ENVIRONMENT

165

5

617xCH05.qxd 2/27/07 10:38 AM Page 165

OPENGL mode

P3D mode utilizes a software-based 3D engine, meaning that all the 3D calculations are
handled by Java, just as normal 2D calculations are; the 3D math is crunched and con-
verted to 2D data before being sent to the graphics hardware to draw the image to the
screen. The hardware isn’t even aware the data began life as 3D geometry. However, your
graphics hardware has the capability to crunch numbers, and in fact can do it much faster
than Java. The trick, though, is in communicating directly with the graphics hardware to
speed things up.

OpenGL is a platform-independent library that functions as an interface between your
code and the graphics hardware. OpenGL was developed in 1992 by Silicon Graphics, but
is now overseen by a large group of organizations, under the heading OpenGL
Architecture Review Board. Designed as a set of specifications, OpenGL is platform agnos-
tic and can be utilized by practically all systems that have OpenGL-accelerated hardware.
Processing and Java interface with OpenGL through JOGL. JOGL, developed by the Game
Technology Group at Sun, is technically considered a Java binding (as in “the ties that
bind”) to OpenGL, and gives Processing sketches that use the OPENGL rendering mode the
ability to render more stuff faster and at larger sizes. However, to benefit from this mode,
you need an OpenGL-accelerated graphics card. Fortunately, most modern machines have
one. To learn more about OpenGL, see www.opengl.org/; and to learn more about JOGL,
see https://jogl.dev.java.net/.

Utilizing the OpenGL library couldn’t be simpler in Processing. Simply select Sketch ➤
Import Library ➤ opengl, which adds an import line to your sketch, and then add the
OPENGL string as a third argument to the size function call: size (800, 600, OPENGL);. The
following 3D example (shown in Figure 5-14) can be run in either P3D or OPENGL render-
ing mode; simply change the third size argument from OPENGL to P3D. It is worth trying
both 3D modes to get a sense of how hardware acceleration dramatically impacts per-
formance. One word of caution to beginners though: 3D programming is difficult—even
Processing’s greatly simplified version. If you’re feeling overwhelmed from information
overload, don’t worry about the 3D renderers. I won’t cover them until the last two chap-
ters in the book, at which time you’ll be ready. I do recommend running the example to
see what it does. It’s a little complicated, though, so unless you have prior coding experi-
ence, I wouldn’t spend too much time dwelling on it. 3D can be tough, but also pretty
cool.

/*
Space Junk
Ira Greenberg, November 4, 2005
*/

/*need to import opengl library to use OPENGL
rendering mode for hardware acceleration*/
import processing.opengl.*;

//used for oveall rotation
float ang;

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

166

617xCH05.qxd 2/27/07 10:38 AM Page 166

https://jogl.dev.java.net/

//cube count-lower/raise to test P3D/OPENGL performance
int limit = 600;

//array for all cubes
Cube[]cubes = new Cube[limit];

void setup(){
//try substituting P3D for OPENGL
//argument to test performance
size(800, 550, OPENGL);

//instantiate cubes, passing in random vals for size and postion
for (int i = 0; i< cubes.length; i++){
cubes[i] = new Cube(int(random(-20, 20)), int(random(-20, 20)), ➥

int(random(-20, 20)), int(random(-340, 340)), ➥

int(random(-340, 340)), int(random(-340, 340)));
}
frameRate(30);

}

void draw(){
background(0);
fill(200);

//set up some different colored lights
pointLight(51, 102, 255, 65, 60, 100);
pointLight(200, 40, 60, -65, -60, -150);

//raise overall light in scene
ambientLight(70, 70, 10);

/*center geometry in display window.
you can change 3rd argument ('0')
to move block group closer(+)/further(-)*/
translate(width/2, height/2, 150);

//rotate around y and x axes
rotateY(radians(ang));
rotateX(radians(ang));

//draw cubes
for (int i = 0; i< cubes.length; i++){
cubes[i].drawCube();

}
//used in rotate function calls above
ang++;

}

THE PROCESSING ENVIRONMENT

167

5

617xCH05.qxd 2/27/07 10:38 AM Page 167

//simple Cube class, based on Quads
class Cube {

//properties
int w, h, d;
int shiftX, shiftY, shiftZ;

//constructor
Cube(int w, int h, int d, int shiftX, int shiftY, int shiftZ){
this.w = w;
this.h = h;
this.d = d;
this.shiftX = shiftX;
this.shiftY = shiftY;
this.shiftZ = shiftZ;

}

/*main cube drawing method, which looks
more confusing than it really is. It's
just a bunch of rectangles drawn for
each cube face*/
void drawCube(){
beginShape(QUADS);
//front face
vertex(-w/2 + shiftX, -h/2 + shiftY, -d/2 + shiftZ);
vertex(w + shiftX, -h/2 + shiftY, -d/2 + shiftZ);
vertex(w + shiftX, h + shiftY, -d/2 + shiftZ);
vertex(-w/2 + shiftX, h + shiftY, -d/2 + shiftZ);

//back face
vertex(-w/2 + shiftX, -h/2 + shiftY, d + shiftZ);
vertex(w + shiftX, -h/2 + shiftY, d + shiftZ);
vertex(w + shiftX, h + shiftY, d + shiftZ);
vertex(-w/2 + shiftX, h + shiftY, d + shiftZ);

//left face
vertex(-w/2 + shiftX, -h/2 + shiftY, -d/2 + shiftZ);
vertex(-w/2 + shiftX, -h/2 + shiftY, d + shiftZ);
vertex(-w/2 + shiftX, h + shiftY, d + shiftZ);
vertex(-w/2 + shiftX, h + shiftY, -d/2 + shiftZ);

//right face
vertex(w + shiftX, -h/2 + shiftY, -d/2 + shiftZ);
vertex(w + shiftX, -h/2 + shiftY, d + shiftZ);
vertex(w + shiftX, h + shiftY, d + shiftZ);
vertex(w + shiftX, h + shiftY, -d/2 + shiftZ);

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

168

617xCH05.qxd 2/27/07 10:38 AM Page 168

//top face
vertex(-w/2 + shiftX, -h/2 + shiftY, -d/2 + shiftZ);
vertex(w + shiftX, -h/2 + shiftY, -d/2 + shiftZ);
vertex(w + shiftX, -h/2 + shiftY, d + shiftZ);
vertex(-w/2 + shiftX, -h/2 + shiftY, d + shiftZ);

//bottom face
vertex(-w/2 + shiftX, h + shiftY, -d/2 + shiftZ);
vertex(w + shiftX, h + shiftY, -d/2 + shiftZ);
vertex(w + shiftX, h + shiftY, d + shiftZ);
vertex(-w/2 + shiftX, h + shiftY, d + shiftZ);

endShape();

//add some rotation to each box for pizazz.
rotateY(radians(1));
rotateX(radians(1));
rotateZ(radians(1));

}
}

Figure 5-14. Screen capture of the Space Junk sketch

THE PROCESSING ENVIRONMENT

169

5

617xCH05.qxd 2/27/07 10:38 AM Page 169

Summary
This chapter has looked at the Processing environment in depth, and how its simple, clean,
highly functional interface provides an intuitive and friendly environment for new coders
and an efficient workspace for seasoned developers. Built on top of Java, Processing uti-
lizes a Java interpreter or virtual machine installed within your operating system as well as
within the browser. Offering three working paths, or programming modes (basic, continu-
ous, and Java), Processing supports multiple skill levels and learning styles, all within the
same environment; you can even combine these different approaches in the same sketch.
Finally, I covered Processing’s exciting 3D rendering options, including a look at a fast 3D
software engine and the OpenGL library. The next chapter will begin Part 2 of the book,
the tutorial-based section that will help you put the theory into practice.

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

170

617xCH05.qxd 2/27/07 10:38 AM Page 170

PART TWO PUTTING THEORY INTO
PRACTICE

I’ve been looking forward to writing this part of the book—this is the part where you
can focus less on programming theory and language details, and begin playing with this
fascinating medium—which is really what this book is all about. Please try not
to worry—if you haven’t quite mastered all the theory and memorized the entire
Processing API, I’ll be revisiting all this in the context of exploring fundamental
aesthetic principles. In the next few chapters, you’ll be using Processing and code as an
experimental, creative medium, not unlike how you would use more traditional mate-
rials. In addition, you’ll see how the code medium is distinctive, vis-à-vis other materials,
with its own underlying materiality, expressive potential, and aesthetic. This examina-
tion will naturally also include concepts of craft, process, and personal expression. I
recommend that you keep the Processing environment open as you work through
these hands-on chapters, and run the examples as they are covered.

617xCH06.qxd 4/20/07 3:28 PM Page 171

617xCH06.qxd 4/20/07 3:28 PM Page 172

6 LINES

617xCH06.qxd 4/20/07 3:28 PM Page 173

This chapter will concentrate on lines and how they are represented though code. You’ll
also look at how lines can represent more multidimensional space, such as shapes and
volume.

It’s all about points
Before you can understand a line, you need to move back one dimension and take a look
at points. Here is arguably the simplest graphic program you can write in any language (see
Figure 6-1):

point(50, 50);

Figure 6-1. Single-point sketch

I mentioned before in the book that a point really has no dimension. Wikipedia says of
points: “A point in Euclidean geometry has no size, orientation, or any other feature except
position.” Thus, your point, as output in Processing, is arguably a tiny square, with a width
and height of a 1 pixel. However, what fun would it be to plot a point that didn’t appear?
In fact, your point is really a Processing line, with the same starting and ending points. The
following line function call will yield the same result as the previous point function call:

line(50, 50, 50, 50);

However, this second approach is more complicated than necessary—it’s certainly better
to only have to pass two arguments instead of four—so stick with the point() function.
Because point(x, y) is implemented internally with line(x, y, x, y), if you want to
change the color of a point, you need to use the stroke() function, not fill().

There aren’t many things you can do staring at a single static point, other than perhaps sit-
ting lotus style and meditating on its oneness—which does have some value. However,
enlightenment-seeking aside, let’s add another point (see Figure 6-2):

point(33, 50);
point(66, 50);

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

174

617xCH06.qxd 4/20/07 3:28 PM Page 174

LINES

175

6

Figure 6-2. Two-point sketch

Adding another point really changes things; it brings up issues of symmetry, balance, and
the gestalt (seeing a face), and begins to suggest a line.

Now add a third point (see Figure 6-3):

point(25, 50);
point(50, 50);
point(75, 50);

Figure 6-3. Three-point sketch

The line gestalt is certainly getting pretty strong now. The three dots divide top and
bottom and have a certain horizontal velocity as your eye sweeps across them.

Now add some code to format the display window, and also add a couple more points (see
Figure 6-4):

size(300, 300);
background(0);
stroke(255);
point(30, 150);
point(60, 150);
point(90, 150);
point(120, 150);
point(150, 150);
point(180, 150);
point(210, 150);
point(240, 150);
point(270, 150);

617xCH06.qxd 4/20/07 3:28 PM Page 175

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

176

Figure 6-4. Emerging line sketch

This is beginning to look like a real program, and it also has an insistent line. There is
something simple and beautiful about the sharpness and delicateness of the white points
against the black. You’ll notice that I called stroke(255), which sets the stroke state of
the sketch to white. I use the term “stroke state” because any drawing executed after the
stroke(255) call that involves rendering a stroke will be white, until I explicitly make
another call to change the rendering state of the stroke color—for example,
stroke(127);. I discuss the idea of a rendering state in the color section of the language
reference, found in Appendix A. The sketch is now 12 lines (of code) long and beginning
to get a little unwieldy, especially for making global changes to the program. For example,
if you want to now add a tenth point and still keep the line centered in the display win-
dow, it’s time-consuming (and annoying) to have to go and change the value for each
point. There are two ways to simplify this process. The first is to base your point positions
on the size and shape of the display window, and the second is to add a looping structure
that will handle the iteration for you.

Here’s a solution for using ten points, implementing the first improvement:

size(300, 300);
background(0);
stroke(255);
point((width/11)*1, height/2);
point((width/11)*2, height/2);
point((width/11)*3, height/2);
point((width/11)*4, height/2);
point((width/11)*5, height/2);
point((width/11)*6, height/2);
point((width/11)*7, height/2);
point((width/11)*8, height/2);
point((width/11)*9, height/2);
point((width/11)*10, height/2);

This solution is procedurally an improvement—it uses the computer to handle the calcu-
lation of the division by 11. Next, I’ll show you how to implement a while loop.

617xCH06.qxd 4/20/07 3:28 PM Page 176

LINES

177

6

Streamlining the sketch with a while loop
size(300, 300);
background(0);
stroke(255);
int i = 1;
while (i<11){
point((width/11)*i, height/2);
i++;

}

This has gotten the sketch down to eight lines. If you really want to, you can shave it fur-
ther by a line or two, which I’ll show you shortly. Although the while loop solution is
denser, the reduction in lines of code, I think, makes it more worthwhile than the previous
solution. For example, if you had 100 points, the complexity vs. the convenience clearly
would become an even more palatable trade-off. Before you squeeze the code down yet
further, I want to go over each line of the sketch to make sure you are following along. If
this stuff looks completely unfamiliar, I suspect you began the book after Chapter 3—
which is OK. However, I do cover the fundamentals of programming, including loops, in
detail in Chapter 3, so you’ll want to review some of this stuff. If you are a seasoned coder,
you can probably skip or skim the following description.

Line 1 sets the display size with the function call size(300, 300);. This is a standard
Processing function call, passing two arguments (display window width and display win-
dow height). The next two function calls work very similarly, each taking an argument and
setting the background color and the stroke color. You may remember that it is possible to
set a background or stroke color with more arguments. For example, background(255,
255, 0) creates a yellow background. Next in the sketch I declare and initialize a variable
i of type int. Declaring i of the int primitive type means that i can only be assigned inte-
ger values. For example, if I try to assign 2.3 to i (i = 2.3;), I’ll get the following compiler
error:

The type of the right sub-expression, "float", is not assignable to
the variable, of type "int".

Errors like this can be annoying to new coders, but this type checking mechanism is really
there to help you, so you don’t make a hard-to-find mistake that gets buried in code—
which can lead to a much more annoying bug (as well as uncontrolled cussing). The while
loop runs over and over, until some explicit limit is reached. In this case, the while loop
will run as long as i is less than 11. Since i keeps increasing in value, it is also convenient
to use i in your programs, as is done in setting the point position calculation
point(width/11*i, height/2);. The last line in the while loop increments the value of i
by 1. If I don’t do this, my loop will never end. Hopefully this seems pretty straightforward.

I mentioned a paragraph or so back that you could still trim a line or two off the sketch;
the first way is to increment the counter i within another expression. Here’s the program,
one line thinner:

617xCH06.qxd 4/20/07 3:28 PM Page 177

size(300, 300);
background(0);
stroke(255);
int i = 1;
while (i<11){
point(width/11*i++, height/2);

}

One of the trade-offs of condensing code like this is that the code becomes slightly harder
to read. Finally, if you replace with while loop with a for loop, you can also remove
the line int i = 1;. Make sure that you also remove the ++ after the i in the point()
function call.

Streamlining the sketch further with a for loop
size(300, 300);
background(0);
stroke(255);
for (int i=1; i<11; i++){
point(width/11*i, height/2);

}

This is pretty lean now. However, what would make this structure even better and more
usable as a multipurpose code block would be the removal of the number 11, which we
call a “magic number” in programming. Magic numbers are constant values stuck in the
code—usually hastily put in to quickly solve a specific problem. Although they can be
effective hacks or quick fixes, they tend to also be poorly thought-out solutions that don’t
lend themselves to code reuse. For example, if you want to now use 100 points, you would
have to change the value 11 to 101 in both places in the code. In many programs, there
could be a lot more instances of this value throughout the code. Finally, here’s the sketch
that I might really write (depending on how I was feeling at the moment) to solve this
problem:

size(300, 300);
background(0);
int totalPts = 100;
float steps = totalPts+1;
stroke(255);
for (int i=1; i<steps; i++){
point((width/steps)*i, height/2);

}

You’ll notice that I actually added two lines of code, but now my sketch can handle any
number of points. If you raise the totalPts number to over 200, you’ll begin to see a pure
line formed from the closely packed points. The line float steps = totalPts+1; seems
to use the magic number 1, and it may seem odd to all of a sudden introduce the float

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

178

617xCH06.qxd 4/20/07 3:28 PM Page 178

LINES

179

6

type into the sketch. Although the 1 is a constant, it also expresses a state that is a con-
stant. There will always be one more column than the number of points when the points
are spaced out evenly using outer columns, and one less column than points if outer
columns aren’t used (see Figure 6-5).

Figure 6-5. Calculating columns based on number of objects

The float type keeps rounding errors from shifting the points during division in the for
loop. This is a subtle but very important point. For example, the simple expression 5 / 2
will not give the answer you might suspect; the answer, in Processing, is 2. This is because
two integers are divided together, which returns another integer. To get the right mathe-
matical answer (5.0 / 2 = 2.5), one of the operands needs to be a float.

In the sketch, change the float type to int, set totalPts to 30 or 60 points, and run the
sketch. Then, set totalPts to 29 or 59 points and run it again; the problem will go away,
as 29 + 1 and 59 + 1 yields an even multiple of 300. You can use other values to demon-
strate this as well. When steps is declared as type int, and you use it in the for loop (i.e.,
(width/steps)*i,), the answer gets rounded to an int. If you want to see the calcula-
tions, try putting the statement println((width/steps)*i), within the for loop. You’ll
see that all the values are integers. Now switch steps type from int back to float, and the
output should be real numbers (numbers with fractional parts after the decimal point).

Creating organic form through randomization
OK, so you can draw a line with some points—no big deal, right? Well, there are some
interesting things you can do now that you have your line being described procedurally.
For example, to create a more organic or fuzzy line, you can use Processing’s random()
function within the loop (see Figure 6-6):

617xCH06.qxd 4/20/07 3:28 PM Page 179

size(300, 300);
background(0);
int totalPts = 300;
float steps = totalPts+1;
stroke(255);
for (int i=1; i< steps; i++){
point((width/steps)*i, (height/2)+random(-2, 2));

}

Figure 6-6. Randomized point line

The function random(-2, 2) generates a random number between the range specified by
the min and max arguments passed to the function. Try passing larger and smaller and also
asymmetrical arguments to the function to see what happens. Also try changing the num-
ber of points. This flexibility and ease with which you can experiment and iterate through
different possibilities is what creative coding is all about. It’s also the reason it’s worth tak-
ing the time to code your projects efficiently, using well-structured loops and a minimal
amount of magic numbers. Perhaps you’d like the random effect to change over time as
well so that the line is not so consistent. Since the random() function is just looking for two
float arguments, you can pass those as variables. For example, the following generates a
particle spray (shown in Figure 6-7). Notice I added another variable called rand.

size(300, 300);
background(0);
int totalPts = 300;
float steps = totalPts+1;
stroke(255);
float rand = 0;
for (int i=1; i< steps; i++){
point((width/steps)*i, (height/2)+random(-rand, rand));
rand+=.2;

}

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

180

617xCH06.qxd 4/20/07 3:28 PM Page 180

Figure 6-7. Randomized particle spray

You can even use a random() function to generate values for another random() function.
Run the next example a couple of times to see the range of output (one example of which
is shown in Figure 6-8); it’s pretty interesting and getting fairly organic. As always, play with
the numbers to see the expressive potential of the algorithm.

size(300, 300);
background(0);
int totalPts = 300;
float steps = totalPts+1;
stroke(255);
float rand = 0;
for (int i=1; i< steps; i++){
point((width/steps)*i, (height/2)+random(-rand, rand));
rand+=random(-5, 5);

}

Figure 6-8. Doubly randomized particle line

L INES

181

6

617xCH06.qxd 4/20/07 3:28 PM Page 181

Once you have a single line doing some interesting stuff, you can try to extend the concept
with multiple lines. One way of thinking of this is as looping a loop. You can pretty easily
put your existing for loop within another for loop and move your line down the display
window, repeating the structure over and over again. It is often through these types of
overlapping iterative processes that really unexpected and interesting stuff starts emerging
out of the code. One caution, though: if you’ve been reading this stuff pretty quickly and
not thoroughly experimenting with these structures along the way, you’re missing many
interesting possibilities, and more importantly, the feature creep in the sketches is going to
quickly overwhelm you. I really recommend reading this chapter in small bites and then
thoroughly chewing through the code possibilities. It’s the best way to begin to remember
all the weird syntax and keywords. The next example runs the previous code through
another outer loop and adds some other modifications, drawing a series of lines down the
display window (see Figure 6-9).

/*
Razor Tooth Pattern
Ira Greenberg, November 20, 2005
*/
size(300, 300);
background(0);
int totalPts = 1000;
float steps = totalPts+1;
int totalRows = 50; // needs to be < = 300
int rowShift = height/totalRows;
float rowNudge = -.4;
float rowHop = 0;
int randNudge = 5;
stroke(255);
for (int i=rowShift; i<height; i+=rowShift){
for (int j=1; j<steps; j++){
rowHop-=rowNudge;
if (j % (1 + (int)(random(randNudge))) == 0){
rowNudge*=-1;

}
point((width/steps)*j, i+rowHop);

}
}

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

182

617xCH06.qxd 4/20/07 3:28 PM Page 182

LINES

183

6

Figure 6-9. Multiple randomized particle lines

I imagine some of you might need a little clarification on parts of this last example.
Although this is a simple program in number of code lines, parts of it are a bit dense.
When you nest a for loop, as in the example, it is important to understand how the loop
executes. The outer for loop initializes i to height/totalRows. This loop will run as long
as i is less than the height of the display window. i will be incremented by the same
amount i is originally initialized to, height/totalRows. On the first iteration of the outer
for loop, the inner for loop runs through an entire loop cycle. In this case, j is initialized
to 1 and also incremented by 1 as long as it remains less than the value of steps. After the
inner loops runs through all its iterations, control goes back to the outer loop, which is
incremented by height/totalRows; and then the process repeats itself, with the inner
loop again going through its entire iterative loop cycle. This process will continue until the
condition in the outer loop no longer evaluates to true (i is no longer less than the height
of the display window). As you might imagine, if you’re not careful, you can pretty easily
create nested loops that take a lot of time to finish.

One other significant point regards how you name your variables in the loops. Within a
code structure bounded by curly braces (for loops, if statements, functions, etc.), vari-
ables declared in the head or body of the structure (or passed in, as in the case of param-
eters in the head of a function) have local scope. This is in contrast to variables declared
at the top of a program, which have global scope. Because of local scope, the variable i,
declared in the head of the for loop, only exists between the curly braces of the for loop;
it has no existence outside the loop. That’s why it’s possible to use the same-named

617xCH06.qxd 4/20/07 3:28 PM Page 183

variable i in all your non-nested for loops. However, when you nest a loop, the inner loop
sees all of the variables you created in the outer loop; that’s why you’re forced to use a
new name for the loop variable j in the inner loop. If you’ve been following this scope
logic, do you think the outer loop can see the variable declared in the inner loop? The
answer is no because the rules of local scope still apply.

Getting back to the code example, within the inner loop are a few lines that might be
confusing:

rowHop-=rowNudge;
if (j % (1+ (int)(random(randNudge))) == 0){
rowNudge*=-1;

}

The first line is a standard shortcut assignment operation. The variable rowHop moves the
points up and down on the y-axis, and rowNudge is the value that it’s either incremented or
decremented by. I use the term “shortcut” because this operation does both an arithmetic
operation (subtraction) and an assignment operation. The next line uses the modulus
operator, which is usually foreign to non-coders. Modulus returns the remainder of divi-
sion between two operands. The reason I used it was to generate a somewhat random
result in the loop. I tested for the modulus expression to evaluate to 0, meaning that the
division would yield no remainder. As i increases, there is a greater possibility that division
will have no remainder. For example, 4 has three factors (1, 2, and 4) that go into it evenly,
but 12 has six (1, 2, 3, 4, 6, and 12). In addition, I used a random number generator for the
right operand to make the process more chaotic. The reason I added 1 to the value of the
random() function before doing the modulus operation was to avoid division by 0, which
is illegal and will cause a compiler error. Since the random() function will generate a ran-
dom value between 0 and the argument value, periodically 0 will come up. In addition, I
am converting the float value, evaluated by the random() function, to an integer, so the
modulus expression has a chance of evaluating to 0. When you convert a float to an int
by using the int() function, values are rounded down, so .999 still evaluates to 0. Thus,
the statement (int)(random(randNudge)) can generate a lot of zeros. I used parentheses
around the entire expression (1 + (int)(random(randNudge))) to make sure that the
addition happens before the division. Normally multiplication and division, including mod-
ulus, are evaluated before addition and subtraction, but you can use parentheses to
change the order of precedence, which is discussed at more length in Chapter 3. Finally,
the shortcut assignment operation rowNudge*=-1; switches the direction in which the
statement rowHop-=rowNudge; is pushing the points on the y-axis, giving a razor-tooth pat-
tern to the line output. Hopefully this description wasn’t too rough on the head. Make
sure you play, tweak, experiment, and bust apart the code to get a better sense of what’s
going on.

There are two more modifications I’ll make to the current sketch, and then I’ll (finally)
move on to using Processing’s “real” line functions. The first modification involves laying a
more regular grid pattern on top of the razor-tooth pattern, and the second modification
involves shifting value.

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

184

617xCH06.qxd 4/20/07 3:28 PM Page 184

Coding a grid
To begin, I’ll show you how to generate a simple grid. First, you’ll generate some columns
of equally spaced parallel points (see Figure 6-10). This code should look similar to what
you’ve been doing thus far.

size(300, 300);
background(0);
int cellWidth = width/30;
stroke(255);
//vertical lines
for (int i=cellWidth; i<width; i+=cellWidth){
for (int j=0; j<height; j++){
point(i, j);

}
}

Figure 6-10. Vertical lines generated from points

L INES

185

6

617xCH06.qxd 4/20/07 3:28 PM Page 185

If you mess with the cellWidth variable, you can change the spacing frequency. Now let’s
add the horizontal lines (see Figure 6-11):

size(300, 300);
background(0);
int cellWidth = width/20;
int cellHeight = height/30;
stroke(255);
//vertical lines
for (int i=cellWidth; i<width; i+=cellWidth){
for (int j=0; j<height; j++){
point(i, j);

}
}
//horizontal lines
for (int i=cellHeight; i<height; i+=cellHeight){
for (int j=0; j<width; j++){
point(j, i);

}
}

Figure 6-11. Horizontal and vertical lines, forming a symmetrical grid,
generated from points

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

186

617xCH06.qxd 4/20/07 3:28 PM Page 186

Notice that you can make the value of cellWidth different than the value of cellHeight,
creating an alternative grid (see Figure 6-12). Finally, let’s add some random() functions
throughout the program.

Figure 6-12. Alternative grid made from points

One of the advantages of generating a line this way, using adjacent points, is the ability to
alter the spacing of the points, as in the next example (see Figure 6-13):

/*
Point Grid
Ira Greenberg, November 20, 2005
*/
size(300, 300);
background(0);
// grid variables
int cellWidth = width/20;
int cellHeight = height/20;
int ptGap = 3;
int randHt = 4;
int randWdth = 10;
stroke(255);
//vertical lines
for (int i=cellWidth; i<width; i+=cellWidth+int(random(randWdth))){

LINES

187

6

617xCH06.qxd 4/20/07 3:28 PM Page 187

for (int j=0; j<height; j+=ptGap){
point(i, j);

}
}
//horizontal lines
for (int i=cellHeight; i<height; i+=cellHeight+int(random(randHt))){
for (int j=0; j<width; j+=ptGap){
point(j, i);

}
}

Figure 6-13. Alternative grid with spaced-out points

Now that you have your grid, let’s bring the razor-tooth code back and put the two pat-
terns together, as shown in Figures 6-14 and 6-15:

/*
Yin Yang
Ira Greenberg, November 20, 2005
*/
size(300, 300);
background(0);
//razor tooth variables
int totalPts = 1000;

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

188

617xCH06.qxd 4/20/07 3:28 PM Page 188

float steps = totalPts+1;
int totalRows = 50; // needs to be < = 300
int rowShift = height/totalRows;
float rowNudge = -.8;
float rowHop = 0;
int randNudge = 8;
stroke(255);
// razor tooth pattern
for (int i=rowShift; i<height; i+=rowShift){
for (int j=1; j< steps; j++){
rowHop-=rowNudge;
if (j % (1 + (int)(random(randNudge))) == 0){
rowNudge*=-1;

}
point(width/steps*j, i+rowHop);

}
}

// grid variables
int cellWidth = width/60;
int cellHeight = height/60;
int ptGap = 1;
int randHt = 5;
int randWdth = 5;
//grid overlay
//vertical lines
stroke(40);
for (int i=cellWidth; i<width; i+=cellWidth+int(random(randWdth))){
for (int j=0; j<height; j+=ptGap){
point(i, j);

}
}

//horizontal lines
stroke(10);
for (int i=cellHeight; i<height; i+=cellHeight+int(random(randHt))){
for (int j=0; j<width; j+=ptGap){
point(j, i);

}
}

This is not such a simple program anymore. Besides the two different patterns coming
together, there are now three places to change the value of the stroke. Really mess around
with this sketch for a while before you move on to the next example. There is a lot of stuff
to learn and many cool visual possibilities to be discovered. If you think you’ve found
some especially cool output, please send it to me via e-mail. If I ever use/reproduce it, I’ll
be sure to give you proper credit.

L INES

189

6

617xCH06.qxd 4/20/07 3:28 PM Page 189

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

190

Figure 6-14. Yin Yang sketch, variation 1

Figure 6-15. Yin Yang sketch, variation 2

617xCH06.qxd 4/20/07 3:28 PM Page 190

LINES

191

6

Creating space through fades
Your last modification will be shifting the value of the stroke. Since color is represented
numerically, you can easily shift the color’s value/chroma just by applying some calcula-
tions to the color’s numeric value. Going back to the vertical lines example, here’s the
output fading to black. Notice how it feels like the form goes back into space (see
Figure 6-16).

size(300, 300);
background(0);
float cellWidth = width/30.0;
// find ratio of value range(255) to width
float val = cellWidth*(255.0/width);
//vertical lines
for (float i=cellWidth, v=255; i<width; i+=cellWidth, v-=val){
stroke(v);
for (int j=0; j<height; j++){
point(i, j);

}
}

Figure 6-16. Horizontal fade to black

617xCH06.qxd 4/20/07 3:28 PM Page 191

There is one new concept in this example and a little mathematical expression that may
need some clarification. The expression that might be problematic is the following:

float val = cellWidth*(255.0/width);

I need the decrementation of the color value to coincide with the number of steps in the
for loop. To ensure that this happens, I need to find the ratio between the width of
the display window and the maximum value of the color (255). I simply multiply this ratio
by the cellWidth interval to calculate how much to decrement the color value each step
of the loop. This gives me a smooth transition from 255 to 0 (or white to black). The new
concept I mentioned refers to using multiple statements within the head of the for loop,
separated by commas. This is a convenient thing to do. I could also have initialized a vari-
able outside of the loop and explicitly incremented/decremented it within the loop block,
but that’s more work. In truth, all three parts in the head of the for loop are optional (you
do need the semicolons, though). For example, this for loop will compile and run fine. I
used the break; command so that the loop doesn’t run infinitely.

for(;;){
print("i'm in this weird for loop");
break;

}

In the next modification, I applied the value shifting to both the vertical and horizontal
lines (see Figure 6-17). I also broke out of the square format to illustrate how the grid can
automatically size itself to the display window size/format. This is a good example of
why you want to try to base program measurements (if it’s at all practical) on the dimen-
sions of the display window, which allows your program to scale and adapt to different
environments.

size(500, 200);
background(0);
float cellWidth = width/50.0;
// find ratio of value range(255) to width
float valw = cellWidth*(255.0/width);
//vertical lines
for (float i=cellWidth, v=255; i<width; i+=cellWidth, v-=valw){
stroke(v);
for (int j= 0; j<height; j++){
point(i, j);

}
}

float cellHeight = height/50.0;
// find ratio of value range(255) to height
float valh = cellHeight*(255.0/height);
//horizontal lines
for (float i=cellHeight, v=255; i<height; i+=cellHeight, v-=valh){
stroke(v);

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

192

617xCH06.qxd 4/20/07 3:28 PM Page 192

LINES

193

6

for (int j=0; j<width; j++){
point(j, i);

}
}

Figure 6-17. Horizontal and vertical fade to black

The last thing I’ll do with the beleaguered point method is combine the gradient stroke
grid with the razor-tooth pattern. Two examples of the sketch’s output can be seen in
Figures 6-18 and 6-19.

/*
Yin Yang Fade
Ira Greenberg, November 20, 2005
*/
size(700, 200);
background(0);

// grid variables
float cellWidth = width*.01;
float cellHeight = height*.01;
int ptGap = 1;
int randHt = 0;
int randWdth = 0;
// find ratio of value range(255) to height and width
float valh = cellHeight*(255.0/height);
float valw = cellWidth*(255.0/width);

//grid overlay
//vertical lines
for (float i=cellWidth, v=255.0; i<width; i+=cellWidth + ➥

int(random(randWdth)), v-=valw){
stroke(v);
for (int j=0; j<height; j+=ptGap){

617xCH06.qxd 4/20/07 3:28 PM Page 193

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

194

point(i, j);
}

}
//horizontal lines
for (float i=cellHeight, v=255.0; i<height; i+=cellHeight + ➥

int(random(randHt)), v-=valh){
stroke(v);
for (int j=0; j<width; j+=ptGap){
point(j, i);

}
}

//razor tooth variables
float totalPts = 1000.0;
float steps = totalPts+1.0;
int totalRows = 50; // needs to be < = 300
int rowShift = height/totalRows;
float valr = 255.0/steps; // used for value shift
float rowNudge = -.7;
float rowHop = 0;
int randNudge = 8;
// razor tooth pattern
for (int i=rowShift; i<height; i+=rowShift){
for (float j=1, v=255; j< steps; j++, v-=valr){
stroke(v);
rowHop-=rowNudge;
if (j % (1 + (int)(random(randNudge))) == 0){
rowNudge*=-1;

}
point(width/steps*j, i+rowHop);

}
}

Figure 6-18. Yin Yang Fade sketch, variation 1

617xCH06.qxd 4/20/07 3:28 PM Page 194

Figure 6-19. Yin Yang Fade sketch, variation 2

Try running this code a couple times to see how it changes. The shift from black to white,
in both the grid and razor-tooth pattern, creates an interesting example of sfumato (or
smoke), giving the image a sense of atmosphere. You’ll notice in the code that I reversed
the order of the grid and the razor-tooth pattern code blocks. Putting the grid down first
created more clarity in the final image. Try reversing the blocks of code to see the differ-
ence. In the next examples, you’ll explore some other ways of generating lines in
Processing.

Creating lines with pixels
Besides using Processing’s point() function to generate lines, you can also directly set the
value of a line of pixels. In the next example, a PImage object is created, and the pixels
along the horizontal, vertical, and diagonal center axes are set to black (see Figure 6-20).
Please note that the PImage object is not automatically rendered to the screen; to do so,
you need to explicitly call the image() function (see the last line of code in the example).

size(500, 300);
background(255);
// used by diagonal lines
float slope = float(height)/float(width);
PImage img = createImage(width, height, RGB);
color c = color(0, 0, 0);
//horizontal line
for (int i=0; i<width; i++){
img.set(i, height/2, c);

}
//vertical line
for (int i=0; i<height; i++){
img.set(width/2, i, c);

}
//diagonal line (TL-BR)
for (float i=0; i<width; i++){
img.set(int(i), int(i*slope), c);

LINES

195

6

617xCH06.qxd 4/20/07 3:28 PM Page 195

}
//diagonal line (BL-TR)
for (float i=0; i<width; i++){
img.set(int(i), int(height-i*slope), c);

}
image(img, 0, 0);

Figure 6-20. Drawing lines with pixels example

This approach is pretty low level for simply drawing some lines, and isn’t much of an
improvement (if any) over using the point() method. I’ll return to PImage later in the
book. However, one detail worth noting in the last example is the simple equation used to
generate the diagonal lines. Since the lines were set by incrementing pixels across the
image, I needed to the know the slope of the lines I wanted to draw, which is really how
the line changes on the y-axis in regard to how it changes on the x-axis. The stroke equa-
tion is just the change in y divided by the change in x (the rise over the run). Normally for
a line, you just take the beginning and ending points, do the subtraction between the two
y and x components, and then perform the division. Since in the example the diagonal
lines span the entire display window (from corner to corner), I could just use the display
window height divided by the width to get my slope.

Processing’s line functions
Fortunately, Processing has two other far more simplified approaches to generating lines
that also give you more rendering capabilities, such as setting the weight or thickness of
the line. The first approach you’ll look at uses Processing’s line() function. This function
comes in two varieties, 2D and 3D. The 3D version works just like the 2D function, but
requires six arguments instead of four. These arguments are the x and y (and for 3D, also z)

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

196

617xCH06.qxd 4/20/07 3:28 PM Page 196

coordinates of the line. For example, to draw a 2D line across the screen, you pass the ini-
tial point’s coordinate, (x1, y1), and the endpoint’s coordinate, (x2, y2), to the line(x1,
y1, x2, y2) function. Figure 6-21 shows the output.

size(500, 300);
background(255);
line(0, height/2, width, height/2);

Figure 6-21. Drawing a 2D line with Processing’s line()
function

If you were using one of the 3D rendering options (P3D or OPENGL), you could pass in a
third coordinate, referencing the z-axis. If you run the next example, you’ll notice that the
line doesn’t appear to reach the end of the display, as it did in the last example. This
is because the line is stretching back 300 pixels into virtual space, and the P3D renderer is
simulating perspective, which causes things to converge and decrease in scale (visually of
course) as they recede into space (see Figure 6-22).

size(500, 300, P3D);
background(255);
// line(x1, y1, z1, x2, y2, z2);
line(0, height/2, 0, width, height/2, -300);

Figure 6-22. Drawing a 3D line with Processing’s line()
function

L INES

197

6

617xCH06.qxd 4/20/07 3:28 PM Page 197

The rest of the examples in this chapter will be 2D. (Drawing in 3D will be discussed later
in the book.) Utilizing the line() function, you can more easily create complex linear
structures than using either the point() or PImage approaches. Aside from specifying the
position and length of a line, you can use some of Processing’s rendering style functions to
affect the rendering state of the line. Next is a very simple example demonstrating the use
of the strokeWeight() function (see Figure 6-23).

size(500, 300);
background(255);
int step = height/10;
for (int i=step; i< height; i+=step){
strokeWeight(i*.1);
line(20, i, width-20, i);

}

Figure 6-23. Stroke weight variation example

As the line or stroke increases in weight, the end caps of the line become very prominent.
The default style is ROUND. However, end caps can be set using the strokeCap() function
by passing one of three constants, ROUND, PROJECT, or SQUARE, to the function. I recoded
the last example, changing some of the end caps (see Figure 6-24). Please also note the
strokeCap() function only works with the default JAVA2D rendering mode. If you specify
any of the other modes (P3D, OPENGL, or P2D), this feature will not work.

size(500, 300);
background(255);
int step = height/10;
int[]caps = {ROUND, PROJECT, SQUARE};
int j = 0;
for (int i=step; i<height; i+=step){
strokeWeight(i*.1);
strokeCap(caps[j++]);
if (j>2){
j=0;

}
line(20, i, width-20, i);

}

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

198

617xCH06.qxd 4/20/07 3:28 PM Page 198

LINES

199

6

Figure 6-24. End cap variation example

Running this code should give you a clear sense of the differences between the end cap
styles. These caps become a more significant concern as you begin to join lines into more
complex structures. However, before you do that, let’s review some of the code in the last
example.

The line int[]caps = {ROUND, PROJECT, SQUARE}; declares and initializes an array of type
int, and fills the index positions [0], [1], and [2] with the three constants ROUND,
PROJECT, and SQUARE. I discussed arrays in detail in Chapter 3. As a review, arrays are data
structures that hold multiple variables of any type. All the elements in an array need to be
of the same data type. To access an item stored in an array, you use an index number
placed between brackets, directly to the right of the array name, as in caps[0]. Arrays are
zero-indexed, meaning that the first position in the array is 0, not 1. The three end cap
styles, ROUND, PROJECT, and SQUARE, which look like strings, are actually immutable
(unchangeable) integer constants. Specifying an unchanging value as a constant and using
all uppercase letters in naming it are common programming approaches. In Java, the key-
word final is used to specify that a variable’s value is immutable. To find the correspon-
ding int values for the constants, run the following example:

println("ROUND = " + ROUND);
println("SQUARE = " + SQUARE);
println("PROJECT = " + PROJECT);
// uncomment the next line to generate a semantic error.
//ROUND = 27;

Now, to prove that you can’t change a constant’s value, uncomment the last line of the
code and run the sketch again, which should generate a compiler error telling you can’t
assign another value to ROUND.

Processing has a ton of constants defined in the language that work the same way. Each
constant is usually assigned an integer value (but not always). Mostly, constants add mean-
ing to the coding process. Isn’t it easier to remember the cap style ROUND than the number
2? You can see Processing’s constants at http://dev.processing.org/source/index.
cgi/trunk/processing/core/src/processing/core/PConstants.java?view=markup.

617xCH06.qxd 4/20/07 3:28 PM Page 199

http://dev.processing.org/source/index

Joining lines
In the previous example, I also used a conditional statement to keep looping through the
caps arrays. Since each end cap was output three times, I needed to keep resetting
the array counter back to 0, which is exactly what the conditional statement does:

if (j>2){
j=0;

}

The next sketch, shown in Figure 6-25, illustrates the joining implications of the different
end caps. In addition, the sketch implements a column layout algorithm, with simple
padding between the corresponding cells. Try changing the value of the strokeWeight()
argument as well as the shapes and padding variables to see what happens.

/*
Auto Layout
Ira Greenberg, November 21, 2005
*/
size(500, 300);
background(255);
int[]caps = {ROUND, PROJECT, SQUARE};
strokeWeight(20);
int shapes = 3;
int padding = 200;

float w = (width-padding)/shapes;
float h = w;
float colSpan = (width-shapes*w)/(shapes+1);
float x = colSpan;
float y = height/2-h/2;
for (int i=0, j=0; i<shapes; i++){
strokeCap(caps[j++]);
if (j>2) j=0;
line(x, y, x+w, y);
line(x+w, y, x+w, y+h);
line(x, y+h, x+w, y+h);
line(x, y+h, x, y);
x+=w+colSpan;

}

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

200

617xCH06.qxd 4/20/07 3:28 PM Page 200

Figure 6-25. Auto Layout sketch

This sketch utilizes a fair amount of variables, so it might look a bit confusing. Definitely
take your time going through it. I think the auto-layout feature is worth taking the time to
understand, as this type of process is quite valuable when you’re doing visual stuff. You’ll
also notice that I initialized a second local variable (j) in the for loop head, which I use to
cycle through the caps[] array. There is also a conditional statement that keeps resetting
j to 0, ensuring that the index of the array stays within bounds. Remember, arrays are
zero-indexed—so if you have three items in an array, the last index number will be 2, or
array.length-1. If you make a request to access an index position in an array that doesn’t
exist, you’ll get an error. This is a very common mistake, and usually pretty easily (and
happily) resolved.

I also snuck in some formatting that hopefully will look quite suspect: if (j>2) j=0;. This
is actually a normal conditional statement that I put on one line, leaving off the curly
braces. Yes, this is legal code, as long as you only use one statement in the block of the
code (between where the curly braces would have been). You can even use an else state-
ment after the if block—but again, only one line of code will be recognized by the struc-
ture if you don’t include curly braces. You’ll also get a compiler error if you include the
else and have more than one line in the if block. Regardless of how you format your if
statement, it makes no difference whether you put it on one line or skip a line between
each part (at least to the compiler). Whitespace is ignored by the compiler, except if it’s
between quotation marks, which it then sees as character spaces. In the next examples, the
first two snippets works fine, but the last two don’t work.

Here’s Example 1, which works:

for (int i =0; i<5; i++){
// no braces, but only one line in both the if and else blocks
if (i==3)
println("i = " + i + " hello");

else
println("i = " + i + " goodbye");

}

LINES

201

6

617xCH06.qxd 4/20/07 3:28 PM Page 201

Example 2 also works, but looks pretty ridiculous.

for(int i=0;i<5;i++){if (i==3)println(" hello");else
println("goodbye");}

Example 3 doesn’t work properly (although it will compile and run fine). If you run the
code, you’ll notice that the second line in the if block (below the comment) outputs each
iteration of the loop, regardless of whether the conditional statement is true—this a great
way to create a hard-to-track-down and really annoying bug.

for (int i=0; i<5; i++){
if (i==3)
print("i = " + i + " hello");
/* Without using curly braces, the next line will always execute,

regardless of the outcome of the conditional (true or false)*/
println(" there");

}

Example 4 won’t even compile, which is a good thing:

for (int i=0; i<5; i++){
if (i==3)
print("i = " + i + " hello");
println(" there");

else
print("i = " + i + " goodbye");

}

In spite of this flexibility in form, I almost always use curly braces and format my state-
ments on multiple lines. However, there are many coders who use these other forms, so
it’s good to be able to recognize them and, most importantly, recognize when they’ll work
properly or not.

Creating a table structure
Since you’ve got the auto-format code working for columns, let’s set it up for rows as well,
and then let’s try to do something visually interesting with it (see Figure 6-26).

/*
Table Layout I
Ira Greenberg, November 21, 2005
*/
size(500, 300);
background(255);
int[]caps = {ROUND, PROJECT, SQUARE};
strokeWeight(1);
int cols = 30;
int rows= 40;

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

202

617xCH06.qxd 4/20/07 3:28 PM Page 202

int xPadding = 150;
int yPadding = 100;
float w = (width-xPadding)/cols;
float h = (height-yPadding)/rows;
float colSpan = (width-cols*w)/(cols+1);
float rowSpan = (height-rows*h)/(rows+1);
float x;
float y = rowSpan;
for (int i=0; i<rows; i++){
x = colSpan;
for (int j=0, k=0; j<cols; j++){
strokeCap(caps[k++]);
if (k>2){

k=0;
}
line(x, y, x+w, y);
line(x+w, y, x+w, y+h);
line(x, y+h, x+w, y+h);
line(x, y+h, x, y);
x += w+colSpan;

}
y+=h+rowSpan;

}

Figure 6-26. Table Layout I sketch

You’ve got a nice, flexible table structure now. Running the sketch, you should see a tightly
packed pattern of small rectangles. Try decreasing the padding and increasing/decreasing
the stroke weight. Since your table doesn’t need to hold well-formatted tabular data, you
can do “stupid” but fun things to it (the theme of my life). For example, what does

L INES

203

6

617xCH06.qxd 4/20/07 3:28 PM Page 203

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

204

negative padding do to the table structure? You can also make things more interesting
by adding randomization directly into the plotting algorithm. Your table will then go from
an array of cells or windows to (potentially) many little individual works of art (see
Figure 6-27).

/*
Table Layout II
Ira Greenberg, November 21, 2005
*/
void setup(){
size(700, 500);
background(0);
drawTable();

}

void drawTable(){
stroke(255);
int[]caps = { ROUND, PROJECT, SQUARE };
strokeWeight(.1);
int cols = 20;
int rows= 20;
int xPadding = 100;
int yPadding = 100;
float w = (width-xPadding)/cols;
float h = (height-yPadding)/rows;
float colSpan = (width-cols*w)/(cols+1);
float rowSpan = (height-rows*h)/(rows+1);
float x;
float y = rowSpan;
for (int i=0; i<rows; i++){
x = colSpan;
for (int j=0, k=0; j<cols; j++){
strokeCap(caps[k++]);
if (k>2){
k=0;

}
line(x+random(-4, 4), y+random(-4, 4), x+w+random(-4, 4), ➥

y+random(-4, 4));
line(x+w+random(-4, 4), y+random(-4, 4), x+w+random(-4, 4), ➥

y+h+random(-4, 4));
line(x+random(-4, 4), y+h+random(-4, 4), x+w+random(-4, 4), ➥

y+h+random(-4, 4));
line(x+random(-4, 4), y+h+random(-4, 4), x+random(-4, 4), ➥

y+random(-4, 4));
x += w+colSpan;

}
y+=h+rowSpan;

}
}

617xCH06.qxd 4/20/07 3:28 PM Page 204

Figure 6-27. Table Layout II sketch

This was a pretty brute-force and inefficient way to add randomization to the algorithm,
and you should notice all the magic numbers lurking in the line() function calls (yuck).
But running the sketch, you’ll see that things are beginning to get more interesting.
Wouldn’t it be cool if you could do this to HTML table structures (on purpose)? I also
added some more formatting to the code to make it more modular, such as the
drawTable() function.

When you add your own custom functions to Processing, you also need to include
Processing’s setup() function. setup() is executed only once when a sketch launches, and
is a good place to initialize program variables. Since setup(), like all functions, is struc-
tured with external curly braces surrounding a main block, it follows the same rules of
scope as I discussed with for loops—variables declared within the block are only visible
from within the block (they have local scope). If you want variables to be accessible
throughout the entire program, you need to declare them outside of the setup() func-
tion, at the top of the program.

Although functions add another layer of abstraction to your code, they provide tremen-
dous processing power, as they modularize a process, allowing it to be used like an inde-
pendent machine or engine. By utilizing user-defined inputs (parameters) with a function,
the same function can generate a wide range of output possibilities. In the next example, I
added a number of parameters to the drawTable() function, greatly increasing the sketch’s
expressive potential. Three examples of the sketch’s output are shown in Figures 6-28,
6-29, and 6-30.

L INES

205

6

617xCH06.qxd 4/20/07 3:28 PM Page 205

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

206

/*
Table Explode
Ira Greenberg, November 21, 2005
*/

void setup(){
size(700, 500);
background(0);
int cols = 24;
int rows = 24;
color[]clrs = new color[cols*rows];
float[]strokeWts = new float[cols*rows];
int xPadding = -20;
int yPadding = -50;
float[]r1 = new float[16];
float[]r2 = new float[16];
float randomFactor = 6;
int colorMin = 0; // 0 = black
float strokeWtMax = 2;
int overDraw = 10;

for (int i=0; i<r1.length; i++){
r1[i] = random(-randomFactor);
r2[i] = random(randomFactor);

}

for (int i=0; i<clrs.length; i++){
clrs[i] = colorMin + int(random(255-colorMin));
strokeWts[i] = random(strokeWtMax);

}
// calls main drawing function
for (int i=0; i<overDraw; i++){
drawTable(r1, r2, clrs, cols, rows, strokeWts, ➥

xPadding, yPadding);
}

}

void drawTable(float[]r1, float[]r2, color[]clrs, int cols, ➥

int rows, float[]strokeWts, int xPadding, int yPadding){
int[]caps = {ROUND, PROJECT, SQUARE};
float w = (width-xPadding)/cols;
float h = (height-yPadding)/rows;
float colSpan = (width-cols*w)/(cols+1);
float rowSpan = (height-rows*h)/(rows+1);
float x;
float y = rowSpan;
int ttlCounter = 0;

617xCH06.qxd 4/20/07 3:28 PM Page 206

for (int i=0; i<rows; i++){
x = colSpan;
for (int j=0, k=0; j<cols; j++){
strokeCap(caps[k++]);
if (k>2){
k=0;

}
// stroke colors
stroke(clrs[ttlCounter]);
// stroke weight
strokeWeight(strokeWts[ttlCounter++]);
line(x+random(r1[0], r2[0]), y+random(r1[1], r2[1]), ➥

x+w+random(r1[2], r2[2]), y+random(r2[3], r2[3]));
line(x+w+random(r1[4], r2[4]), y+random(r1[5], r2[5]), ➥

x+w+random(r1[6], r2[6]), y+h+random(r1[7], r2[7]));
line(x+random(r1[8], r2[8]), y+h+random(r1[9], r2[9]), ➥

x+w+random(r1[10], r2[10]), y+h+random(r1[11], r2[11]));
line(x+random(r1[12], r2[12]), y+h+random(r1[13], r2[13]), ➥

x+random(r1[14], r2[14]), y+random(r1[15], r2[15]));
x += w+colSpan;

}
y+=h+rowSpan;

}
}

Figure 6-28. Table Explode sketch, variation 1

L INES

207

6

617xCH06.qxd 4/20/07 3:28 PM Page 207

Figure 6-29. Table Explode sketch, variation 2

Figure 6-30. Table Explode sketch, variation 3

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

208

617xCH06.qxd 4/20/07 3:28 PM Page 208

This is the same drawTable() function as in the last example, only many of the values in
the main algorithm have been converted into parameters. Parameters are the variables,
including their type declaration, that are placed between the parentheses of a function
head when a function is defined. When you call or invoke the function, the values you pass
to the function parameters are referred to as arguments. This can be confusing to new
coders. The parameters define the number and type of arguments the function requires to
be called. Another term you may come across is the function signature, which is just the
name of the function, its parameters, and the return type. The return type relates to what,
if any, value the function returns. A function that doesn’t return any value has a void
return type. You always need to specify either a return type or void when you define a
function. That’s why both the setup() and drawTable() functions are prefaced by the
void keyword. Functions that return a specific value need to be prefaced by the data type
of that value. For example, to return an int, a function should be prefaced with int. The
same rule holds true for any data type that a function returns. Functions may return any
legal data type.

The parameters in the new, improved drawTable() function open up a ton of cool possi-
bilities, a few of which you can see in the included figures. Try changing any of the follow-
ing argument values to see what happens: cols, rows, xPadding, yPadding, randomFactor,
colorMin, strokeWtMax, and overDraw. You can change these values at the top of the
setup() function, before the drawTable() function call is made. Really take the time to
experiment with this sketch. It covers a lot of stuff you’ll see again and again. I also think
you’ll be surprised at the range of output you can get with relatively few lines of code
(although I realize that this might look like a lot of code to some of you).

In the next section, you’ll look at the vertex() function, along with the companion
beginShape() and endShape() functions. Using the vertex() function opens up even
more exciting possibilities.

Vertex functions
A vertex is just another word for a point. However, what separates the vertex() function
from the point() function is that the vertex() function utilizes the companion
beginShape() and endShape() functions, allowing the vertices to be connected into lines,
curves, 2D shapes, and even 3D forms. Since coordinate locations in a Cartesian system
require a coordinate component for each axis, it makes sense that any form plotted on the
computer would be reducible to a series of point locations, or vertices. The beginShape()
function takes a mode argument that controls how the vertices are joined. The seven
mode arguments are POINTS, LINES, TRIANGLES, TRIANGLE_STRIP, TRIANGLE_FAN, QUADS,
and QUAD_STRIP. (Please note that POINTS mode is no longer documented in the official
language API, but continues to work as of this writing.) If no option is specified, the line
strip mode is used, which can be closed to form a polygon. This chapter will only look at
how to use these modes to generate points, lines, open line strips, and closed line strips
(polygons).

L INES

209

6

617xCH06.qxd 4/20/07 3:28 PM Page 209

The vertex() function takes either two or three arguments (of type int or float), for
coordinates in 2D or 3D, respectively:

vertex(x, y)
vertex(x, y, z)

This chapter will only look at vertices in two dimensions; in later chapters, you’ll plot forms
in 3D. Here’s a really simple example of the vertex() function in action, using the POINTS
mode (see Figure 6-31):

size(300, 300);
background(0);
stroke(255);
strokeWeight(5);
beginShape(POINTS);
vertex(50, 50);
vertex(width-50, 50);
vertex(width-50, height-50);
vertex(50, height-50);
vertex(width/2, height/2);
endShape();

Figure 6-31. POINTS mode sketch example

This is not a very impressive example, and I believe it shows that using the vertex() func-
tion to generate points doesn’t offer much advantage over using the good old point()
function covered earlier. You’ll notice that the vertex() calls occur between the
beginShape() and endShape() function calls. In a sense, the beginShape() function begins
recording drawing instructions, and the endShape() function stops recording and then
renders the drawing data to the screen. As usual, Processing makes this stuff look incredibly

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

210

617xCH06.qxd 4/20/07 3:28 PM Page 210

easy. The benefit of internally recording the coordinate data is that the data can be plot-
ted based on different drawing algorithms. Using different mode arguments within the
beginShape() and endShape() functions, Processing can use the same vertex() data to
draw different types of geometry.

As a little example of how this internal recording process works, the following sketch
(shown in Figure 6-32) re-creates some of the functionality of vertex(), using the point()
and line() functions already covered. Although this may seem like an exercise in futility, I
think it is helpful to have a sense of what’s happening internally, before you rely on these
higher-level commands. In addition, you’ll see that by going a little lower level, other inter-
esting creative possibilities arise. Afterward, we’ll look at similar functionality, the easy way.

/*
Point Recorder/Plotter
Ira Greenberg, November 23, 2005
*/

void setup(){
size(300, 300);
background(0);

// create arrays to hold x, y coords
float[]x = new float[4];
float[]y = new float[4];
// create a convenient 2 dimensional
// array to hold x, y arrays
float[][]xy = {x, y};

//record points
//x positions
xy[0][0] = 50;
xy[0][1] = 250;
xy[0][2] = 250;
xy[0][3] = 50;

//y positions
xy[1][0] = 50;
xy[1][1] = 50;
xy[1][2] = 250;
xy[1][3] = 250;

// call plotting function
makeRect(xy);

}

void makeRect(float[][]pts){
stroke(255);
smooth();

LINES

211

6

617xCH06.qxd 4/20/07 3:28 PM Page 211

for (int i=0; i<pts[0].length; i++){
//plots vertices
strokeWeight(5);
point(pts[0][i], pts[1][i]);

//plot connecting lines
strokeWeight(.5);
if (i>0){
line(pts[0][i], pts[1][i], pts[0][i-1], pts[1][i-1]);

}
if (i== pts[0].length-1){
line(pts[0][i], pts[1][i], pts[0][0], pts[1][0]);

}
}

}

Figure 6-32. Point Recorder/Plotter sketch

Hopefully some of this looks familiar. You’ve already used for loops to run through the
indices of an array, as well as created your own custom functions to modularize a process.
This example also introduces a new variation on an older theme—2D arrays—and also
utilizes another simple rendering option, the smooth() function. However, before I discuss
either of these new structures, let’s look at what’s happening in this sketch.

Within setup(), I created a couple of arrays and populated them with coordinate data
describing the vertices of a square. Obviously, if you were going to use a vertex coordinate
recording process like this for real, you would not hard-code in the coordinate values,
which if you remember are called magic numbers and are generally to be avoided.
However, to keep things simple I broke my own rule. After I fill the array with these values,

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

212

617xCH06.qxd 4/20/07 3:29 PM Page 212

I call my custom function makeRect(), passing the arrays to the function. makeRect() plots
points based on the coordinate data in the arrays, and then draws lines between the
points. I needed to use the two conditional if statements to ensure that the connecting
lines were drawn to the right points, based on the value of i in the for loop. Remember
that arrays are zero-indexed, meaning that the first position is at [0], not [1]. If you
request an index position in an array that doesn’t exist, you’ll get an error. The first condi-
tional statement ensures that this doesn’t happen. The second conditional statement
checks when the loop is in its last cycle, and then simply connects the last point back to
the initial point, closing the path. Another way to have done this would be to have elimi-
nated the last conditional statement and just put a line after the for loop, connecting
the last point back to the first, such as line(pts[0][pts[0].length-1], pts[1][
pts[0].length-1], pts[0][0], pts[1][0]);.

This last code line may look pretty confusing, mostly because of the 2D arrays. These
structures are really not that confusing to conceptually grasp, but they are visually and
procedurally complex to work with. If you really don’t like them, you don’t need to use
them, as you can always substitute two regular one-dimensional arrays in their place.
However, many people use them, so it’s good to be able to recognize and understand how
they work. In truth, there is really no such thing as a multidimensional array structure in
Processing or Java. Since arrays can hold any data type in Processing and Java, they can also
hold other arrays. Multidimensional arrays are just arrays of arrays. In the code example, I
created two coordinate arrays, float[]x and float[]y, and then to be a pest, stuck these
into another 2D array, float[][]xy. I covered arrays in detail in Chapter 3, but a little
review on how to declare/initialize them might be helpful. There are two ways to
declare/initialize arrays in Processing. The first way is as follows:

float[]x = new float[array length];

This creates a new array object and reserves a number of indices in memory. After you
declare and instantiate an array this way, each index will have a default value assigned to
it, based on the data type you’re using; for float arrays, that would be 0.0. You still need
to assign specific values to each index position in the array. For example:

x[0] = .2;
x[1] = .3;
x[2] = .7;
x[3] = .1;

The second way to declare and initialize an array is somewhat of a shortcut:

float[]x = {val 1, val 2, val 3, ...};

This approach works great when you already know the values to put in the array.

Both of these approaches can also be broken into two steps, which you might use if you
needed your array variable to be declared at the top of your program (giving it global
scope), but also wanted to instantiate the array in setup().

float[]x;
x = new float[array length];

LINES

213

6

617xCH06.qxd 4/20/07 3:29 PM Page 213

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

214

This other way is less common:

float[]x;
x = new float []{val-1, val-2, val-3...};

Getting back to the 2D array float[][]xy, this array just holds two other arrays. In this
case, both of the internal arrays x[] and y[] are the same size, or length, but they don’t
actually need to be. For example, the following is perfectly legal:

int[]months = new int[12];
int[]weeks = new int[52];
int[]days = new int[365];
int[][]year = {months, weeks, days};

year is still a 2D array, even though it contains three arrays, each with a different length. A
3D array, which I don’t recommend using, would be an array containing 2D arrays (yuck).

To access the first value in the first array in xy[][], you use xy[0][0];. To access the sec-
ond value in the first array, you use xy[0][1];. To access the first value in the second
array, you use xy[1][0]; to access the second value in the second array, you use
xy[1][1]. Do you see the pattern? Here’s one more: if you wanted to access the 17th
value in the 26th array, you’d write arrayname[25][16]. One other metaphor that might
help you visualize a 2D array is a multi-drawer filing cabinet. The first set of brackets of a
2D array can be thought of as the drawers of the filing cabinet, and the second set of
brackets represent the files in each drawer. You’ll be using arrays a whole lot throughout
the book, so rest assured—if it didn’t stick this time, it will eventually.

Anti-aliasing using the smooth function
The other new function I used in the plotter example was smooth(), which anti-aliases
the screen output. Anti-aliasing is essentially a blending trick, providing a smooth edge to
screen output. Since the screen is composed of discrete rectangular pixels in a rigid grid,
diagonal and curved edges won’t coincide precisely with the pixel grid, and will thus
appear jagged. Anti-aliasing compensates for this by filling in edge pixels with varying
colors/values, based on an anti-aliasing algorithm. For example, a relatively simple anti-
aliasing algorithm could be to evaluate the percent a pixel is overlapped by a shape’s ideal
edge (the edge if it weren’t converted to jagged pixels), and then fill those overlapped pix-
els with a color value based on the edge color multiplied by the percent of overlap. A pop-
ular, but far more processor-intensive anti-aliasing technique is called supersampling, in
which an image in internally rendered to a pixel buffer (not to the screen) multiple times
larger than it actually is. Thus, numerous pixels now represent each original image pixel.
Color values can then be evaluated at different points on the original pixel (where each of
the extra pixels now represent a part of the original pixel) and averaged. After the averag-
ing is completed, the image is reduced to its normal size and rendered to the screen.

617xCH06.qxd 4/20/07 3:29 PM Page 214

As you might suspect, anti-aliasing techniques can dramatically impact performance, as
the anti-aliasing calculations take time. Processing therefore has two functions: smooth()
and noSmooth(). The first turns anti-aliasing on and the second turns it off. Anti-aliasing is
off by default in Processing. This simple example illustrates the visual difference between
aliasing and anti-aliasing in Processing; the ellipse on the left of Figure 6-33, using the
default rendering state, is aliased, and the ellipse on the right is anti-aliased using
Processing’s smooth() function.

size(430, 220);
strokeWeight(2);
ellipseMode(CORNER);
//aliased
ellipse(10, 10, 200, 200);
smooth();
//anti-aliased
ellipse(220, 10, 200, 200);

Figure 6-33. Anti-aliasing example

Please note that calling smooth() can slightly reduce the stroke weight of fine lines. This
can become a factor when you specify small stroke weights. Type in Processing utilizes its
own anti-aliasing procedure, so calling smooth() will have no impact on the type’s edges.
To specify anti-aliasing with type, you need to either specify the smooth parameter when
calling the createFont() function, or go to Tools ➤ Create Font and select the Smooth
option. Type is always anti-aliased in OS X.

Returning to the Point Recorder/Plotter sketch, I want to give one further example illus-
trating another cool feature of using this record/plot approach. Since the point data is
recorded in the xy[][] array and then plotted to the screen, I can manipulate or utilize
the point information in the middle of the plotting. The best way to handle this is to create
another simple function that I can pass the point data to for further processing. You can
think of this process like an assembly line, where, for example, a mechanical arm moves a
component down the line, while other machines paint, weld, and bend it. In the next
example, as the points are processed in the makeRect() function, they get sent to the
scribble() function, which creates scribbly lines between the points. See Figure 6-34 for
the screen output of this example.

L INES

215

6

617xCH06.qxd 4/20/07 3:29 PM Page 215

/*
Scribble Plotter
Ira Greenberg, November 24, 2005
*/

//some scribble style constants that control
//how the scribble plotting works
int SCRIBBLE = 0;
int HATCHING = 1;

void setup(){
size(300, 300);
background(0);

// create arrays to hold x, y coords
float[]x = new float[4];
float[]y = new float[4];
// create a convenient 2 dimensional
// array to hold x, y arrays
float[][]xy = {x, y};

//record points
//x positions
xy[0][0] = 50;
xy[0][1] = 250;
xy[0][2] = 250;
xy[0][3] = 50;

//y positions
xy[1][0] = 50;
xy[1][1] = 50;
xy[1][2] = 250;
xy[1][3] = 250;

// call plotting function
makeRect(xy);

}

void makeRect(float[][]pts){
stroke(255);
smooth();

// scribble variables, that get passed as arguments
// to the scribble function
int steps = 100;
float scribVal = 3.0;
for (int i=0; i<pts[0].length; i++){
//plots vertices
strokeWeight(5);
point(pts[0][i], pts[1][i]);

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

216

617xCH06.qxd 4/20/07 3:29 PM Page 216

LINES

217

6

//call scribble function
strokeWeight(.5);
if (i>0){
scribble(pts[0][i], pts[1][i], pts[0][i-1], pts[1][i-1], ➥

steps, scribVal, SCRIBBLE);
}
if (i== pts[0].length-1){
// show some hatching between last 2 points
scribble(pts[0][i], pts[1][i], pts[0][0], pts[1][0], steps, ➥

scribVal*2, HATCHING);
}

}
}

/*
scribble function plots lines between end points,
determined by steps and scribVal arguments.
2 styles are available: SCRIBBLE and HATCHING, which
are interestingly only dependent on parentheses
placement in the line() function calls.
*/
void scribble(float x1, float y1, float x2, float y2, int steps, ➥

float scribVal, int style){

float xStep = (x2-x1)/steps;
float yStep = (y2-y1)/steps;
for (int i=0; i<steps; i++){
if(style == SCRIBBLE){
if (i<steps-1){
line(x1, y1, x1+=xStep+random(-scribVal, scribVal), y1+= ➥

yStep+random(-scribVal, scribVal));
}
else {
// extra line needed to attach line back to point-
// not necessary in HATCHING style
line(x1, y1, x2, y2);

}
}
else if (style == HATCHING){

line(x1, y1, (x1+=xStep)+random(-scribVal, scribVal), ➥

(y1+=yStep)+random(-scribVal, scribVal));
}

}
}

617xCH06.qxd 4/20/07 3:29 PM Page 217

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

218

Figure 6-34. Scribble Plotter sketch

There’s nothing new in this sketch. However, there are a few details that might need a little
clarification. The two constant variables SCRIBBLE and HATCHING have global scope since I
declared them at the top of the program.

int SCRIBBLE = 0;
int HATCHING = 1;

I passed them in as arguments from the makeRect() function to the scribble() function.
They are capitalized, denoting that they are constants and should not be assigned a new
value. If I really wanted to enforce that they shouldn’t be changed, I could have prefaced
the declaration statements with the word final, as in final int HATCHING = 1. final is
technically a Java keyword—it’s not within the Processing API—but it can be used within
Processing. If you expand upon this sketch (which I hope you do), and want to add another
scribble-style algorithm, then create a new constant, pass it as an argument, and detect for
it in the scribble() function.

Hopefully you can make some sense of the scribble() function. I’m dividing up the x and
y distances between the starting and ending points (passed into the function), and then
plotting lines to those intermediate positions. The random() function just jitters the place-
ment of the line vertices. The SCRIBBLE style requires an extra line of code to ensure that
the final line connects back to the original point. Try commenting out the line() function
call within the else block inside the scribble function() conditional block.

617xCH06.qxd 4/20/07 3:29 PM Page 218

LINES

219

6

else {
// extra line needed to attach line back to point- ➥

not necessary in HATCHING style
line(x1, y1, x2, y2); //try commenting this line out

}

The HATCHING style doesn’t require this fix. Finally, you’ll notice that I use the same variable
name, steps, for the local variable in the makeRect() function and the parameter in
the scribble() function. I can do this because the steps variable is declared within the
makeRect() function, not at the top of the sketch. Therefore, it is local in scope to
the makeRect() function and not visible anywhere else. Thus, I can use the same-named
variable in both functions without any conflict. Of course, you can use unique names if
that seems simpler to you. Personally, I find it hard to keep coming up with new related
names, so I tend to reuse local variable names.

Well, enough of this low-level point recording business—let’s luxuriate through the rest of
this chapter using Processing’s user-friendly vertex() function.

Applying the vertex function
The vertex() function is called between the beginShape() and endShape() functions,
which internally take care of the point recording and rendering just discussed. You’ve
looked at the POINTS mode already. The LINES mode works similarly, except instead of
rendering points, vertices are connected by lines in groups of two. For example, the
following code generates a horizontal line:

size(300, 300);
background(255);
beginShape(LINES);
vertex(20, height/2);
vertex(width-20, height/2);
endShape();

Since the lines are laid down in groups of two vertices, adding a third vertex() function
call will have no effect on the output:

size(300, 300);
background(255);
beginShape(LINES);
vertex(20, height/2);
vertex(width-20, height/2);
vertex(width/2, height-20); //will have no effect
endShape();

617xCH06.qxd 4/20/07 3:29 PM Page 219

I need a fourth vertex() call to generate another line:

size(300, 300);
background(255);
beginShape(LINES);
vertex(20, height/2);
vertex(width-20, height/2);
vertex(width/2, height-20);
vertex(width/2, 20);
endShape();

This mode isn’t much of an improvement over just calling two line() functions. The fol-
lowing code, for example, gives the exact same output as the last, but in four lines rather
than eight:

size(300, 300);
background(255);
line(20, height/2, width-20, height/2);
line(width/2, height-20, width/2, 20);

Creating line strips
The situation, however, changes once you try to generate a line strip, which uses a no-
argument version of beginShape(). By default, beginShape() creates an open and filled
path. You need to call noFill() if you want to generate an unfilled line strip. For example,
the next sketch, shown in Figure 6-35, fills the display window with random vertices all
connected by a continuous path. If you used the line() function, you would need to keep
feeding previous second point positions into the next line call. I implemented this
approach as a comparison, which I think you’ll agree is a much less elegant solution.

// elegant vertex() appraoch
size(300, 300);
background(255);
strokeWeight(3);
noFill();
smooth();
beginShape();
for (int i=0; i<100; i++){
vertex(random(width), random(height));

}
endShape();

// kludgy line() approach
size(300, 300);
background(255);
strokeWeight(3);

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

220

617xCH06.qxd 4/20/07 3:29 PM Page 220

LINES

221

6

smooth();
float x = random(width);
float y = random(height);
for (int i=0; i<100; i++){
float x2 = random(width);
float y2 = random(height);
line(x, y, x2, y2);
x = x2;
y = y2;

}

Figure 6-35. Line Strip sketch

Generating line strips opens up some interesting possibilities. One of these is maze
creation. Rather than considering maze structures as purely logic puzzles, which are also
very interesting, I’m going to focus on the aesthetics of the geometric patterning of mazes.
One fairly simple pattern is a concentric path, which begins at either an outer or inner
boundary and proceeds to the opposite boundary with some predetermined rule pattern.
For example, the rule might be to turn 90 degrees when you get within a certain distance
of an existing boundary.

617xCH06.qxd 4/20/07 3:29 PM Page 221

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

222

The following sketch creates a concentric maze, but instead of using a more elegant rule-
based algorithm, my cruder solution simply alters a vertical and horizontal stepping vari-
able each iteration of the loop, beginning at the outer boundary. My implementation does
allow you to have asymmetry with regard to the x- and y-axes, as well as use any display
window size. I also utilize a few new functions in the loop that will require some clarifica-
tion. Figure 6-36 shows the output of the code.

/*
Concentric Maze
Ira Greenberg, November 25, 2005
revised October 18, 2006
*/

size(400, 400);
background(0);
strokeWeight(1);
stroke(255);
smooth();
float x = width-1;
float y = height-1;
float y2 = 0, x2 = 0;
float h = 0, w = 0;

//these values can be changed
float wStep = 10.0;
float hStep = 10.0;
noFill();
beginShape();
vertex(x-w, y2+h);
for (int i=min(width, height); i>min(width, height)/2; ➥

i-=max(wStep, hStep)){
vertex(x-w, y-h);
vertex(x2+w, y-h);
vertex(x2+w, y2+h);
w+=wStep;
vertex(x-w, y2+h);
h+=hStep;

}
endShape();

617xCH06.qxd 4/20/07 3:29 PM Page 222

Figure 6-36. Concentric Maze sketch

Before I describe the new min() and max() functions I used in the sketch, I just want to
make sure you fully understand the following statements:

float x = width-1;
float y = height-1;
float y2 = 0, x2 = 0;
float h = 0, w = 0;

In the first two lines, I subtract 1 from the width and height properties. I do this so that I
can see the maze output on the right and bottom edges of the display window. Try remov-
ing the subtraction to see the difference. In the next two lines, I declare both the y2 and
x2 variables as floats, and do the assignment on a single line. This is just a shortcut. I
could have done the assignment on two lines as well. I do the same thing on the next line
with the w and h variables. All four of these lines could also have been put on one line.

float y2 = 0, x2 = 0, h = 0, w = 0;

However, the benefit of only having to write “float” once is offset by the visual complexity
of so many assignments. Ultimately, these type of issues are a matter of personal style.

L INES

223

6

617xCH06.qxd 4/20/07 3:29 PM Page 223

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

224

The new function calls I used, min() and max(), are stuck in the head of the for loop:

for (int i=min(width, height); i>min(width, height)/2; i-=max(wStep,
hStep)){...

The min() and max() functions each take two arguments and spit back the lower or higher
value, respectively. I used them to ensure that the maze was drawn correctly, regardless of
what the display window or wStep and hStep values were set to. The problem they solve is
correcting for potential asymmetrical values assigned to the aforementioned variables. For
example, if the width and height arguments in the size() function were set to 600 and
400, my loop wouldn’t be able to adjust itself if I were using width to control the loop
limit. I would always need the smaller dimension to be the loop limit for the auto-
adjustment to work. Since (theoretically) users may sometimes make the width argument
bigger than height, or vice versa, there is no way to hard-code a value as the loop limit. By
using the min() and max() functions, the loop automatically figures out the limiting vari-
able (either the minimum value of either width or height, or the maximum value of wStep
or hStep) and adjusts itself appropriately. This is a hard concept to explain in words, so I
suggest playing with the values for width, height, wStep, and hStep. You can also try sub-
stituting the following for loop head into the sketch:

for (int i=width; i>width/2; i-=wStep)

while continuing to change all four values. You may notice that the substitute loop head
creates less ordered but more interesting output.

Next I created a tiled version of the maze (see Figure 6-37). The sketch puts together a
bunch of concepts discussed thus far in this chapter. There’s a lot more that could be done
with this sketch—for example, adding the scribble() function or additional random()
functions. You could also add another maze pattern algorithm in the createMaze() func-
tion. I’ve included comments that show you what variables you can safely change. (Of
course, safety aside, it‘s also helpful to sometimes break the code to get a better sense of
how it works.)

/*
Maze Tile 1
Ira Greenberg, November 25, 2005
revised October 18, 2006
*/

// declare some vars
float x, y, y2, x2, h, w, xShift, yShift;

//these values can be changed
int xSclFactor = 3;
int ySclFactor = 3;
float wStep = 4;
float hStep = 4;

617xCH06.qxd 4/20/07 3:29 PM Page 224

LINES

225

6

void setup(){
//these values can be changed
size(400, 400);
background(0);
strokeWeight(1);
stroke(255);
noFill();
smooth();
//end changeable stuff

x = width/xSclFactor;
y = height/ySclFactor;
y2 = x2 = 0;
for (int i=0; i<width; i+=x){
for (int j=0; j<height; j+=y){
h = w = 0;
yShift = j;
xShift = i;
createMaze();

}
}

}

void createMaze(){
beginShape();
vertex((x-w)+xShift, (y2+h)+yShift);
for (float i=min(width/xSclFactor, height/ySclFactor); ➥

i>min(width/xSclFactor, height/ySclFactor)/2; ➥

i-=max(wStep, hStep)){
vertex((x-w)+xShift, (y-h)+yShift);
vertex((x2+w)+xShift, (y-h)+yShift);
vertex((x2+w)+xShift, (y2+h)+yShift);
w+=wStep;
vertex((x-w)+xShift, (y2+h)+yShift);
h+=hStep;

}
endShape();

}

617xCH06.qxd 4/20/07 3:29 PM Page 225

Figure 6-37. Maze Tile 1 sketch

Line loops
It’s also possible to close a line strip, turning it into a line loop. The endShape() function
has an optional CLOSE argument that closes the strip. Since the CLOSE mode generates
complete shapes, I thought it would be fun to generate some polygonal geometry; and
the best (and easiest) way to do that is to use a little trigonometry. Here’s a very simple
sketch that generates a triangle (see Figure 6-38). (Yes, I know Processing comes with a
triangle() function; but it’s actually a lot easier to use a little trig to calculate the vertices
of a triangle rather than having to explicitly set the vertices. Also, once you have the
triangle code, you can easily modify it to generate any regular polygon—which I’ll show
you how to do shortly.)

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

226

617xCH06.qxd 4/20/07 3:29 PM Page 226

LINES

227

6

//Create a Triangle
size(400, 400);
background(0);
stroke(255);
strokeWeight(5);
smooth();
noFill();
float x = 0, y = 0;
// sets initial shape rotation
float angle = 30;

beginShape();
for (int i=0; i<3; i++){
x = width/2+cos(radians(angle))*width/2.5;
y = height/2+sin(radians(angle))*width/2.5;
vertex(x, y);
// create an equilateral tirangle
angle+=120;

}
endShape(CLOSE);

Figure 6-38. Create a Triangle sketch

Save for the two trig functions, the rest of this sketch should look pretty familiar. I think
you’ll also soon agree that implementing trig is relatively easy in Processing. The triangle
code relies on trig relationships, based on the unit circle, to do its thing. I discuss
trigonometry briefly in Chapter 4, but also provide a more detailed explanation, including
an illustration of the unit circle, in Appendix B. Essentially, the unit circle tells you that the
location of any point on a circle can be found by using an angle of rotation, commonly

617xCH06.qxd 4/20/07 3:29 PM Page 227

called theta, and the radius of the circle. However, the unit circle lives in a polar coordi-
nate system, not the happy Cartesian system we use on a computer screen. Thus, you also
need to convert from the polar to the Cartesian coordinate system to get your x and y
coordinates. The two general statements to do all of this are as follows:

x coordinate = x position of the center of circle + cos(angle of rotation in radians) * radius

y coordinate = y position of the center of circle + sin(angle of rotation in radians) * radius

Returning to the two trig expressions in the triangle sketch, I used the center of the display
window as the center point of the unit circle, which will also be the center point of the
triangle. The function radians(angle) converts from degrees to radians; the actual con-
version expression is (angle in radians) = (angle in degrees) * pi / 180, which is what the
radians() function encapsulates. Lastly, I used width/2.5 as the radius.

Processing includes a function that lets you control how lines join together. Earlier, you
looked at the function strokeCap(), which controls the end caps of lines. The function
strokeJoin() controls the way the end caps come together to form joints. There are three
different join options, in the form of integer arguments (constants): MITER, which is the
default; BEVEL; and ROUND. This next example uses the triangle code to show the difference
in the respective join options (see Figure 6-39 for the output).

//create 3 triangles
size(600, 200);
background(0);
stroke(255);
noFill();
strokeWeight(10);
smooth();
float x = 0, y = 0;
// sets initial shape rotation
float angle = 30;
// join types
int[]joins = {MITER, BEVEL, ROUND};
for (int j=1; j<4; j++){
beginShape();
strokeJoin(joins[j-1]);
for (int i=0; i<3; i++){
x = (width/4)*j+cos(radians(angle))*width/8;
y = height/2+sin(radians(angle))*width/8;
vertex(x, y);
// create an equilateral tirangle
angle+=120;

}
endShape(CLOSE);

}

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

228

617xCH06.qxd 4/20/07 3:29 PM Page 228

LINES

229

6

Figure 6-39. Create 3 Triangles sketch

Polygons and patterns
Now that you have a basic understanding about how the trig functions can be used to
identify a point on a circle, you can exploit that knowledge to generate any regular poly-
gon. (Even if you don’t yet fully grasp—or even care—how the trig functions work, you
can still use them. In fact, through using them, you’ll get a better understanding of how
they work than through reading about them). The following example incorporates the
beginShape() and endShape(CLOSE) functions in a basic polygon-creation algorithm (the
output is shown in Figure 6-40):

/*
Poly Maker
Ira Greenberg, November 26, 2005
revised October 18, 2006
*/

void setup(){
size(400, 400);
background(0);
smooth();
noFill();
makePoly(width/2, height/2, 9, 150, 255, 8, MITER);

}

void makePoly(int x, int y, int points, float radius, ➥

int strokeCol, float strokeWt, int strokeJn){
float px=0, py=0;
float angle = 0;
stroke(strokeCol);
strokeJoin(strokeJn);
strokeWeight(strokeWt);
beginShape();

617xCH06.qxd 4/20/07 3:29 PM Page 229

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

230

for (int i=0; i<points; i++){
px = x+cos(radians(angle))*radius;
py = y+sin(radians(angle))*radius;
vertex(px, py);
angle+=360/points;

}
endShape(CLOSE);

}

Figure 6-40. Poly Maker sketch

Try changing some of the argument values in the function call makePoly(width/2,
height/2, 9, 150, 255, 8, MITER);. You can now use the makePoly() function to do
some interesting things. Overlapping geometry can lead to fascinating patterns. This was
one of the first experiments I did when I was learning to program that got me really
excited about the aesthetic potential of code.

The last three sketches in the chapter generate geometric patterns. I’ve included two
screen shots for each sketch. The first sketch, shown in Figures 6-41 and 6-42, is a
polygonal table structure, with a bunch of random() functions thrown in. The second,
shown in Figures 6-43 and 6-44, is a spiral built of polygons; and the third, shown in
Figures 6-45 and 6-46, is a polystar constructed of overlapping radial geometry. This last
example utilizes a modified polygon function that creates both regular polygons and poly-
stars. A “polystar,” which is my own made-up name, is just a polygon with a second radius,
like a star. These two radii can also have both negative and positive values. As always, there
are numerous values to change in all three of these sketches, with a wide range of poten-
tial output. These examples incorporate much of the stuff covered in this chapter, so I’d
take some time with them before heading to Chapter 7. Also try not to worry if some/most
of the code still looks like gobbledygook. You’ll be revisiting all the coding concepts in this
chapter throughout the rest of the book.

617xCH06.qxd 4/20/07 3:29 PM Page 230

Poly Pattern I (table structure)

/*
Poly Pattern I
Ira Greenberg, November 26, 2005
revised October 18, 2006
pattern: table structure
*/
void setup(){
size(400, 400);
background(0);
smooth();

//you can change these values
int hGap = 12;
int wGap = 12;
int[]rads = { 3, 4, 5, 6, 7, 8 };
int randSize = 3;
int randPos = 3;

for (int j=0; j<=width; j+=wGap){
for (int i=0, radCntr=0; i<=height; i+=hGap, radCntr++){
makePoly(j+random(-randPos, randPos), i+randPos, rads[radCntr],➥

wGap/2+random(-randSize, randSize), 255, radCntr*.4, MITER);

// reset counter to avoid ArrayIndexOutOfBounds error
if (radCntr>rads.length-2){
radCntr = 0;

}
}

}
}

void makePoly(float x, float y, int points, float radius, ➥

int strokeCol, float strokeWt, int strokeJn){
float px=0, py=0;
float angle = 0;
stroke(strokeCol);
noFill();
strokeJoin(strokeJn);
strokeWeight(strokeWt);
beginShape();
for (int i=0; i<points; i++){
px = x+cos(radians(angle))*radius;
py = y+sin(radians(angle))*radius;
vertex(px, py);
angle+=360/points;

}
endShape(CLOSE);

}

LINES

231

6

617xCH06.qxd 4/20/07 3:29 PM Page 231

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

232

Figure 6-41. Poly Pattern I (table structure) sketch, variation 1

Figure 6-42. Poly Pattern I (table structure) sketch, variation 2

617xCH06.qxd 4/20/07 3:29 PM Page 232

Poly Pattern II (spiral)

/*
Poly Pattern II
Ira Greenberg, November 26, 2005
revised October 18, 2006
pattern: spiral
*/

void setup(){
size(400, 400);
background(0);
smooth();
float radius = 0, radius2 = 0;
float x = 0, y = 0;
float ang = 0;
while(x<width*1.5){
y = height/2+sin(radians(ang))*radius;
x = width/2+cos(radians(ang))*radius;
makePoly(x, y, 8, radius2, int(radius2*30), 6, BEVEL);

// you can change these values
ang+=1.1;
radius+=.059;
radius2+=.0016;

}
}

void makePoly(float x, float y, int points, float radius, ➥

int strokeCol, float strokeWt, int strokeJn){
float px=0, py=0;
float angle = 0;
stroke(strokeCol);
noFill();
strokeJoin(strokeJn);
strokeWeight(strokeWt);
beginShape();
for (int i=0; i<points; i++){
px = x+cos(radians(angle))*radius;
py = y+sin(radians(angle))*radius;
vertex(px, py);
angle+=360/points;

}
endShape(CLOSE);

}

LINES

233

6

617xCH06.qxd 4/20/07 3:29 PM Page 233

Figure 6-43. Poly Pattern II (spiral) sketch, variation 1

Figure 6-44. Poly Pattern II (spiral) sketch, variation 2

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

234

617xCH06.qxd 4/20/07 3:29 PM Page 234

LINES

235

6

Poly Pattern III (polystar)

/*
Poly Pattern III
Ira Greenberg, November 26, 2005
revised October 18, 2006
Pattern: PolyStar
*/

void setup(){
size(400, 400);
background(random(255));
smooth();
float ang = 0;
int steps = int(random(30, 200));
for (int i=0; i<steps; i++){
makePolyStar(width/2, height/2, int(random(3, 10)), ➥

ang+=360/steps, random(-width/2, width/2), ➥

random(-width/2, width/2), int(random(255)), ➥

random(.25, 5), MITER);
}

}

void makePolyStar(float x, float y, int points, float initAngle, ➥

float radius, float radius2, int strokeCol, float strokeWt, ➥

int strokeJn){
float px=0, py=0;
float angle = initAngle;
float initRadius = radius;
float halfRadius = radius2;
stroke(strokeCol);
noFill();
strokeJoin(strokeJn);
strokeWeight(strokeWt);
beginShape();
// if 2nd radius create polystar
// else create regular poly
if (radius2 !=0){
points*=2;

}
for (int i=0; i<points; i++){
//alternates radius length if polystar
if (radius2 != 0 && i%2 == 0){
radius = halfRadius;

}
else {
radius = initRadius;

}
px = x+cos(radians(angle))*radius;

617xCH06.qxd 4/20/07 3:29 PM Page 235

236

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

py = y+sin(radians(angle))*radius;
vertex(px, py);
angle+=360/points;

}
endShape(CLOSE);

}

Figure 6-45. Poly Pattern III (polystar) sketch, variation 1

617xCH06.qxd 4/20/07 3:29 PM Page 236

6

237

LINES

Figure 6-46. Poly Pattern III (polystar) sketch, variation 2

Summary
The beginning of this chapter let you look a little under Processing’s hood, and it discussed
how Processing functions are internally implemented. Once you got past this section, you
dove into Processing’s point() and line() functions, and generated a couple of interest-
ing linear outputs. This chapter utilized lots of randomization in the sketches, demonstrat-
ing the power of controlled chaos as a creative coding force. You began with some simple,
unstructured sketches that executed one line at a time, and continued on to more com-
plex sketches that utilized modular structures, such as Processing’s setup() function, as
well as some custom functions and nested loops.

617xCH06.qxd 4/20/07 3:29 PM Page 237

You worked with a number of Processing’s functions in this chapter, including point(),
line(), vertex(), beginShape(), and endShape(). You also looked briefly at PImage,
which you’ll return to again in later chapters. Using the vertex() function, you created
some fairly complex table structures and maze patterns, and even tackled a little
trigonometry with the polygonal sketches.

A lot has been covered in this chapter, and I’d say you have earned a little brain downtime.
The next chapter will look at curves, which will include a review of a lot of the concepts
covered in this chapter. Of course, there will also be a fair amount of new (and I think
cool) stuff. I recommend, after your earned downtime, reviewing some of the sketches
covered in this chapter before moving on. I also think it might be a good time to refer to
the reference material in the earlier chapters (as well as the language reference in
Appendix A) on some of the more irksome concepts you might still be fuzzy on. Of course,
moderation aside, if you’re feeling up to it, just turn the page and dive into the joy of
curves.

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

238

617xCH06.qxd 4/20/07 3:29 PM Page 238

617xCH06.qxd 4/20/07 3:29 PM Page 239

617xCH07.qxd 4/17/07 1:38 PM Page 240

7 CURVES

617xCH07.qxd 4/17/07 1:38 PM Page 241

Curvy stuff is difficult for people to understand. Had I taken a calculus class earlier in my
life, this fact would have been blatantly obvious. When drawing directly from a model,
edges are indistinct and there are all sorts of subtle foreshortening. In time, you learn how
to, in a sense, “not draw” what’s not there, which is often the secret to allowing the curve
structures to emerge in the drawing. When it comes to coding, curves again prove espe-
cially challenging, and often require a more “mathy” approach than when working with
lines. Processing does makes it relatively easy to generate simple curves, but being able to
precisely control a combination of curves to create a form such as a human figure is very
difficult.

That being said, the additional effort and added complexity of dealing with curves is well
worth it, as there is something exciting about seeing organic forms and animation emerge;
it’s what really got me hooked on coding to begin with. In my classes, at the beginning of
a semester I’ll often show organic code-based animation examples to my students; this
always gets them oohing and ahhing. (Of course, they make other sounds when they begin
wrestling with the actual curve implementation and math.)

This chapter will explore curves in detail, beginning with how to make the transition
between straight lines and curves. After that, I’ll discuss creating curves using trig and
polynomials, and then I’ll explain Processing’s curve functions in depth.

Making the transition from lines to curves
I began the last chapter with a discussion about points, and showed how a line is really just
a continuous path of points. I eventually showed you how to utilize a more efficient system
of terminal vertices to describe the beginning and ending points of lines. Processing’s

line() function takes four arguments (the x and y components of two
points) and joins the points with a straight line. In beginning to think
about curves, you need to consider how Processing connects the two
points with a line, which you can then modify into a curve. As a review,
here is a simple script to generate a vertical line utilizing a series of
points, as shown in Figure 7-1:

size(200, 200);
background(255);
int margin = height/15;
strokeWeight(5);
for (int i=margin; i<height-margin; i++){
point(width/2, i);

}

Hopefully this looks very familiar. The for loop generates a vertical line in the middle of
the display window from a series of points, beginning at margin and ending at height
(of the display window) minus margin. You’ll remember that point() is really a call to the
line() function, using the same two points as arguments; that’s why I was able to change
the thickness of the points, and thus the line, with strokeWeight(5). As an example, here’s
the same sketch using line():

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

242

Figure 7-1.
Combining points

into a line

617xCH07.qxd 4/17/07 1:38 PM Page 242

size(200, 200);
background(255);
int margin = height/15;
strokeWeight(5);
for (int i=margin; i<height-margin; i++){
line(width/2, i, width/2, i); // notice both points are the same

}

In this simple sketch, it can be said in describing the line that the x position of the line
remains constant while the y position changes. You may remember that the slope of a
line is the change in y divided by the change in x. If you tried to figure out the slope of the
vertical line, you would use the following expression:

y2-y1/x2-x1

= ((height-margin)-margin)/(width/2-width/2)
= 174/0 // oops, can't divide by 0
slope = undefined

You see the problem with this expression—you can’t divide by 0. Therefore, a vertical line
has no slope, or the slope is undefined. How about a horizontal line? Following is the
sketch modified to make a horizontal line:

size(200, 200);
background(255);
int margin = width/15;
strokeWeight(5);
for (int i=margin; i<width-margin; i++){
line(i, height/2, i, height/2); // both points are the same

}

Calculating the slope of this line results in the following:

= (height/2-height/2)/((width-margin)-margin)
= 0/174
slope = 0

Confusingly, a horizontal line has a slope of 0. This is the kind of annoying detail that con-
tributes to many cases of “math coma.” We’re not going to focus on vertical and horizon-
tal lines (which aren’t terribly exciting). Instead, I’ll start with diagonals, which will lead to
curves—which are actually very interesting (honestly).

The equation for the vertical line was x = height/2, and the equation for the horizontal line
was y = width/2. You don’t need to really worry so much about equations, but it’s helpful
to understand a little about what’s happening to the x and y values when plotting different
types of lines and curves. You’ll notice in both the vertical and horizontal line equations
that only one value (x or y) is needed to describe the line. That’s because only one of
the values is changing; the other remains constant as the line is plotted. To describe a diag-
onal line, both of the x and y values need to change as the line is plotted. There are a
couple ways to express a line, but I think the simplest is using the slope-intercept form:

CURVES

243

7

617xCH07.qxd 4/17/07 1:38 PM Page 243

y = mx + b. y and x are just the coordinate values, m is the slope, and b is the place on the
y-axis that the line intercepts. Again, you don’t need to explicitly use the classical equa-
tions, but knowing them can help you better understand what’s happening in your sketch.

Here’s a diagonal line example (shown in Figure 7-2):

/*
Diagonal Line I
Ira Greenberg, December 3, 2005
*/
size(200, 200);
background(255);
int margin = width/15;
strokeWeight(5);
smooth();
float x = margin, y = margin;
float deltaX = 1.2;
float deltaY = 1.2;

if (deltaX>deltaY){
while(x<width-margin){
point(x, y);
x += deltaX;
y += deltaY;

}
} else{
while(y<height-margin){
point(x, y);
x += deltaX;
y += deltaY;

}
}

Figure 7-2. Combining points into a diagonal

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

244

617xCH07.qxd 4/17/07 1:38 PM Page 244

You should notice some familiar structures in this example. I called the smooth() function
to turn on anti-aliasing, and I used two while loops nested within a conditional if...else
structure to ensure that the line stays in the display window. Try changing the values of the
deltaX and deltaY variables to see how the diagonal changes (see Figures 7-3 and 7-4 for
a couple of examples).

deltaX = .7;
deltaY = 1.2;

Figure 7-3. A more vertical diagonal

deltaX = 1.4;
deltaY = .2;

Figure 7-4. A more horizontal diagonal

CURVES

245

7

617xCH07.qxd 4/17/07 1:38 PM Page 245

As the deltaX and deltaY values become farther apart, the line visually approaches either
a vertical or horizontal line. The most diagonal line (if there is such a thing) is when deltaX
and deltaY are equal, or the change in x and the change in y are equal. As you might have
guessed, this is also when the slope is 1. Slope is a very important property in describing
motion, which I’ll cover in Chapter 11. Speed is the rate at which position is changing.
When you plot a diagonal line as a function of distance and time, as shown in Figure 7-5,
the slope of the plotted line is speed.

Figure 7-5. Speed plot

Creating your first curve

Without acceleration, speed is a constant and will always generate a straight line, as the
rate of change will be constant. Starting with different constant values of speed, you can
change the steepness, or slope, of the line, as the previous example showed, but you can
never get a curve if you keep the speed (or slope) constant. Thus, it would seem logical, if
you wanted to generate a curve, to use a changing speed value—which is precisely what
you’ll do next. This is also the reason why curves, with regard to motion, describe acceler-
ation, or the change in speed. This next sketch (shown in Figure 7-6) is a curve plot:

/*
Curve I
Ira Greenberg, December 3, 2005
*/
size(200, 200);
background(255);

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

246

617xCH07.qxd 4/17/07 1:38 PM Page 246

int margin = height/15;
strokeWeight(5);
smooth();
float x = margin, y = margin;
float xSpeed = 1.1, ySpeed = 1.02;
while(y<height-margin){
point(x, y);
x+=xSpeed; // arithmetic progression
y*=ySpeed; // geometric progression

}

Figure 7-6. Simple curve created from points

Congratulations, you just plotted your first curve! There are many ways to implement a
curve plot. I used a simple approach that increments x by xSpeed (using addition):

x+=xSpeed; // arithmetic progression

and y by ySpeed (using multiplication).

y*=ySpeed; // geometric progression

Notice that the initial values I assigned to the two speed variables are very different. In the
while loop, x is incremented by xSpeed in a similar fashion to how x was incremented by
deltaX in the diagonal example. x increases by 1.1 each iteration of the loop. This type
of progression, generated by adding a constant value (in this case 1.1) is called an
arithmetical progression. Here are the first and last three values of the progression, where
the initial values of x and y are both 13 (margin value):

CURVES

247

7

617xCH07.qxd 4/17/07 1:38 PM Page 247

First three values: 14.1, 15.2, 16.3

Last three values: 159.3, 160.4, 161.5

As you can see, the change between any two consecutive values will always be xSpeed
(1.1). In contrast, y is incremented by the constant 1.02 using multiplication. This is called
a geometric progression. Here are the first and last three values in this progression:

First three values: 13.26, 13.53, 13.80

Last three values: 181.04, 184.66, 188.35

The difference between any consecutive values will no longer be a constant value through-
out the entire progression. This change in speed generates a curve. Let’s alter some values
in the curve plot to see how it effects the curve (see Figures 7-7 and 7-8):

float xSpeed = .5, ySpeed = 1.02;

Figure 7-7. Faster falling curve

float xSpeed = 6.6, ySpeed = 1.11;

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

248

617xCH07.qxd 4/17/07 1:38 PM Page 248

Figure 7-8. Revealing the points making up the curve

In Figure 7-7, I just decreased xSpeed, making the curve fall faster, since the x progression
is slower. In the second example, I increased both variables considerably, maintaining a
similarly shaped curve, but with a much faster overall progression, revealing the points
making up the curve.

I want to look at some other relatively simple ways to generate curves; but before I do,
here are some more interesting examples building upon what you just learned
(see Figure 7-9). (If you don’t see any output in the examples, try raising the
strokeWeight(1.5) argument from 1.5 to 2 or above).

/*
Curves I
Ira Greenberg, December 4, 2005
*/
int steps = 300;
float[]x = new float[steps];
float[]y = new float[steps];
float[]xSpeed = new float[steps];
float[]ySpeed = new float[steps];

void setup(){
size(400, 400);
background(255);
float margin = height*.1;
smooth();
strokeWeight(1.5);

CURVES

249

7

617xCH07.qxd 4/17/07 1:38 PM Page 249

for (int i=0; i<steps; i++){
x[i] = 0;
y[i] = random(margin);
xSpeed[i] = random(.75, 1.2);
ySpeed[i] = random(1.0075, 1.04);

}

for (int i=0; i<steps; i++){
while(y[i]<height){
point(x[i], y[i]);
x[i]+=xSpeed[i];
y[i]*=ySpeed[i];

}
}

}

Figure 7-9. Falling random strands

This example uses arrays to generate 300 curves, with some random values. The overlap-
ping curves generate interesting forms, suggestive of flowing strands of hair or water. As
the points begin spacing out, a system of particles begins emerging. You can exploit this
phenomenon further by adding a minimal amount of collision detection, allowing the par-
ticles to deflect off the display window edges. The next example, shown in Figure 7-10, is
implemented a little differently and includes window edge detection.

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

250

617xCH07.qxd 4/17/07 1:38 PM Page 250

/*
Curves II
Ira Greenberg, December 4, 2005
*/
int particles = 25;
float[]x = new float[particles];
float[]y = new float[particles];
float[]xSpeed = new float[particles];
float[]ySpeed = new float[particles];
float[]accel = new float[particles];
float gravity = .75;

void setup(){
size(800, 400);
background(0);
smooth();
strokeWeight(1.5);
stroke(255);

//fill speed arrays with initial values
for (int i=0; i<particles; i++){
xSpeed[i] = random(.75, 1.2);
accel[i] = random(.005, .2);

}

for (int i=0; i<particles; i++){
//stop particle on collision with right edge of display window
while(x[i]<width){
x[i]+=xSpeed[i];

// double assignment creates y acceleration
ySpeed[i] += accel[i];
y[i]+=ySpeed[i];
point(x[i], y[i]);

// check ground detection only
if (y[i]>=height){
// reverse particle direction
ySpeed[i]*=-1;
// lower particle speed
ySpeed [i]*=gravity;
// keep particle from sliding out of window
y[i]=height;

}
}

}
}

CURVES

251

7

617xCH07.qxd 4/17/07 1:38 PM Page 251

Figure 7-10. Falling random bouncing strands

This example is similar to the last, but I achieved the curved motion using a slightly differ-
ent algorithm. Instead of multiplying y by a ratio, I used a double arithmetic incrementa-
tion. The lines

ySpeed[i] += accel[i];
y[i] += ySpeed[i];

create the acceleration. It may not be immediately apparent how this works. However, if
you look at a few values during the loop iterations, it becomes clear what’s happening. To
keep things simple, let’s assume the value assigned to accel, for one of the particles, is .1.
Following are the ySpeed and y values after five iterations:

iteration1: ySpeed= .1, y = .1
iteration2: ySpeed = .2, y = .3 (y change: .2)
iteration3: ySpeed = .3, y = .6 (y change: .3)
iteration4: ySpeed = .4, y = 1.0 (y change: .4)
iteration4: ySpeed = .5, y = 1.5 (y change: .5)

Notice how the y value is changing by an increasing interval: .2, .3, .4, .5; this is what gen-
erates the acceleration.

The display window collision detection allows the particles to remain active longer and
thus graphically add to the image. The detection is pretty straightforward: if a particle’s y
position is greater than or equal to the height of the display window, then reverse the
direction of the particle and also multiply ySpeed by the gravity variable. Here’s the code
snippet:

// check ground detection only
if (y[i]>=height){
// reverse particle direction
ySpeed[i]*=-1;

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

252

617xCH07.qxd 4/17/07 1:38 PM Page 252

// lower particle speed
ySpeed[i]*=gravity;
// keep particle from sliding out of window
y[i]=height;

}

This expression slowly reduces the particle’s velocity (ySpeed) until it is very near zero.
However, because ySpeed will actually never reach zero, I am forced to add the final
assignment, y[i]=height, which keeps the particles from slowly creeping off the bottom
of the screen. I’ll revisit this issue again in more detail in Chapter 11. As always, play with
the code. If you comment out this last assignment, you should notice the output is a little
lower in relation to the display window.

In the next example (shown in Figure 7-11), I pushed this particle effect a little further,
utilizing a new material property, more randomization, and additional display edge detec-
tion. There’s nothing really new in the example, but it should reveal some more of the
interesting effects you can get coding curved motion. This example can take a long time to
render—up to 30 seconds. Decreasing the strokeWtMin and strokeWtMax argument values
will speed things up. However, on some systems, too small a value may make the curves
undetectable.

/*
Curves III
Ira Greenberg, December 4, 2005
// this takes some time to render
*/

// changeable variables
int particles = 125;
int timeLimit = 2000;
float particleSpan = 2;
float accelMin = .005;
float accelMax = .2;
float strokeWtMin = 1.25;
float strokeWtMax = 1.6;
float materialMin = .25;
float materialMax = .99;
float gravity = .9;

// not meant to be changed
int timer;
float[]x = new float[particles];
float[]y = new float[particles];
float[]xSpeed = new float[particles];
float[]ySpeed = new float[particles];
float[]accel = new float[particles];
float[]material = new float[particles];
float[]strokeWts = new float[particles];

CURVES

253

7

617xCH07.qxd 4/17/07 1:38 PM Page 253

void setup(){
size(800, 400);
background(0);
smooth();
stroke(255);

//fill speed arrays with initial values
for (int i=0; i<particles; i++){
x[i] = random(width/2-10, width/2+10);
xSpeed[i] = random(-particleSpan, particleSpan);
accel[i] = random(accelMin, accelMax);
material[i] = random(materialMin, materialMax);
strokeWts[i] = random(strokeWtMin, strokeWtMax);

}

for (int i=0; i<particles; i++){
//timer controls while loop
timer = 0;
strokeWeight(strokeWts[i]);

while(timer++ < timeLimit){
x[i]+=xSpeed[i];
// double assignment creates y acceleration
ySpeed[i]+=accel[i];
y[i]+=ySpeed[i];
point(x[i], y[i]);

// check ground detection
if (y[i]>=height){
// reverse particle direction
ySpeed[i]*=-1*material[i];
// lower particle speed
ySpeed[i]*=gravity;
// keep particle from sliding out of window
y[i]=height;

}
// check wall detection
if (x[i]>=width || x[i]<0){
// reverse particle horizontal direction
xSpeed[i]*=-1;

}
}

}
}

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

254

617xCH07.qxd 4/17/07 1:38 PM Page 254

Figure 7-11. Curves simulating a fountain

Creating curves using trig
Another relatively easy way to generate a curve is to utilize a trig function. Sine and cosine
functions both generate a repeating periodic wave. Here’s a simple example (shown in
Figure 7-12):

//trig wave
size(400, 200);
background(0);
stroke(255);
float angle = 0;
float amplitude = 10;
float x = 0, y = 0;
float xSpeed = 1;
float frequency = 3.0;
smooth();

for (int i=0; i<width; i+=xSpeed){
strokeWeight(30);
x+= xSpeed;
//sin
y = height/3 + sin(radians(angle))*amplitude;
point(x, y);
//cosine
y = 2*(height/3) + cos(radians(angle))*amplitude;
point(x, y);
angle+=frequency;

}

CURVES

255

7

617xCH07.qxd 4/17/07 1:38 PM Page 255

Figure 7-12. Creating simple curves with trigonometry

The sin() and cos() functions are controlled by the incrementation of the angle (fre-
quency) and the value of the amplitude. Try changing these variables to see how the plots
are affected. You can also use a damping variable (which acts like gravity in the particle
example) to decrease the amplitude of the trig functions over time. Here’s an example of
this (see Figure 7-13):

//waves with damping
size(400, 200);
background(0);
stroke(255);
float angle = 0;
float amplitude = 30;
float x = 0, y = 0;
float xSpeed = 1;
float frequency = 6.0;
float damping = .994;
strokeWeight(3);
smooth();

for (int i=0; i<width; i+=xSpeed){
x+=xSpeed;
//sin
y = height/3 + sin(radians(angle))*amplitude;
point(x, y);
//cosine
y = 2*(height/3) + cos(radians(angle))*amplitude;
point(x, y);
amplitude*=damping;
angle+=frequency;

}

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

256

617xCH07.qxd 4/17/07 1:38 PM Page 256

Figure 7-13. Damping effect on curves

In the last chapter, I demonstrated a scribble function, where endpoints of a line were sent
to a function that randomly jittered points between the terminal points, creating a more
organic-looking line. You can use trig functions in a similar capacity. I thought it might be
interesting to put the particle effect together with the trig function to create particle
waves (see Figure 7-14); it will also be a good review of using custom functions.

This is a fairly complex sketch. Each part of it is encapsulated in a function, and there are
no global variables. Thus, the individual functions speak to each other through function
calls. I recommend playing with the sketch for a while before reviewing the code. I com-
pletely parameterized the main particle function, so it’s easy to mess with the variables
in the setup() structure—seeing how the changes affect the output, as illustrated in
Figure 7-15—before diving into the code guts.

/*
Particle Wave
Ira Greenberg, December 5, 2005
revised January 26, 2007
*/

void setup(){
size(800, 400);
background(0);
smooth();

/*lots of stuff to manipulate. I packed
the arguments into arrays just to make the
setParticles function argument/parameter
lists less unwieldy*/
//particle style
/* increase strokeWt if
you don't see any output*/
float strokeWt = 1.5;
float strokeCol= 255;
float[]strokeStyle = { strokeWt, strokeCol };

CURVES

257

7

617xCH07.qxd 4/17/07 1:38 PM Page 257

//particle limits
int timeLimit = 1000;
int particleCount = 100;
int[]particleLimits = { timeLimit, particleCount };

//particle dynamics
float amplitudeMin = .5;
float amplitudeMax = 4.0;
float frequencyMin = 4.0;
float frequencyMax = 40.0;
float materialMin = .25; // lead
float materialMax = .99; // rubber
float[]particleDynamics = { amplitudeMin, amplitudeMax, ➥

frequencyMin, frequencyMax, materialMin, materialMax};

// speed limits
float accelMin = .005;
float accelMax = .2;
float xSpeedMin = -2.0;
float xSpeedMax = 2.0;
float[]speedLimits = { xSpeedMin, xSpeedMax, ➥

accelMin, accelMax };

float gravity = .85;
//position of particle emitter
float emitterX = width/2;
float emitterY = 0;
float[]world = { gravity, emitterX, emitterY };

//start particle engine
setParticles(strokeStyle, particleLimits, ➥

particleDynamics, speedLimits, world);
}

// main particle engine - fully parameterized
void setParticles(float[]strokeStyle, int[]particleLimits,
float[]particleDynamics, float[]speedLimits, float[]world){
//create arrays
float[]xSpeed = new float[particleLimits[1]];
float[]ySpeed = new float[particleLimits[1]];
float[]accel = new float[particleLimits[1]];
float[]x = new float[particleLimits[1]];
float[]y = new float[particleLimits[1]];
float[]amplitude = new float[particleLimits[1]];
float[]frequency = new float[particleLimits[1]];
float[]material = new float[particleLimits[1]];

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

258

617xCH07.qxd 4/17/07 1:38 PM Page 258

// particle style
strokeWeight(strokeStyle[0]);
stroke(strokeStyle[1]);

//angle used as argument for makeWaves function call
float angle = 0;

//fill arrays
for (int i=0; i<particleLimits[1]; i++){
xSpeed[i] = random(speedLimits[0], speedLimits[1]);
accel[i] = random(speedLimits[2], speedLimits[3]);
amplitude[i] = random(particleDynamics[0], particleDynamics[1]);
frequency[i] = random(particleDynamics[2], particleDynamics[3]);
material[i] = random(particleDynamics[4], particleDynamics[5]);
//emitter initial position
x[i] = world[1];
y[i] = world[2];

}

// dynamics engine
for (int i=0; i<particleLimits[1]; i++){
for (int j=0; j<particleLimits[0]; j++){
x[i]+=xSpeed[i];
// add waviness to call to makeWaves function
x[i]=makeWaves(x[i], angle+=frequency[i], amplitude[i]);
ySpeed[i]+=accel[i];
y[i]+=ySpeed[i];
// plot function just calls point() method
plot(new float[]{
x[i], y[i] }

);

//ground detection
if (y[i]>=height){
ySpeed[i]*=-1*material[i];
ySpeed[i]*=world[0];
y[i] = height;

}
//wall detection
if (x[i]>=width || x[i]<=0){
xSpeed[i] *=-1;

}
}

}
}

CURVES

259

7

617xCH07.qxd 4/17/07 1:38 PM Page 259

//generate wave
float makeWaves(float x, float angle, float amplitude){
x+=sin(radians(angle))*amplitude;
return x;

}

// draw points
void plot(float[]pt){
point(pt[0], pt[1]);

}

Figure 7-14. Curves as particle waves, example 1

Figure 7-15. Curves as particle waves, example 2

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

260

617xCH07.qxd 4/17/07 1:38 PM Page 260

By using functions to organize a program, you get the benefit of modularity, but also the
burden of added abstraction. It doesn’t help that so many of the parameters are index
positions in arrays. However, with a sketch this complex, you need ways of cutting down
on the variable clutter. Another, and better, way to code this sketch would be using an
object-oriented approach. This would allow for even greater modularity and potential
code reuse. For example, I could create a class for each of the main elements in the
sketch: Particle, Emitter, Dynamics, Wave, World, and so forth. This would allow me to
really encapsulate the functionality of each of these constructs. I would also design the
relationships between these different classes. Of course, this approach also brings lots of
added abstraction to the process, so it’s not the best approach for new coders. Later in the
book, when you’re an old, salty hackster, I’ll approach some problems using object-
oriented programming (OOP). Before moving on, though, I want go over a few elements in
the last particle wave example.

I avoided global variables and declared local variables within the functions. This encour-
ages code reuse, as each function is a self-contained processing unit. To use the function,
you just need to know the parameter list, or the interface to the function. The parameter
list shows the input that the function requires to do its thing. The return type of the func-
tion shows what value, if any, the function returns when it is called. For example, the float
makeWaves() function returns a float value every time it’s called. Returning a value should
not be confused with outputting something to the display window. The plot() function,
for example, outputs points to the screen, but the function doesn’t return any value when
it is called. Another benefit of using all local variables defined within functions is that there
is no danger of name collisions. I can use the same named variables in each function with-
out any ambiguity because each variable has local scope. If I need the value of a variable
outside the function, I need to pass it as an argument, as I do throughout the program.

I used a bunch of convenience arrays in the setup() function. I use the term “conven-
ience” because I could have just passed the variables individually as arguments to the
setParticles() function. However, the parameter list, defined in the head of the
setParticles() function, would have needed to account for all these variables, including
their type. This list would have included 17 parameters. Instead, by packaging the variables
into logical arrays, I only needed to pass five arguments to the setParticles() function
(which of course needed five parameters of the same type declared in the head of
the function). The burden of this organizational abstraction is that once in the
setParticles() function, I needed to, as the function designer, carefully decode what
value each array index contained. However, since all the values required by the function
are passed in as arguments, once completed, I theoretically never have to mess with the
insides of this function again. If I want to change the output of the function, I simply
change the values I pass to it—it’s a black box construction.

One issue in this example that may be confusing to new coders is my use of function calls
within other functions, especially with regard to using a returned value in an assignment.
For example, from within the setParticles() function, I call the makeWaves() function:

// called from within the setParticles() function
x[i]=makeWaves(x[i], angle+=frequency[i], amplitude[i]);

Try not to get confused by all the array notation (all the [i]s) in the function. Everything
is efficiently getting processed in a for loop, and each of the variables is a primitive array;

CURVES

261

7

617xCH07.qxd 4/17/07 1:38 PM Page 261

the loop incrementally moves through each index of the array, processing all the data.
However, in any single iteration of the loop, only one value in each of the arrays is being
processed/used at a time. So, for example, the second iteration of the for loop i is equal
to 1, and therefore the second value in each of the arrays is the one being processed/used.
You should also notice that I am using x[i] as both the variable receiving the assignment
and the first argument in the makeWaves() function call. I remember being really confused
when I first came across this sort of thing—it didn’t seem to make sense. To understand
what’s happening, you need to consider the order in which things take place. Assignment
operations happen from right to left. Thus, the function will do its thing before the assign-
ment takes place. Since the makeWaves() function returns a float value, the returned value
is assigned to x[i] after the function finishes. I am just using the makeWaves() function to
increment the x[i] value by the trig function. The second argument, angle+=
frequency[i], increments the angle variable each iteration of the loop by the current
value of frequency[i]. The increasing angle value is needed by the makeWaves() function
to keep its internal trig function moving. The last minor syntax issue that might be confus-
ing to some readers is the following line:

plot(new float[]{ x[i], y[i] });

The plot() function requires a float array argument. The argument new float[]{ x[i],
y[i] } is an anonymous float array that I’m passing to the plot() function. It’s anonymous
because I didn’t assign the array to any variable; thus, its scope is limited to that moment
in the function, which is all I needed. I could also have put the statement on two lines,
like this:

float[] myPts = { x[i], y[i] };
plot(myPts);

Creating curves using polynomials
The last curve creation approach I’ll look at briefly before diving into the Processing API is
the use of polynomial equations. Polynomials sound scarier than they really are. In fact,
you’ve already used polynomials in this chapter. Even the simple equation x = 3 is a poly-
nomial—albeit not a very inspiring one. y = 3 will generate a horizontal line at 3 on the
y-axis. x = 3 will generate a vertical line at 3 on the x-axis. Equations that only use a con-
stant (a number) are considered zero-degree polynomials. In contrast, the statement
y = 3x is a first-degree polynomial, and will no longer only give a plain horizontal or verti-
cal line. As x increases or decreases in value, the value of y will change. For example, the
following sketch (shown in Figure 7-16) creates 100 points based on this equation, yielding
a diagonal line:

// First-degree polynomial
// y = 3x
size(200, 200);
background(255);
strokeWeight(3);
float x = 0, y = 0;

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

262

617xCH07.qxd 4/17/07 1:38 PM Page 262

for (int i=0; i<100; i++){
x = i;
y = 3*x;
point(x, y);

}

Figure 7-16. Generating a diagonal line with a
first-degree polynomial

You can also add or subtract a constant to or from the equation without changing its
degree, as in y = 3x + 50;. To modify the last sketch with this new polynomial, just change
y = 3*x; to y = 3*x + 50;. When you run it, you’ll notice that the diagonal line is moved
50 pixels down from the top of the display window.

So, none of this is terribly exciting or too complicated. Besides, this chapter is really about
curves. As you might suspect, or more likely already know, if you increase the polynomial
equation by one more degree, you’ll arrive in curve land. The following sketch (shown in
Figure 7-17) plots the second-degree polynomial y = 2x2 – 3x +19.

// Second-degree polynomial
// y = 2x2 -3x + 19;
size(200, 200);
background(255);
strokeWeight(3);
float x = 0, y = 0;
for (int i=0; i<100; i++){
x = i;
y = 2* pow(x, 2)-3*x + 19;
point(x, y);

}

CURVES

263

7

617xCH07.qxd 4/17/07 1:38 PM Page 263

Figure 7-17. Generating a curve with a second-degree
polynomial

You can see a bit of a curve, but the problem is that the value of y grows so fast that most
of the curve is out of the window. In fact, after 100 iterations, y is equal to 19324.0
(pixels)—but the display window is only 200 pixels tall. To better see the curve, you can
calculate the percentage of the display window to the y maximum value and multiply y by
this ratio: y*(height/19324.0). This will, in a sense, remap the curve to the viewing space.
Here’s the modified sketch (shown in Figure 7-18):

/* Second-degree polynomial
y = 2x2 -3x + 19;
curve fits within display window*/
size(200, 200);
background(255);
strokeWeight(3);
float x = 0, y = 0;
int loopLimit = 100;
/*Instead of using the magic number 19324.0 in the ratio, I used the
polynomial and plugged in the loop limit to get the maximum. This
way if the window size changes, the program should still work.*/
float ratio = height/(2*pow(loopLimit-1, 2)-3*loopLimit-1 + 19);
for (int i=0; i<loopLimit; i++){
x = i;
y = 2* pow(x, 2)-3*x + 19;
point(x, y*ratio);

}

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

264

617xCH07.qxd 4/17/07 1:38 PM Page 264

Figure 7-18. Generating a curve with a second-degree
polynomial, mapped to the display window

The scary-looking line float ratio = height/(2*pow(loopLimit-1, 2)-3*loopLimit-1
+ 19); is your quadratic equation converted into code. The pow(loopLimit-1, 2) part
uses Processing’s built-in pow() function. The function takes two arguments: the first is the
value to act upon (the base), and the second is the power to raise the value to (the expo-
nent), so pow(loopLimit-1, 2) is equal to (loopLimit – 1)2. In this case, the base is the
expression loopLimit – 1.

There is another important property of second-degree polynomials, also known as
quadratic curves, that you’re not seeing in the plot. Quadratics don’t just form any old
curves—they form parabolas, or bell-shaped symmetrical curves. However, to see the bell
shape, you need to shift the curve to the right by width/2, and also begin your for loop at
-width/2. Here’s the modified sketch code (shown in Figure 7-19):

/* parabola
y = 2x2 -3x + 19;
parabola fits within display window*/
size(400, 400);
background(255);
strokeWeight(3);
float x = 0, y = 0;
int loopLimit = 200;
//shifts curve to the right
int xShift = width/2;
/*Instead of using the magic number 19324.0 in the ratio, I used the
polynomial and plugged in the loop limit to get the maximum. This
way if the window size changes, the program should still work.*/
float ratio = height/(2*pow(loopLimit-1, 2)-3*loopLimit-1 + 19);

CURVES

265

7

617xCH07.qxd 4/17/07 1:38 PM Page 265

for (int i=-xShift; i<loopLimit; i++){
x = i;
y = 2* pow(x, 2)-3*x + 19;
point(x+xShift, y*ratio);

}

Figure 7-19. Generating a parabola with a quadratic curve

If all this math is making your eyes glaze over (sorry), we’re almost done. Curves are not so
simple, even using Processing’s built-in functions, as you’ll see shortly. But it’s helpful to
have some sense of what’s happening under the hood. The last curve equation I’ll look at
briefly is a third-degree polynomial, or cubic curve. These curves, like quadratics, are fun-
damental to computer graphics. Cubic curves give you one additional feature that quad-
ratic curves don’t, and that is a point of inflection. Inflection means the curve changes
direction. Think of the difference between the letters C (quadratic curve) and S (cubic
curve); the S contains an inflection point. What’s really significant about this change of
direction, with regard to polynomials, is that it’s always a smooth transition.

Higher-degree polynomials (above third-degree) will also include inflection points, but
they require more processing power to calculate, and are ultimately harder to control.
Thus, most curved lines and surfaces in computer graphics rely in some way on quadratic
and cubic curves. This last polynomial example generates a cubic curve from the equation
y = 4x3 – 6x2 + 3x – 20. I’ve taken the liberty of shifting and scaling the output so that it fits
happily within the display window, as shown in Figure 7-20.

/* Third-degree polynomial
y = 4x3-6x2+3x-20*/

size(400, 400);
background(255);
strokeWeight(3);
smooth();

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

266

617xCH07.qxd 4/17/07 1:38 PM Page 266

float x = 0, y = 0;
int loopLimit = 200;
//shifts curve to the right
int xShift = width/2;
//shifts curve down
int yShift = height/2;
//fits curve to window
float ratio = height/(4* pow(loopLimit-1, 3)-6*pow(loopLimit-1, 2) ➥

+ 3*loopLimit-1 - 20);
for (int i=-xShift; i<loopLimit; i++){
x = i;
y = 4* pow(x, 3)-6*pow(x, 2) + 3*x - 20;
point(x+xShift, y*ratio+yShift);

}

Figure 7-20. Plot of a cubic curve (third-degree polynomial)

Using Processing’s curve functions
Congratulations! You just made it through the scary math section of the chapter. It only
gets easier from here. It’s time to look at Processing’s built-in curve functions. The
Processing language reference includes numerous functions dealing with curves, all
housed under the Shape subheading. These functions simplify curve generation, handling
most of the scary math internally. Within the Shape section is a section called Curves,
which includes eight curve functions. In addition, in the Vertex section are two more vertex
curve functions. Finally, there’s one other lonely curve function hanging out in the 2D
Primitives section, called arc(), which I’ll begin with.

CURVES

267

7

617xCH07.qxd 4/17/07 1:38 PM Page 267

arc()

An arc is a curve segment of the circumference of a circle. The arc() function allows you
to draw a curve segment by specifying the x and y position of the center of the circle, the
width and height of the circle, and the beginning and ending angles (in radians) describing
the arc rotation. It is helpful to remember that 2 * pi equals a full rotation around a circle.
In the next sketch (shown in Figure 7-21) I create two arcs, each rotating halfway around
the circle. The first arc begins at 0 and goes to pi, and the second begins at pi and ends at
2 * pi (please note that pi is written as PI in Processing):

//concave/convex curve
size(200, 200);
background(255);
int x = width/2, y = height/2;
int w = 100, h = 100;
strokeWeight(4);
smooth();
fill(0);
arc(x, y-h/2, w, h, 0, PI);
noFill();
arc(x, y+h/2, w, h, PI, PI*2);

Figure 7-21. Using Processing’s arc() function

The arc() function is easier to use than it looks. Because it requires six arguments, two of
which are angles, it can seem overly complicated—but it really isn’t. It helps to think of the
arc() function as a partial ellipse() function. In fact, if you really want to, you can use
arc() in place of ellipse(). arc() also has both a fill and a stroke option, just like
ellipse(). Here’s a simple modification to the program that creates two concentric circles
using arc(), as shown in Figure 7-22:

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

268

617xCH07.qxd 4/17/07 1:38 PM Page 268

//concentric circles
size(200, 200);
background(255);
int x = width/2, y = height/2;
int w = 100, h = 100;
strokeWeight(4);
smooth();
fill(0);
arc(x, y, w-50, h-50, 0, PI*2);
noFill();
arc(x, y, w, h, 0, TWO_PI);

Figure 7-22. Creating circles with arc()

The arc() function’s first four arguments are identical to ellipse()’s arguments: x, y,
width, and height. You can also specify an ellipseMode() when using arc() to control
from what point the arc is drawn; the default mode is CENTER. The arc() function’s last
two arguments are the start and end angles of the arc’s rotation, specified in radians. If
you prefer to work in degrees, just convert the degrees to radians, using the
radians(angle) function. You’ll notice in my examples that I used PI as my value of rota-
tion. PI, in radians, specifies 180 degree rotation around an ellipse. PI*2, in radians, gives
one complete rotation (360 degrees). Processing actually has a constant for this as well:
TWO_PI, which I used in the second arc() statement.

Although arc() is easy to use, it is somewhat lacking as a general-purpose curve tool. For
example, to create a continuous curve path, it’s a little annoying trying to get a series of
arcs to line up. I’ll look at other Processing curve functions that do a better job with that.
One cool thing you can do with arc() is make wedge shapes. A not-so-exciting application
of this would be your standard pie chart. Here’s a simple example (shown in Figure 7-23):

CURVES

269

7

617xCH07.qxd 4/17/07 1:38 PM Page 269

//pie chart
size(400, 400);
background(0);
smooth();
stroke(127);
fill(0);
int radius = 150;
int[]angs = {40, 10, 20, 35, 55, 30, 60, 110};
float lastAng = 0;
for (int i=0; i<angs.length; i++){
fill(random(255));
arc(width/2, height/2, radius*2, radius*2, lastAng, ➥

lastAng+=radians(angs[i]));
}

Figure 7-23. Simple pie chart

There’s nothing too earth shattering about this last example. One subtle issue, though,
which can really mess things up if not handled properly, is the correct use of data types in
calculations. After running the pie chart sketch a few times, switch the data type of the
lastAng variable from float to int and run the program again. You won’t get any com-
piler errors, but you’ll notice that only a partial pie forms. To better understand how a sub-
tle change like this can wreck your pretty pie chart, add println(lastAng) below the
arc() call, and try both data types again. When lastAng is declared as an int, println()
outputs 0, 0, 0, 0, 0, 0, 1, 2; when declared as a float instead, the output is 0.698...,
0.873..., 1.222..., 1.833..., 2.793..., 3.316..., 4.363..., 6.283.... The
reason for the discrepancy is that when lastAng is declared as an int, the line
lastAng+=radians(angs[i]) rounds down the value of radians(angs[i]) from a float
value to an int—so anything under 1.0 becomes 0, anything between 1.0 and 2.0 becomes
1.0, and so on.

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

270

617xCH07.qxd 4/17/07 1:38 PM Page 270

Pie charts, although valuable as visualization tools, don’t do much for me. The next sketch,
shown in Figure 7-24, is a progression of a pie wedge from a thin fragment to a full pie. I
also incremented the value of the wedge fill color.

//Progressive Arcs
size(400, 400);
background(50);
smooth();
noStroke();
float diameter = 40;
float ang = 0;
float col = 0;
float xCount = width/diameter;
float yCount = height/diameter;
float cellTotal = xCount*yCount;
float angIncrement = radians(360.0/cellTotal);
float colIncrement = 255.0/cellTotal;
for (float i=diameter/2; i<=height; i+=diameter){
for (float j=diameter/2; j<=width; j+=diameter){

ang+=angIncrement;
col += colIncrement;
fill(col);
arc(j, i, diameter, diameter, 0, ang);

}
}

Figure 7-24. Progression of pie wedge shapes within a table structure

CURVES

271

7

617xCH07.qxd 4/17/07 1:38 PM Page 271

The sketch relies on a basic table structure made up of pie wedge shapes. There’s nothing
new here, as you’ve looked at similar code in earlier examples. The sketch is a little more
visually interesting than the pie chart, but can obviously be pushed further. By simply
decreasing the value of the diameter variable and adding some randomization, you can
improve the output quite a bit, as shown in Figure 7-25.

//Pie Fragments
size(400, 400);
background(255);
smooth();
noStroke();
float radius = 10;
for (int i=0; i<=width; i+=radius/2){
for (int j=0; j<=height; j+=radius/2){
float size = (random(radius*2));
fill(255);
arc(random(i), random(j), size, size, random(PI*2), random(PI*2));
fill(0);
arc(random(i), random(j), size, size, random(PI*2), random(PI*2));

}
}

Figure 7-25. Randomized pie wedge texture

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

272

617xCH07.qxd 4/17/07 1:38 PM Page 272

curve() and bezier()

The next two Processing curve functions I’ll look at are curve() and bezier(). I’ll consider
these functions together, as they share some common implementation issues. As you’ve
probably gathered by now, the implementation of curves is a little complex. Fortunately,
Processing’s curve() and bezier() functions simplify curve generation quite a bit. These
functions encapsulate pretty sophisticated mathematical ideas, including cubic polynomi-
als—which you looked at a little—as well as some calculus. I’m not going to deal with the
calculus here, nor mess directly with polynomials. The functions each require eight argu-
ments, representing the x and y components of four points. The bezier() function uses
two points (the first two parameters and the last two parameters) to describe the ends of
the curves (anchor points), and two additional points (the middle four parameters) to con-
trol how the curve moves between the endpoints (referred to as control points). Here’s an
example (shown in Figure 7-26). Please note that I took the liberty of connecting the con-
trol and anchor points with lines to help illustrate how the structure works.

//Bézier sketch
size(400, 400);
background(255);
smooth();
/*I used Java's Point class, a convenient
data type for holding x,y coords, with public
access to x and y properties (pt.x or pt.y)*/
Point pt1 = new Point(150, 300);
Point pt2 = new Point(100, 100);
Point pt3 = new Point(300, 100);
Point pt4 = new Point(250, 300);
//plot curve
stroke(0);
bezier(pt1.x, pt1.y, pt2.x, pt2.y, pt3.x, pt3.y, pt4.x, pt4.y);
//draw control points connected to anchor points
stroke(150);
line(pt1.x, pt1.y, pt2.x, pt2.y);
line(pt3.x, pt3.y, pt4.x, pt4.y);
//control points
ellipse(pt2.x, pt2.y, 10, 10);
ellipse(pt3.x, pt3.y, 10, 10);
//anchor points
rectMode(CENTER);
rect(pt1.x, pt1.y, 10, 10);
rect(pt4.x, pt4.y, 10, 10);

CURVES

273

7

617xCH07.qxd 4/17/07 1:38 PM Page 273

Figure 7-26. Bézier curve plot showing anchor
and control points

I utilized Java’s Point class in the example as a simple data structure. The Point class is not
part of the Processing API, but I find it handy to use because it provides direct access to an
x and a y property, which I used to help keep track of the different anchor and control
points. You can create a new Point object by simply writing Point pt1 = new Point(150,
300);. The two arguments you pass, 150 and 300, will be the values of the x and y proper-
ties, respectively. So, to access the x and y values, I just write pt1.x and pt1.y. The rest of
the code in the sketch is stuff you’ve seen numerous times before in earlier examples (and
will see a lot more of).

If you’ve ever used a pen tool in a graphics application like Illustrator, Photoshop, or
FreeHand (and I assume most of you have), then you’ve experienced Bézier curves, and
maybe you’ve even messed directly with their control points. Bézier curves are named
after Pierre Bézier, a French mathematician and engineer who worked for the car manu-
facturer Renault. To learn more about Bézier and his curve, check out http://cg.scs.
carleton.ca/~luc/bezier.html.

There is a dynamic tension in a Bézier curve, determined by the placement of the control
points (the small ellipse handles in the example) and their relative position to the anchor
points (the small squares at ends of curve). You’ll notice in the example that the curve
seems to bend toward the control points. The situation is actually a little more compli-
cated than that. The extra lines I rendered between the control points and the anchor
points represent the slopes of the curves at the anchor points (also known as tangent
lines). Slope is the change in y over the change in x (the rise over the run). Finding slopes
of curves is a little tricky, since the curves are constantly changing, unlike straight lines, in
which the slope is constant. On curves, you can take slope readings at distinct points. For
a more generalized approach to solving for the slope of a curve, you need basic calculus—
so I’ll stop there. In a sense, the Bézier curve between the two anchor points is calculated
by blending, or interpolating, the two slopes of the curve at the anchor points, as well as
factoring in the distance between the anchor and control points.

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

274

617xCH07.qxd 4/17/07 1:38 PM Page 274

http://cg.scs

Next is an interactive example that illustrates this interpolation process as a simple geo-
metric progression. The sketch (shown in Figure 7-27) plots a quadratic curve using two
anchor points and a single control point, and interpolates between these three points.
Technically, the area defined by the control and anchor points is called a convex hull. Each
time you click within the example, another iteration occurs, dividing the previous seg-
ments in half and plotting the path, slowly approximating the curve.

/* Interpolating a Bézier
curve within a convex hull

Click the screen a couple of
times to iteratively generate
the curve*/

int startingPoints = 3;
// Uses Java's Point class
Point[] bezier = new Point[startingPoints];

void setup(){
size(600, 400);
background(255);
smooth();
// create external bezier
bezier[0] = new Point(10, 390);
bezier[1] = new Point(300, 10);
bezier[2] = new Point(590, 390);
// plot initial convex hull
plot(bezier);

}

Point[] plotBezier(Point[] pts){
Point[] path = new Point[pts.length+1];
path[0] = pts[0];
for (int i=1; i<path.length-1; i++){
path[i] = new Point((pts[i-1].x+pts[i].x)/2, ➥

(pts[i-1].y+pts[i].y)/2);
}
path[path.length-1] = pts[pts.length-1];
plot(path);
return path;

}

void plot(Point[] pts){
/*** render hull ***/
if (pts.length==startingPoints){
noFill();
stroke(0);
strokeWeight(2);
//path

CURVES

275

7

617xCH07.qxd 4/17/07 1:38 PM Page 275

beginShape();
for (int i=0; i<pts.length; i++){
vertex(pts[i].x, pts[i].y);

}
endShape();

//points
fill(255);
for (int i=0; i<pts.length; i++){
if (i>0 && i<pts.length-1){
rectMode(CENTER);
// control point
rect(pts[i].x, pts[i].y, 12, 12);

}
else {
// anchor points
ellipse(pts[i].x, pts[i].y, 12, 12);

}
}

}
/*** render interpolated path ***/
else {
// path
noFill();
stroke(100);
strokeWeight(1);
beginShape();
for (int i=1; i<pts.length-1; i++){
vertex(pts[i].x, pts[i].y);

}
endShape();
// points
fill(0);
for (int i=1; i<pts.length-1; i++){
ellipse(pts[i].x, pts[i].y, 4, 4);

}
}

}

/* draw function required when
including mousePressed function*/
void draw(){}
void mousePressed(){
bezier = plotBezier(bezier);

}

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

276

617xCH07.qxd 4/17/07 1:38 PM Page 276

Figure 7-27. Interpolating a Bézier curve within a convex hull

There’s nothing new in the last sketch, but I hope it illustrates how the convex hull (the
shape defined by the three initial points) dictates the placement and shape of the curve.
You can use this same sketch to approximate a cubic Bézier curve as well, with four initial
points instead of three. You’ll remember that cubic curves can contain an inflection point
in the curve, or a change in direction, as shown in Figure 7-28. To generate this image,
simply make the following changes to the values in the last sketch, and rerun it:

int startingPoints = 4;

bezier[0] = new Point(200, 700);
bezier[1] = new Point(100, 50);
bezier[2] = new Point(1100, 750);
bezier[3] = new Point(1000, 100);

CURVES

277

7

617xCH07.qxd 4/17/07 1:38 PM Page 277

Figure 7-28. Cubic Bézier curve

Figure 7-28 shows an approximation of a Bézier curve based on a third-degree (cubic)
polynomial, which I discussed earlier in the chapter. These are the most commonly used
equations for calculating curves in computer graphics; although lower- and higher-degree
polynomials can also be used. Wikipedia provides some excellent animations illustrating
how polynomials generate Bézier curves. I was really tempted to recode these in
Processing, but I think I’ll leave that for you. You can find the animations at
http://en.wikipedia.org/wiki/Bezier_curve.

Bézier curves can also be strung together to form longer continuous curves. The following
example (shown in Figure 7-29) does just that:

// Bézier path
size(500, 500);
background(255);
rectMode(CENTER);

bezier(150, 100, 200, 50, 300, 50, 350, 100);
line(150, 100, 200, 50);
rect(150, 100, 10, 10);
ellipse(200, 50, 10, 10);
line(350, 100, 300, 50);
rect(350, 100, 10, 10);
ellipse(300, 50, 10, 10);

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

278

617xCH07.qxd 4/17/07 1:38 PM Page 278

http://en.wikipedia.org/wiki/Bezier_curve

bezier(350, 100, 400, 150, 350, 250, 350, 300);
line(350, 100, 400, 150);
rect(350, 100, 10, 10);
ellipse(400, 150, 10, 10);
line(350, 300, 350, 250);
rect(350, 300, 10, 10);
ellipse(350, 250, 10, 10);

bezier(350, 300, 300, 350, 100, 250, 100, 400);
line(350, 300, 300, 350);
rect(350, 300, 10, 10);
ellipse(300, 350, 10, 10);
line(100, 400, 100, 250);
rect(100, 400, 10, 10);
ellipse(100, 250, 10, 10);

Figure 7-29. Connecting Bézier curves together

In this last example, notice how the control handles change the curve. The control handles
that are aligned, forming a straight line at the second anchor point, generate a really
smooth curve segment. However, the next anchor point forms a cusp, or kink, in the curve,
as the handles don’t align. This independence of the two control handles is both a benefit
and liability of using Bézier curves. Cusps in the curve can translate to jerky motion in
object or camera animations in 3D animation programs, or create an unwanted detail in a
vector illustration or typeface design. However, in spite of these challenges, Bézier curves
are very efficient, with a lot of descriptive capabilities, and are used widely in computer
graphics.

CURVES

279

7

617xCH07.qxd 4/17/07 1:38 PM Page 279

Another way you can generate more complex curves, without depending solely on string-
ing so many Bézier segments together, is to use higher-degree polynomials. Higher-degree
curves provide more inflection points (the places where curves change direction), and also
require more control points. The number of control points is determined by the polyno-
mial degree minus 1—that’s why the standard Bézier, third-degree curve has two control
handles. The ability for a curve to change direction a number of times should make it use-
ful as a design or animation tool. However, the complexity and computational cost of
using these higher-degree curves offsets most of the benefits. Thus, you’re pretty much
stuck with the cubic (third-degree) and quadratic (second-degree) curves you’ve already
looked at.

However, there is one other important approach to creating smooth, continuous curves
that simplifies some of the challenges of simply stringing together Bézier curves. This
approach is encapsulated (within Processing) in the curve() function. I’ll show you how
the curve() function actually works in a minute, but first I’ll jump in with a curve() exam-
ple (see Figure 7-30) that plots the same curve generated in the preceding Bézier example
to help highlight the difference between the two functions:

// Catmull-Rom spline curve
size(500, 500);
background(255);

Point p0 = new Point(150, 100);
Point p1 = new Point(350, 100);
Point p2 = new Point(350, 300);
Point p3 = new Point(150, 300);
Point p4 = new Point(100, 400);

//curve segments
curve(p4.x, p4.y, p0.x, p0.y, p1.x, p1.y, p2.x, p2.y);
curve(p0.x, p0.y, p1.x, p1.y, p2.x, p2.y, p3.x, p3.y);
curve(p1.x, p1.y, p2.x, p2.y, p3.x, p3.y, p4.x, p4.y);
curve(p2.x, p2.y, p3.x, p3.y, p4.x, p4.y, p0.x, p0.y);

//control points
ellipse(p0.x, p0.y, 10, 10);
ellipse(p1.x, p1.y, 10, 10);
ellipse(p2.x, p2.y, 10, 10);
ellipse(p3.x, p3.y, 10, 10);
ellipse(p4.x, p4.y, 10, 10);

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

280

617xCH07.qxd 4/17/07 1:38 PM Page 280

The curve() function is a spline curve implementation, or more precisely a Catmull-Rom
spline implementation. The name “Catmull-Rom” comes from computer scientists Edwin
Catmull and Raphael Rom. Catmull later went on to establish a small independent anima-
tion studio in 1986, called Pixar. Thus, you might assume that Catmull-Rom splines are rel-
evant to 3D animation—and you’d be right. They’re important for efficiently generating
complex, smooth geometry—creating motion paths, among other things. In addition to
curve(), Processing has a related function, called vertexCurve(), that implements the
same Catmull-Rom spline. I think vertexCurve() is a little simpler to use than curve() (I’ll
look at this function after I slog through the curve() function a bit).

In the last example, I created five initial points to hold the curves’ control points. Hopefully
you noticed that there were no control points off the path, as in the earlier bezier()
example. This is one of the main differences between a Bézier curve and a Catmull-Rom
spline curve. After creating the five points, I call my curve() functions. Like the bezier()
function, curve() uses eight parameters—the x and y components of four points.
However, unlike bezier(), curve() doesn’t use a system of anchor and control points.
Instead, all four of the points, in a sense, function as control points. The curve then follows
the path of the control points. Look closely at the curve() calls in my last example. Here
they are again:

curve(p4.x, p4.y, p0.x, p0.y, p1.x, p1.y, p2.x, p2.y);
curve(p0.x, p0.y, p1.x, p1.y, p2.x, p2.y, p3.x, p3.y);
curve(p1.x, p1.y, p2.x, p2.y, p3.x, p3.y, p4.x, p4.y);
curve(p2.x, p2.y, p3.x, p3.y, p4.x, p4.y, p0.x, p0.y);

In the first curve() call, points p0 and p1 are at the left and right edges of the first seg-
ment of the curve. p4 and p2 are the extra control points on either side. In the next
curve() call, I copy p1 to the left point position of the second curve. This will allow the
first curve’s right point and the second curve’s left point to align. I then use p2 for the right
point of the second curve. Since each point also needs a control point on the left and
right, I put p0 to the left of p1, and p3 to the right of p2. This same pattern repeats itself in
the next two calls. The only thing that may look odd is the last p0 in the final curve. Since

Figure 7-30.
Spline curve using Processing’s curve() function

CURVES

281

7

617xCH07.qxd 4/17/07 1:38 PM Page 281

I used p4 to its left, I chose to go back to the beginning of my curve, ensuring that p4 had
a control point to its right. (I know this is confusing and not intuitive at all.) One other little
trick that may make this more comprehensible is that if you copy the third through the
eighth parameters of a curve() function call and paste them in another curve() call, then
the curves will connect. You’ll still need to add a seventh and eighth parameter to this new
curve. Look at these two lines:

curve(p0.x, p0.y, p1.x, p1.y, p2.x, p2.y, p3.x, p3.y);
curve(p1.x, p1.y, p2.x, p2.y, p3.x, p3.y);

Notice how the third through eighth parameters in the first curve() call repeat as the first
through the sixth parameters in the next curve() call. I still need to add the last two
parameters to the second curve, which I do by continuing the cycle from p3 to p4 for the
seventh and eighth parameters:

curve(p0.x, p0.y, p1.x, p1.y, p2.x, p2.y, p3.x, p3.y);
curve(p1.x, p1.y, p2.x, p2.y, p3.x, p3.y, p4.x, p4.y);

Finally, there is one other cool function available to control the tension of the spline curve;
it works similarly to how control points on a Bézier curve exaggerate or flatten a curve,
depending upon where the handles are located. Using curve(), you don’t literally drag any
handles or set extra control points off the curve. Instead, you simply pass a value to the
curveTightness(value) function. The value can be negative or positive. In this next exam-
ple (shown in Figure 7-31), I create a series of identical spline curves, with varying degrees
of curve tightness, using the values -2, -1, 0, 1, and 2 as arguments in the
curveTightness(value) function (please note that you need to use Processing’s noFill()
function if you don’t want your curves filling in):

// Catmull-Rom spline curve
// Curve Tightness
size(600, 400);
background(0);
stroke(255);
strokeWeight(2);
smooth();
int curveWdth = 50;
int cols = 5;
int xPadding = (width-curveWdth*cols)/(cols+1);
int x = xPadding;

for (int i=-2; i<3; i++){
curveTightness(i);
Point p0 = new Point(x, 100);
Point p1 = new Point(x+curveWdth, 100);
Point p2 = new Point(x+curveWdth, 300);
Point p3 = new Point(x, 300);
Point p4 = new Point(x, 200);
x+=curveWdth+xPadding;

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

282

617xCH07.qxd 4/17/07 1:38 PM Page 282

//curve segments
noFill(); // comment this line out to see how the curve fills
curve(p4.x, p4.y, p0.x, p0.y, p1.x, p1.y, p2.x, p2.y);
curve(p0.x, p0.y, p1.x, p1.y, p2.x, p2.y, p3.x, p3.y);
curve(p1.x, p1.y, p2.x, p2.y, p3.x, p3.y, p4.x, p4.y);
curve(p2.x, p2.y, p3.x, p3.y, p4.x, p4.y, p0.x, p0.y);

//control points
fill(255);
ellipse(p0.x, p0.y, 5, 5);
ellipse(p1.x, p1.y, 5, 5);
ellipse(p2.x, p2.y, 5, 5);
ellipse(p3.x, p3.y, 5, 5);
ellipse(p4.x, p4.y, 5, 5);

}

Figure 7-31. Controlling curvature using Processing’s curveTightness() function

All right, so that covers most of the theory part of curves. I realize it may have been a bit
rough to get through. One of my goals in this book is to try to provide detailed and clear
explanations of important concepts that are often not well articulated in existing sources
(that I can find). For example, in doing research on splines, I was amazed at how
inscrutable most of the explanations were. This was mostly due to the dense mathematical
explanations. The concepts themselves aren’t that complicated, but when they’re
explained as a page of Greek symbols, matrices, and complex graphs, well—you’re not
going to entice many artists. I also expect you to move through this material pretty quickly
(on the first read through), mostly just remembering that it’s covered in the book. As you
progress in your work and develop more coding chops, there will be times you’ll
need/want to deal with some of these more complex issues.

CURVES

283

7

617xCH07.qxd 4/17/07 1:38 PM Page 283

Next, I want to put this material to better use and cover just a few more curve functions.
But don’t worry, most of the really difficult stuff is over (at least in this chapter). I won’t
formally be covering interactivity until Chapter 12. However, it can be helpful in trying to
understand curve concepts to be able to play around with the curves, including yanking on
their control points. I’m not going to go into all the interactive theory here, so some of the
code in the upcoming interactive examples may look odd (and possibly scary). You can
peek ahead to Chapter 12 if you want to, but I’d suggest just playing with the stuff for now,
and get to the learning part a little later. You’re entitled to fool around a bit, in blissful
ignorance.

More curve and Bézier variations
The next two examples, shown in Figures 7-32 and 7-33, are just variations on a theme.
You’ll eventually use the bezier() function to plot a more ambitious sketch consisting of
a very interactive ellipse, which you’ll be able to mess around with in real time. Hopefully
this example will reveal some of the creative potential of having to deal with curve com-
plexity. First, however, I’ll look at two more functions: bezierVertex() and curveVertex().
These functions are really just alternative forms of the bezier() and curve() functions.
The following example plots three spirals using the bezier() and bezierVertex() func-
tions. Again, I’ve added extra code to render the control handles to show how their place-
ment affects the spiral. I didn’t bother to render the anchor points in this example, and I
also doubled up the line() and ellipse() calls to save a few trees.

// bezier() vs. bezierVertex()
size(650, 225);
background(255);
rectMode(CENTER);
strokeWeight(2);

//bezier() - no fill
noFill();
bezier(50, 50, 92, 15, 134, 15, 175, 50);
bezier(175, 50, 215, 92, 215, 134, 175, 175);
bezier(175, 175, 135, 205, 105, 205, 75, 175);
bezier(75, 175, 50, 145, 50, 105, 75, 75);
bezier(75, 75, 100, 54, 125, 54, 150, 75);
bezier(150, 75, 175, 100, 175, 125, 150, 150);
bezier(150, 150, 134, 160, 118, 160, 100, 150);
bezier(100, 150, 92, 140, 92, 130, 100, 115);

//lines connecting anchor points to control handles
strokeWeight(1);
line(50, 50, 92, 15); line(134, 15, 175, 50);
line(175, 50, 215, 92); line(215, 134, 175, 175);
line(175, 175, 135, 205); line(105, 205, 75, 175);
line(75, 175, 50, 145); line(50, 105, 75, 75);
line(75, 75, 100, 54); line(125, 54, 150, 75);
line(150, 75, 175, 100); line(175, 125, 150, 150);
line(150, 150, 134, 160); line(118, 160, 100, 150);
line(100, 150, 92, 140); line(92, 130, 100, 115);

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

284

617xCH07.qxd 4/17/07 1:38 PM Page 284

//control handles
fill(255);
ellipse(92, 15, 8, 8); ellipse(134, 15, 8, 8);
ellipse(215, 92, 8, 8); ellipse(215, 134, 8, 8);
ellipse(135, 205, 8, 8); ellipse(105, 205, 8, 8);
ellipse(50, 145, 8, 8); ellipse(50, 105, 8, 8);
ellipse(100, 54, 8, 8); ellipse(125, 54, 8, 8);
ellipse(175, 100, 8, 8); ellipse(175, 125, 8, 8);
ellipse(134, 160, 8, 8); ellipse(118, 160, 8, 8);
ellipse(92, 140, 8, 8); ellipse(92, 130, 8, 8);

//bezierVertex() - closed and no fill
strokeWeight(2);
int x = 200;
noFill();
beginShape();
vertex(50+x, 50);
bezierVertex(92+x, 15, 134+x, 15, 175+x, 50);
bezierVertex(215+x, 92, 215+x, 134, 175+x, 175);
bezierVertex(135+x, 205, 105+x, 205, 75+x, 175);
bezierVertex(50+x, 145, 50+x, 105, 75+x, 75);
bezierVertex(100+x, 54, 125+x, 54, 150+x, 75);
bezierVertex(175+x, 100, 175+x, 125, 150+x, 150);
bezierVertex(134+x, 160, 118+x, 160, 100+x, 150);
bezierVertex(92+x, 140, 92+x, 130, 100+x, 115);
endShape(CLOSE);

//lines connecting anchor points to control handles
strokeWeight(1);
stroke(0);
line(50+x, 50, 92+x, 15); line(134+x, 15, 175+x, 50);
line(175+x, 50, 215+x, 92); line(215+x, 134, 175+x, 175);
line(175+x, 175, 135+x, 205); line(105+x, 205, 75+x, 175);
line(75+x, 175, 50+x, 145); line(50+x, 105, 75+x, 75);
line(75+x, 75, 100+x, 54); line(125+x, 54, 150+x, 75);
line(150+x, 75, 175+x, 100); line(175+x, 125, 150+x, 150);
line(150+x, 150, 134+x, 160); line(118+x, 160, 100+x, 150);
line(100+x, 150, 92+x, 140); line(92+x, 130, 100+x, 115);

//control handles
fill(255);
ellipse(92+x, 15, 8, 8); ellipse(134+x, 15, 8, 8);
ellipse(215+x, 92, 8, 8); ellipse(215+x, 134, 8, 8);
ellipse(135+x, 205, 8, 8); ellipse(105+x, 205, 8, 8);
ellipse(50+x, 145, 8, 8); ellipse(50+x, 105, 8, 8);
ellipse(100+x, 54, 8, 8); ellipse(125+x, 54, 8, 8);
ellipse(175+x, 100, 8, 8); ellipse(175+x, 125, 8, 8);
ellipse(134+x, 160, 8, 8); ellipse(118+x, 160, 8, 8);
ellipse(92+x, 140, 8, 8); ellipse(92+x, 130, 8, 8);

CURVES

285

7

617xCH07.qxd 4/17/07 1:38 PM Page 285

//bezierVertex() - open and filled
strokeWeight(2);
x = 400;
fill(127);
beginShape();
vertex(50+x, 50);
bezierVertex(92+x, 15, 134+x, 15, 175+x, 50);
bezierVertex(215+x, 92, 215+x, 134, 175+x, 175);
bezierVertex(135+x, 205, 105+x, 205, 75+x, 175);
bezierVertex(50+x, 145, 50+x, 105, 75+x, 75);
bezierVertex(100+x, 54, 125+x, 54, 150+x, 75);
bezierVertex(175+x, 100, 175+x, 125, 150+x, 150);
bezierVertex(134+x, 160, 118+x, 160, 100+x, 150);
bezierVertex(92+x, 140, 92+x, 130, 100+x, 115);
endShape();

//lines connecting anchor points to control handles
strokeWeight(1);
stroke(0);
line(50+x, 50, 92+x, 15); line(134+x, 15, 175+x, 50);
line(175+x, 50, 215+x, 92); line(215+x, 134, 175+x, 175);
line(175+x, 175, 135+x, 205); line(105+x, 205, 75+x, 175);
line(75+x, 175, 50+x, 145); line(50+x, 105, 75+x, 75);
line(75+x, 75, 100+x, 54); line(125+x, 54, 150+x, 75);
line(150+x, 75, 175+x, 100); line(175+x, 125, 150+x, 150);
line(150+x, 150, 134+x, 160); line(118+x, 160, 100+x, 150);
line(100+x, 150, 92+x, 140); line(92+x, 130, 100+x, 115);

//control handles
fill(255);
ellipse(92+x, 15, 8, 8); ellipse(134+x, 15, 8, 8);
ellipse(215+x, 92, 8, 8); ellipse(215+x, 134, 8, 8);
ellipse(135+x, 205, 8, 8); ellipse(105+x, 205, 8, 8);
ellipse(50+x, 145, 8, 8); ellipse(50+x, 105, 8, 8);
ellipse(100+x, 54, 8, 8); ellipse(125+x, 54, 8, 8);
ellipse(175+x, 100, 8, 8); ellipse(175+x, 125, 8, 8);
ellipse(134+x, 160, 8, 8); ellipse(118+x, 160, 8, 8);
ellipse(92+x, 140, 8, 8); ellipse(92+x, 130, 8, 8);

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

286

617xCH07.qxd 4/17/07 1:38 PM Page 286

Figure 7-32. bezier() vs. bezierVertex() sketch

The bezierVertex() function needs to be called between beginShape() and endShape(),
with the initial call being a single vertex() call. Remember that beginShape() begins
recording coordinate data until endShape() is called, at which time the data is rendered to
the screen and filled by default. Although the shape will be filled, the path defining the
shape will not be closed unless the CLOSE argument is included in the endShape(CLOSE)
call. Of course, visually, you can make the path appear closed by making sure that the
anchor point in the last bezierVertex(controPt1, controlPt2, anchorPt) call is placed
at the same coordinate location as the initial vertex(x, y) call. If the starting and ending
points are not in the same location, using the CLOSE argument will connect the two points
with a straight line, which is what occurs in the second spiral in the last example. By
default, the shape will be filled following the same rule, as illustrated in the third spiral,
even though this spiral is technically not closed. This same pattern of rules holds true for
the curve() and curveVertex() functions. For the sake of thoroughness, here’s a
curve()/curveVertex() version of the last example:

//curve() vs. curveVertex()
size(650, 225);
background(255);
rectMode(CENTER);
strokeWeight(2);

//curve()
noFill();
curve(92, 15, 92, 15, 134, 15, 175, 50);
curve(92, 15, 134, 15, 175, 50, 175, 175);
curve(134, 15, 175, 50, 175, 175, 75, 175);
curve(175, 50, 175, 175, 75, 175, 75, 75);
curve(175, 175, 75, 175, 75, 75, 150, 75);
curve(75, 175, 75, 75, 150, 75, 150, 150);
curve(75, 75, 150, 75, 150, 150, 100, 150);
curve(150, 75, 150, 150, 100, 150, 100, 150);

CURVES

287

7

617xCH07.qxd 4/17/07 1:38 PM Page 287

//control points
strokeWeight(1);
fill(255);
ellipse(92, 15, 8, 8);
ellipse(134, 15, 8, 8);
ellipse(175, 50, 8, 8);
ellipse(175, 175, 8, 8);
ellipse(75, 175, 8, 8);
ellipse(75, 75, 8, 8);
ellipse(150, 75, 8, 8);
ellipse(150, 150, 8, 8);
ellipse(100, 150, 8, 8);

//curveVertex - closed and unfilled
strokeWeight(2);
int x = 200;
beginShape();
curveVertex(92+x, 15);
curveVertex(92+x, 15);
curveVertex(134+x, 15);
curveVertex(175+x, 50);
curveVertex(175+x, 175);
curveVertex(75+x, 175);
curveVertex(75+x, 75);
curveVertex(150+x, 75);
curveVertex(150+x, 150);
curveVertex(100+x, 150);
curveVertex(100+x, 150);
endShape(CLOSE);

//control handles
strokeWeight(1);
fill(255);
ellipse(92+x, 15, 8, 8);
ellipse(134+x, 15, 8, 8);
ellipse(175+x, 50, 8, 8);
ellipse(175+x, 175, 8, 8);
ellipse(75+x, 175, 8, 8);
ellipse(75+x, 75, 8, 8);
ellipse(150+x, 75, 8, 8);
ellipse(150+x, 150, 8, 8);
ellipse(100+x, 150, 8, 8);

//curveVertex() - open and filled
x = 400;
strokeWeight(2);
fill(127);
beginShape();

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

288

617xCH07.qxd 4/17/07 1:38 PM Page 288

curveVertex(92+x, 15);
curveVertex(92+x, 15);
curveVertex(134+x, 15);
curveVertex(175+x, 50);
curveVertex(175+x, 175);
curveVertex(75+x, 175);
curveVertex(75+x, 75);
curveVertex(150+x, 75);
curveVertex(150+x, 150);
curveVertex(100+x, 150);
curveVertex(100+x, 150);
endShape();

//control handles
strokeWeight(1);
fill(255);
ellipse(92+x, 15, 8, 8);
ellipse(134+x, 15, 8, 8);
ellipse(175+x, 50, 8, 8);
ellipse(175+x, 175, 8, 8);
ellipse(75+x, 175, 8, 8);
ellipse(75+x, 75, 8, 8);
ellipse(150+x, 75, 8, 8);
ellipse(150+x, 150, 8, 8);
ellipse(100+x, 150, 8, 8);

Figure 7-33. curve() vs. curveVertex() sketch

I think the curveVertex() function is less work to use than curve(). Obviously, having to
deal with two arguments is definitely better than eight. From bezier() to bezierVertex(),
you go from eight to six arguments, so I’m not so sure for normal open paths if there is
much advantage. For closed or fill paths, you’ll want to use bezierVertex() or
curveVertex(). Although you can fill individual bezier() and curve() curves, the fill
won’t span multiple connected curve segments. To see an example of this, replace the
noFill() call with fill(127) before the first spiral code in either of the last two
examples.

CURVES

289

7

617xCH07.qxd 4/17/07 1:38 PM Page 289

One interesting thing to do with both the bezier() and curve() functions is to create
elliptical plots, where the control points can be manipulated to create various intercon-
nected curve patterns. The following example (shown in Figure 7-34) allows you to click
the screen to generate a random ellipse pattern. I’ve also a coded a more advanced, highly
interactive version of the example (shown in Figure 7-35), entitled Interactive Bézier
Ellipse, which you can download from the Download section on the friends of ED site
(www.friendsofed.com).

/*
Bézier Ellipse
Ira Greenberg, December 19, 2005
Revised: November 15, 2006
*/

// arrays to hold ellipse coordinate data
float[] px, py, cx, cy, cx2, cy2;

// global variable - points in ellipse
int pts = 4;

color controlPtCol = #222222;
color anchorPtCol = #BBBBBB;

void setup(){
size(600, 600);
setEllipse(pts, 130, 130);

}

void draw(){
background(145);
drawEllipse();

}

// draw ellipse with anchor/control points
void drawEllipse(){
strokeWeight(1.125);
stroke(255);
noFill();
// create ellipse
for (int i=0; i<pts; i++){
if (i==pts-1) {
bezier(px[i], py[i], cx[i], cy[i], cx2[i], cy2[i], ➥

px[0], py[0]);
}
else{
bezier(px[i], py[i], cx[i], cy[i], cx2[i], cy2[i], ➥

px[i+1], py[i+1]);
}

}

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

290

617xCH07.qxd 4/17/07 1:38 PM Page 290

strokeWeight(.75);
stroke(0);
rectMode(CENTER);

// control handles and tangent lines
for (int i=0; i<pts; i++){
if (i==pts-1){ // last loop iteration - close path
line(px[0], py[0], cx2[i], cy2[i]);

}
if (i>0){
line(px[i], py[i], cx2[i-1], cy2[i-1]);

}
line(px[i], py[i], cx[i], cy[i]);

}

for (int i=0; i<pts; i++){
fill(controlPtCol);
noStroke();
//control handles
ellipse(cx[i], cy[i], 4, 4);
ellipse(cx2[i], cy2[i], 4, 4);

fill(anchorPtCol);
stroke(0);
//anchor points
rect(px[i], py[i], 5, 5);

}
}

// fill up arrays with ellipse coordinate data
void setEllipse(int points, float radius, float controlRadius){
pts = points;
px = new float[points];
py = new float[points];
cx = new float[points];
cy = new float[points];
cx2 = new float[points];
cy2 = new float[points];
float angle = 360.0/points;
float controlAngle1 = angle/3.0;
float controlAngle2 = controlAngle1*2.0;
for (int i=0; i<points; i++){
px[i] = width/2+cos(radians(angle))*radius;
py[i] = height/2+sin(radians(angle))*radius;
cx[i] = width/2+cos(radians(angle+controlAngle1))* ➥

controlRadius/cos(radians(controlAngle1));
cy[i] = height/2+sin(radians(angle+controlAngle1))* ➥

controlRadius/cos(radians(controlAngle1));
cx2[i] = width/2+cos(radians(angle+controlAngle2))* ➥

CURVES

291

7

617xCH07.qxd 4/17/07 1:38 PM Page 291

controlRadius/cos(radians(controlAngle1));
cy2[i] = height/2+sin(radians(angle+controlAngle2))* ➥

controlRadius/cos(radians(controlAngle1));

//increment angle so trig functions keep chugging along
angle+=360.0/points;

}
}

void mousePressed(){
setEllipse(int(random(3, 36)), random(-200, 300), random(-200, 300));

}

Figure 7-34. Bézier Ellipse sketch, example 1

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

292

617xCH07.qxd 4/17/07 1:38 PM Page 292

Figure 7-35. Bézier Ellipse sketch, example 2

The program plots a closed ellipse using the bezier() function with a little help from
sin() and cos(). When plotting a circle using a Bézier curve, which you might remember
is a cubic curve (third-degree polynomial), the two control points get placed between the
two anchor points, dividing the curve into equal thirds, from anchor 1 to control 1 to con-
trol 2 to anchor 2. If you were using a quadratic curve (second-degree polynomial), as is
used by ActionScript’s curveTo() method, for example, you’d put your single control
point halfway between the two adjacent anchor points. When using cubic Bézier curves,
you can approximate a circle using only four anchor points; a quadratic Bézier requires
eight—however, neither of these generates a perfect circle. In the example, I used two dif-
ferent radius variables (radius and controlRadius), one for the anchor points and one for
the control points. I did this so that you can eventually morph the ellipse into more inter-
esting forms by changing the spatial relationships between the control and anchor points.
However, I also wanted to maintain some of the original symmetry, so the variations aren’t
purely random.

The two functions that do most of the work are drawEllipse() and setEllipse().
setEllipse() fills the anchor and control point arrays (px, py, cx, cy, cx2, and cy2) based
on the trig equations. Notice that I instantiated the arrays and initialized their sizes at the
top of the setEllipse() function, based on the number of points passed into the func-
tion. Since this needs to happen at both the start of the sketch and whenever anyone
clicks the screen, it seemed most efficient to create a function, rather than include the

CURVES

293

7

617xCH07.qxd 4/17/07 1:38 PM Page 293

same basic code in two different places in the sketch. When a user clicks, setEllipse()
is called, passing in a bunch of random values: setEllipse(int(random(3, 36)),
random(-200, 300), random(-200, 300));.

The drawEllipse() function is called each frame from the draw() function. You’ll be using
draw() extensively a little later in the book. draw() is used for animation, and by including
it, Processing continually redraws the screen (by default) around 60 frames per second.
You can update values within draw(), as I’m doing by repeatedly calling drawEllipse().
Also notice that the first line in the draw() structure is a background(145) call. If I don’t
include this, the screen will not be cleared between draw loops, and changes to the curve
plot will build up on the screen. This could be used to very good effect, so you might want
to try commenting out the background(145) call. Then run the sketch and click the screen
repeatedly. Figure 7-36 shows a screenshot of my attempt.

Figure 7-36. Bézier Ellipse sketch, example 3

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

294

617xCH07.qxd 4/17/07 1:38 PM Page 294

I included one last example (shown in Figure 7-37) on how to create an elliptical spline plot
using shape() and shapeVertex(). I also included a more generalized spline ellipse–
creation function. Notice how the curveTightness settings affect the different curves,
creating interesting path details. Similarly to the bezier() example, I initially populate the
coordinate arrays with ellipse point data, using some trig expressions. However, unlike
bezier(), I’m not burdened with anchor and control points. When drawing the closed
curves, I followed the control point order I covered earlier in the chapter. This is not terri-
bly intuitive, so it might help to mess with the node order in the curve() functions a little
to see how it affects the curve. I implemented the first ellipse using curve(), and the sec-
ond using curveVertex(). I’m not sure which is easier—probably curveVertex(), since it
uses a shorter parameter list. The problem with the initial ellipse plots is that they are
hard-coded for four points and can’t easily be customized. Thus, I created a more general
spline ellipse function as well, allowing you to control the number of points, as well as the
x and y position, radius, and curve tightness, among other properties. The function is used
to generate the two inner curves. This modular approach will be looked at in more depth
in the next chapter, as you begin to apply some object-oriented approaches to the examples.

/*
Curve Ellipse
Ira Greenberg, December 20, 2005
revised November 15, 2006
*/

float radius = 165;
float angle = 0;

//outer circle
float[]cx = new float[4];
float[]cy = new float[4];

//middle circle
float[]cx2 = new float[4];
float[]cy2 = new float[4];

void setup(){
size(400, 400);
background(255);
strokeWeight(1.5);
smooth();

for (int i =0; i<4; i++){
//outer ellipse
cx[i] = width/2+cos(radians(angle))*radius;
cy[i] = height/2+sin(radians(angle))*radius;

//middle ellispe
cx2[i] = width/2+cos(radians(angle))*(radius*.85);
cy2[i] = height/2+sin(radians(angle))*(radius*.85);

CURVES

295

7

617xCH07.qxd 4/17/07 1:38 PM Page 295

angle+=360.0/4.0;
}

//outer curve
curveTightness(-3);
curve(cx[3], cy[3], cx[0], cy[0], cx[1], cy[1], cx[2], cy[2]);
curve(cx[0], cy[0], cx[1], cy[1], cx[2], cy[2], cx[3], cy[3]);
curve(cx[1], cy[1], cx[2], cy[2], cx[3], cy[3], cx[0], cy[0]);
curve(cx[2], cy[2], cx[3], cy[3], cx[0], cy[0], cx[1], cy[1]);

//middle curve
curveTightness(2);
noFill();
beginShape();
curveVertex(cx2[3], cy2[3]);
curveVertex(cx2[0], cy2[0]);
curveVertex(cx2[1], cy2[1]);
curveVertex(cx2[2], cy2[2]);
curveVertex(cx2[3], cy2[3]);
curveVertex(cx2[0], cy2[0]);
curveVertex(cx2[1], cy2[1]);
endShape();

for (int i=0; i<4; i++){
fill(255);
ellipse(cx[i], cy[i], 10, 10);
ellipse(cx2[i], cy2[i], 10, 10);

}

//inner curve
curveEllipse(6, width/2, height/2, radius*.2, -8, 127, true);
//inner, inner curve
curveEllipse(8, width/2, height/2, radius*.05, 0, 0, false);

}

// general spline ellipse plotting function
void curveEllipse(int pts, int x, int y, float radius, ➥

float tightness, int fillCol, boolean isNodeVisible){
float[]cx = new float[pts];
float[]cy = new float[pts];
float angle = 0;

for (int i=0; i<pts; i++){
cx[i] = x+cos(radians(angle))*(radius);
cy[i] = y+sin(radians(angle))*(radius);
angle+=360.0/pts;

}

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

296

617xCH07.qxd 4/17/07 1:38 PM Page 296

curveTightness(tightness);
beginShape();
fill(fillCol);
for (int i=0; i<pts; i++){
if (i==0){
curveVertex(cx[pts-1], cy[pts-1]);

}
curveVertex(cx[i], cy[i]);
if (i==pts-1){
curveVertex(cx[0], cy[0]);
curveVertex(cx[1], cy[1]);

}
}
endShape(CLOSE);
// render control points
if (isNodeVisible){
fill(255);
for (int i=0; i<pts; i++){
ellipse(cx[i], cy[i], 10, 10);

}
}

}

Figure 7-37. Curve Ellipse sketch

CURVES

297

7

617xCH07.qxd 4/17/07 1:38 PM Page 297

The nastiness with the spline curves is in figuring out the order of the control points. It’s
important to remember that each point needs a control point on either side of itself. In
the block of code for the outer curve:

curve(cx[3], cy[3], cx[0], cy[0], cx[1], cy[1], cx[2], cy[2]);
curve(cx[0], cy[0], cx[1], cy[1], cx[2], cy[2], cx[3], cy[3]);
curve(cx[1], cy[1], cx[2], cy[2], cx[3], cy[3], cx[0], cy[0]);
curve(cx[2], cy[2], cx[3], cy[3], cx[0], cy[0], cx[1], cy[1]);

notice the order of the indices in the array brackets:

3, 0, 1, 2
0, 1, 2, 3
1, 2, 3, 0
2, 3, 0, 1

Each succeeding row begins with the second through the fourth values, and then the next
logical value is added. Once you get to the highest value (in this case, 3), you go back to 0.
I recommend messing with this order to see how it affects the curve.

The curveEllipse() function adds flexibility to the curve-creation process. You generally
want to structure your code to build in as much flexibility as possible. Functions and
eventually objects offer this possibility. Notice that the curveVertex() calls in the
curveEllipse() function require some conditional statements within the for loop, ensur-
ing that the correct ordering of indices is followed, as discussed earlier:

for (int i=0; i<pts; i++){
if (i==0){

curveVertex(cx[pts-1], cy[pts-1]);
}
curveVertex(cx[i], cy[i]);
if (i==pts-1){
curveVertex(cx[0], cy[0]);
curveVertex(cx[1], cy[1]);

}
}

}

Before concluding this chapter, I just want to briefly mention a few more curve-related
Processing functions. bezierDetail() and curveDetail() allow you to control the detail
of the curve rendering, anywhere from a straight line to a stepped curve to a smooth,
flowing curve. However, these functions do not work with the JAVA2D renderer, the cur-
rent default rendering mode. You can use them with the P3D and OPENGL renderers,
which are covered in Chapters 13 and 14. As of this writing, the P2D renderer is not func-
tional. However, if/when that renderer is resurrected, these functions should work with it
as well. In addition, there are three other functions—curvePoint(), bezierPoint, and
bezierTangent()—that allow points and tangent lines to be plotted along curve paths.
These are interesting, but also a little complex, and I think you’ve had enough of that sort
of thing in this chapter. More information about these functions can be found in
Processing’s language reference.

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

298

617xCH07.qxd 4/17/07 1:38 PM Page 298

Summary
Curves, and the math behind them, offer all sorts of expressive possibilities for creative
coding. They are the basis for generating organic forms and, as you’ll see in Chapter 11,
natural motion. Of course, all this power does come with some added complexity. As I
illustrated in this chapter, Processing allows you to generate curves using standard polyno-
mial and trigonometric equations. Of course, if the math doesn’t do it for you, you can
also use Processing’s built-in curve functions. As you progress as a coder, though, I think
you’ll find the math stuff really helpful—allowing you to more fully exploit the built-in
functions. In Chapter 8, I’ll depart from the math (for a while) and introduce object-
oriented programming.

CURVES

299

7

617xCH07.qxd 4/17/07 1:38 PM Page 299

617xCH08.qxd 4/20/07 3:15 PM Page 300

8 OBJECT-ORIENTED PROGRAMMING

617xCH08.qxd 4/20/07 3:15 PM Page 301

Object-oriented programming (OOP) is a deep and complex subject, and a detailed dis-
cussion of it is beyond the scope of this book. However, in this chapter I will give you a
solid grounding in OOP to get you started. While OOP is challenging to start with, it is fun-
damental to Java and therefore Processing, and it is very rewarding once you get the hang
of it, so don’t despair if you find this chapter difficult to follow. As you work through the
rest of the book, it will help you to keep returning to this chapter to look up OOP con-
cepts as you meet them in all the applied examples you come across. It will get easier as
you practice, I promise.

A new way of programming?
The answer to this question is both yes and no. While very different from procedural pro-
gramming, OOP can at the same time be thought of as a natural extension of it. In
procedural programming, you use functions to modularize code, adding efficiency, organ-
ization, and some portability. Classes, the main building blocks of OOP, work similarly.
However, OOP takes the modularization of code a couple of magnitudes further. Functions
are like data processing machines. They input data, perform some computation with/on
the data, and spit the data back out to be used somewhere else. Users who utilize a func-
tion only need to know what the function does (not how it does it) and what type of data
the function is expecting as input. This type of approach is often referred to as “black-box”
design. Electrical components work this way (thankfully). Imagine if you had to understand
all the details of how your DVD player works just to watch a film. Instead, you just need to
know how to plug it in and hit play. Functions and classes both provide their own varia-
tions on black-box design; they encapsulate their internal implementation while providing
a public interface to utilize the structure.

Classes, like functions, are modular, can process data, and allow code to be organized into
logical structures, adding more organization to the coding process. However, classes go
much further than functions in their ability to be independent, modular, reusable entities.
In addition, classes have built-in variables, called properties, and their own functions,
called methods—these properties and methods can be used beyond anything a function
could provide. In OOP, we say that we interact with a class through its public interface,
which can be thought of as the portal to communicate with the class’s black box. Also,
unlike functions—which are singular, static processing units—classes provide customized
copies of themselves called instances, allowing a single class to have a wide range of
unique states or instances. Instances of a class are also referred to as objects, which, if it
isn’t obvious, is where the term object-oriented programming comes from.

For example, if I create a Box class, I can then use the class to create Box instances of vary-
ing size, shape, color, and so on. Each of the Box instances would share certain core attrib-
utes (properties), but these attributes could each be expressed uniquely. Classes can also
extend other classes. For example, I can create a class called Shape, which I can then
extend to create Rectangle, Circle, and Triangle classes. Each of these three more-
specific classes would share certain common attributes, such as position, size, and color,
defined within the common Shape class. Aside from the common attributes, instances of
these classes will also have their own unique characteristics, such as a specific plotting
algorithm, a radius (for a circle), width/height (for a rectangle), an orientation (for a trian-

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

302

617xCH08.qxd 4/20/07 3:15 PM Page 302

gle), and so on. These unique attributes would be defined within the specific Rectangle,
Circle, and Triangle classes.

The ability for classes to extend other classes is a powerful feature of OOP, allowing
libraries of classes to be developed for reuse. For example, if I create a simple drawing
program, I could incorporate the existing Rectangle, Circle, and Triangle classes just
discussed, rather than rebuilding from scratch. Most programming languages come with
extensive libraries of classes, greatly simplifying the development process. Processing takes
this concept one step further by creating a procedural front-end (allowing you to simply
call functions) on top of the classes it relies on. The Java language, which you’ll work with
toward the end of the book, is a great example of a mature object-oriented language with
thousands of prewritten classes at your disposal.

Now these are a lot of new concepts to absorb without any pictures (or at least code snip-
pets), so let’s get to work with some code. Following is an OOP example, based on the
creation (and hopefully consumption) of a Burrito class.

BurritoRecipe class
Classes are often used to model specific objects or processes in the real world. I like bur-
ritos quite a bit—so let’s make a BurritoRecipe class. Since a class is composed of prop-
erties and methods, you need to think about what properties or characteristics a burrito
recipe has and what methods or actions would be associated with a burrito recipe. I know
this sounds very simplistic, but this really is classic object-oriented thinking.

In OOP, you create an abstraction (the class), internally grouping the class’s properties with
methods that act upon these properties, raising program design issues to a higher level
where you can think like a person (albeit a hungry person), rather than like a machine. For
example, once you create your BurritoRecipe class, you could use it by writing something
like burritoRecipe1 = new BurritoRecipe(). If you wanted to select pinto beans for your
recipe, you could then write something like burritoRecipe1.setBeans("pinto"). Classes
are often also thought of as blueprints. You use the blueprints to make objects (also
known as instances) of the class. For example, the aforementioned burritoRecipe1 is an
object of the BurritoRecipe class. Each object created from a class has access to the same
structure (the class’s internal properties and methods), but each object can also choose to
express itself differently from other objects derived from the same class. Thus, I can use
the BurritoRecipe class to make a bean burrito recipe, and you can use it to make a
chicken burrito recipe (or better yet, a chicken and bean burrito recipe).

Here are some BurritoRecipe properties: size, tortillaFlavor, meatType, beanType,
toppings, salsaTemperature.

Here are some Burrito methods: getSize(), setSize(), getTortillaFlavor(),
setTortillaFlavor(), setMeatType(), getMeatType(), setBeanType(), getBeanType(),
getToppings(), setToppings(), setSalsaTemperature(), getSalsaTemperature(), and
printRecipe(). It is the convention, where applicable, to create get and set methods for
the class’s properties. In the preceding list of methods, all of the methods except
printRecipe() either get or set properties of the class.

OBJECT-ORIENTED PROGRAMMING

303

8

617xCH08.qxd 4/20/07 3:15 PM Page 303

Of course, within the BurritoRecipe class, there could be additional methods and prop-
erties relating, for example, to side dishes, calories, costs, and so on. In OOP, your class
design decisions are not unlike decisions you would make in the real world if you really
were to make, serve, sell, or eat a burrito.

Before you actually create your BurritoRecipe class, have a look at the basic framework
of a simple generic class:

class ClassName {

// properties
int property1;
float property2;

// constructors
ClassName(){
}

ClassName(int prop1, float prop2){
property1 = prop1;
property2 = prop2;

}

// methods
void setProperty1(int prop1){
property1 = prop1;

}
int getProperty1(){
return property1;

}

void setProperty2(float prop2){
property2 = prop2;

}
float getProperty2(){
return property2;

}

}

A class begins with the keyword class, followed by a legal identifier (the name) of the
class. The naming of classes follows the same naming rules described in Chapter 3. The
convention is to begin class names with a capital letter. When using a compound name (a
name made up of multiple words), such as ClassName, you also capitalize the initial letter
of any nested words. Following the class identifier is an open curly brace. The class is
closed with a final terminating curly brace, at the very bottom of the class. Between the
open and closed curly braces are the class’s properties, constructors, and methods.

The properties are variables declared within the class with a data type, an identifier, and an
optional initial value. (If you don’t assign an initial value, the properties are assigned

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

304

617xCH08.qxd 4/20/07 3:15 PM Page 304

default values based on their specific data type). The properties defined at the top of the
class have global scope within the class, just like variables declared at the top of a sketch
in Processing. Variables declared within the head of a constructor or method (parameters),
or within the constructor/method blocks, are local to that respective structure. This all
works the same way as functions work in Processing.

The constructors are simply methods (functions declared within a class) with the same
exact name as the class and no specified return type. These special methods are invoked
automatically when an object of the class is created. You can have multiple constructors
(each with the same name as the class) as long as the number and type of parameters in
the constructor head (also known as the signature) is different. This also works the same
way as functions work in Processing. Here’s an example of multiple constructors for a
Shape class. Notice that each constructor has the same name as the class, but a unique
parameter list. (This code is not intended to be run.)

class Shape{
// 1st constructor
Shape(){
}
// 2nd constructor
Shape(float x, float y){
}
// 3rd constructor
Shape(float x, float y, float w, float h){
}

}

As I mentioned previously, methods are just functions declared within a class. Like func-
tions, they can return a value or not, and they can also accept arguments passed into
them. If a method doesn’t return a value, you declare the method using the void keyword.
If the method returns a value, you need to declare it with the specific data type it returns.

Now you’re ready to look at a complete class. Please note that the class definition is just
one part of the process of using a class. Following my description of the BurritoRecipe
class, I’ll show you how to actually incorporate it into a sketch. The class code is a little
lengthy, but I’ll spend some time going over it.

class BurritoRecipe {

// properties
int size;
String tortillaFlavor;
String meatType;
String beanType;
String[]toppings;
int salsaTemperature;

//3 constructors--default, basic, monster
//default burrito recipe constructor
BurritoRecipe (){
}

OBJECT-ORIENTED PROGRAMMING

305

8

617xCH08.qxd 4/20/07 3:15 PM Page 305

//regular burrito recipe constructor
BurritoRecipe (String tortillaFlavor, String beanType, ➥

String meatType){
//initialize properties
this.tortillaFlavor = tortillaFlavor;
this.beanType = beanType;
this.meatType = meatType;

}

//monster burrito recipe constructor(uuummmm)
BurritoRecipe (String tortillaFlavor, String beanType, ➥

String meatType, String[]toppings, int salsaTemperature){
//initialize properties
this.tortillaFlavor = tortillaFlavor;
this.beanType = beanType;
this.meatType = meatType;
this.toppings = toppings;
this.salsaTemperature = salsaTemperature;

}

//get/set methods
int getSize() {
return this.size;

}

void setSize(int size) {
this.size = size;

}

String getTortillaFlavor(){
return this.tortillaFlavor;

}

void setTortillaFlavor(String tortillaFlavor){
this.tortillaFlavor = tortillaFlavor;

}

String getMeatType(){
return this.meatType;

}

void setMeatType(String meatType){
this.meatType = meatType;

}

String getBeanType(){
return this.beanType;

}

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

306

617xCH08.qxd 4/20/07 3:15 PM Page 306

void setBeanType(String beanType){
this.beanType = beanType;

}

String[] getToppings(){
return this.toppings;

}

void setToppings(String[] toppings){
this.toppings = toppings;

}

int getSalsa(int salsaTemperature){
return this.salsaTemperature;

}

void setSalsa(int salsaTemperature){
this.salsaTemperature = salsaTemperature;

}

void printRecipe(){
println("Burrito Recipe:");
println("---------------");
if (this.tortillaFlavor!=null){
println("Steam or lightly pan heat a " + this.tortillaFlavor + ➥

" tortilla.");
if (this.beanType!=null){
println("Sauté fresh onions, garlic, cilantro, slowly ➥

mixing in " + this.beanType + " beans and white wine.");
}
if (this.meatType!=null){
println("Grill " + this.meatType + " along with fresh green ➥

pepper, jalapeno pepper, chile pepper, ➥

onions and garlic.");
}
if (this.toppings!=null){
for (int i =0; i< toppings.length; i++){
println("Add " + toppings[i]+".");

}
}
if (this.salsaTemperature>0){
println("Finish off with a generous spritz of "+ ➥

this.salsaTemperature+" alarm salsa.");
}

}
else {
println("Uh, you'll need to give me some ingredients\n" + ➥

"if you actually want me to produce a recipe.");
}

OBJECT-ORIENTED PROGRAMMING

307

8

617xCH08.qxd 4/20/07 3:15 PM Page 307

// go to next line after printing
// cooking instructions to the screen
println();

}
}

Class declaration

class BurritoRecipe {

As I discussed, to declare a class, you use the class keyword followed by the identifier
(BurritoRecipe) of the class. Following the class identifier, there needs to be an open
curly brace.

Properties declaration

// properties
int size;
String tortillaFlavor;
String meatType;
String beanType;
String[]toppings;
int salsaTemperature;

Properties are declared at the top part of the class. As in previous examples with variables,
properties need a data type and a legal identifier to be declared; they can also be assigned
initial values. In this example, I just declare the properties. Notice that of the six proper-
ties, two are of type int, three are of type String, and one is of type String[] (array of
Strings). The six declared properties are technically known as instance properties, and
each object created (or instantiated) from the BurritoRecipe class will have access to its
own unique copies of these properties. This is an important point and illustrates the blue-
print nature of classes. The properties and methods defined in the class are the core struc-
tural elements (commonly referred to as members) of each object instantiated from the
class, and each object can express itself uniquely via its own copies of the class’s proper-
ties and methods.

In addition to instance properties, classes can also have static properties and static meth-
ods. These are declared with the keyword static. Static properties are also known as class
properties. I will provide an example of some static variables when I cover composition
shortly. The main difference between instance properties and static properties is that each
object or instance created from a class can assign different values to its instance proper-
ties, but all objects of a class share the same values assigned to the class’s static properties.
In Java and Processing, static variables are used mostly to create constants (with the addi-
tional keyword final added in the declaration). Constants are variables that are
immutable (can’t be changed). For example, in Processing and Java, PI is a constant, and
its declaration in Java’s Math package could be something like the following:

static final double PI 3.141592653589793;

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

308

617xCH08.qxd 4/20/07 3:15 PM Page 308

Obviously, PI is never going to change, and the complier will enforce this if you use the
static and final keywords in declaring it. If someone eventually tries to assign some
other value to PI, the compiler would generate an error and prevent them from doing it.
For the curious among you, the keyword double is the Java data type associated with PI.
The double data type is similar to the float type, except a double requires twice as much
storage as a float (8 bytes vs. 4 bytes), and also has greater precision (accuracy to 15 digits).
However, double precision is not really necessary for the types of things most people do
with Processing, so float was made the default primitive data type for any decimal values
in Processing.

Constructors

As mentioned before, constructors are methods with the same name as the class, auto-
matically invoked when an object is instantiated (created with the new keyword, as in new
BurritoRecipe()). In addition, the constructor returns a reference to the object created.
Thus, in the complete instantiation statement

BurritoRecipe myRecipe = new Burrito Recipe();

the variable myRecipe, declared of type BurritioRecipe, is assigned a reference to the
newly created BurritoRecipe object.

//3 constructors--default, basic, monster
//default burrito recipe constructor
BurritoRecipe (){
}

//regular burrito recipe constructor
BurritoRecipe (String tortillaFlavor, String beanType, ➥

String meatType){
//initialize properties
this.tortillaFlavor = tortillaFlavor;
this.beanType = beanType;
this.meatType = meatType;

}

//monster burrito recipe constructor(uuummmm)
BurritoRecipe (String tortillaFlavor, String beanType, ➥

String meatType, String[]toppings, ➥

int salsaTemperature){
//initialize properties
this.tortillaFlavor = tortillaFlavor;
this.beanType = beanType;
this.meatType = meatType;
this.toppings = toppings;
this.salsaTemperature = salsaTemperature;

}

OBJECT-ORIENTED PROGRAMMING

309

8

617xCH08.qxd 4/20/07 3:15 PM Page 309

In the BurritoRecipe class, I included three constructors, which allows the class to be ini-
tialized three different ways, depending on what arguments are passed to the constructor
when the object is instantiated. Within the constructors’ parentheses are any optional
parameters. When you create a new object, passing arguments to a constructor, there
must be a constructor with the same number and type of parameters or the compiler will
spit out an error, which if you remember is similar to how functions work as well. The
following object instantiations are valid, based on the available constructors in the
BurritoRecipe class:

// uses default BurritoRecipe constructor
BurritoRecipe recipe1 = new BurritoRecipe();

//uses regular BurritoRecipe constructor
BurritoRecipe recipe2 = ➥

new BurritoRecipe ("spinach", "pinto", "chicken");

However, the following instantiation will generate a compiler error, as there is no con-
structor with an appropriate parameter list:

// generates a compiler error.
BurritoRecipe recipe3 = new BurritoRecipe ("spinach", "chicken");

Within the code blocks (the code between the curly braces) of the bottom two construc-
tors are a number of assignment lines that initialize the class’s instance properties with the
values passed in via the arguments:

this.tortillaFlavor = tortillaFlavor;
this.beanType = beanType;
this.meatType = meatType;

These lines may look a little odd at first. I remember being pretty confused when I first saw
code like this. In naming the parameters, I used the same names as the properties declared
at the top of the class. This was technically not necessary, and I could have made the
names different. However, I actually find it easier to remember what parameter value
initializes what property when they have the same names. Perhaps some of you may be
thinking, “When two different things have the same name, couldn’t that create a problem,
especially if the properties declared up top have global scope and can be seen anywhere
within the class?” This is a good question. The answer is yes and no. Following, I illustrate
a good way and a bad way of performing the constructor initialization when both the
parameters and the properties have the same names.

Here’s the good code:

this.tortillaFlavor = tortillaFlavor;
this.beanType = beanType;
this.meatType = meatType;

And here’s the bad code:

tortillaFlavor = tortillaFlavor;
beanType = beanType;
meatType = meatType;

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

310

617xCH08.qxd 4/20/07 3:15 PM Page 310

Hopefully you noticed that the only difference between the good and bad code is the
absence of the this keyword at the beginning of the bad code assignments. If you don’t
use the this keyword, the compiler uses the local parameters on both sides of the assign-
ment operator.

The special keyword this refers to the class itself. Thus, this.meatType is the property,
not the parameter of the same name. As I mentioned, if you don’t use the keyword this,
the compiler will only use the local parameter within the constructor block—so an assign-
ment like meatType = meatType doesn’t pass a value to the property, but just uselessly
assigns the parameter value back to the parameter—meaning nothing really happens. I
realize that if this is totally new to you, it may seem like an obscure point, but it really isn’t.
Is there any way to avoid using the this keyword? Well, there is, actually. If I had used dis-
tinct property and parameter names, I could have avoided using the this keyword. For
example, the following constructor could be safely substituted for the second constructor
in the BurritoRecipe class example:

//basic burrito recipe--add toppings later
BurritoRecipe(String tortFlavor, String bType, String mType){
//initialize properties
tortillaFlavor = tortFlavor;
beanType = bType;
meatType = mType;

}

I still could use the this keyword in front of the properties on the left of the assignments
if I wanted to, but it is not required any longer. Ultimately, you can do your constructor ini-
tializations either way: using the same named properties and parameters and the this key-
word in front of the properties, or keeping the property and parameter names distinct. In
my humble opinion, using the same names for the properties and parameters ultimately
makes things simpler, and also helps you to see what parameter to assign to what property.
But not everyone would agree with me. When you start looking at other people’s code,
you’ll see this handled both ways—even though I think I’m right.

Methods

After the constructors, there is a long list of methods, in the following style:

int getSize() {
return this.size;

}
void setSize(int size) {
this.size = size;

}

In OOP, there is a convention to structure methods utilizing the get/set prefix appended
to the property names (commonly referred to as get/set methods, or “getters” and
“setters”), as illustrated in the preceding code. Not all your methods will be getters and
setters, but generally it is desirable to have a get and set method for each property. In pure
OOP (which you’re not totally burdened with here), the idea is that a class’s properties

OBJECT-ORIENTED PROGRAMMING

311

8

617xCH08.qxd 4/20/07 3:15 PM Page 311

should not be targeted directly and the properties should actually be made private, using
the optional private keyword (called an access modifier) in front of the property declara-
tion. For example

private String meatType

If you make the property private, you will not be allowed to directly target it from outside
the class. Instead, you are forced to use its respective public get/set methods.

So, instead of myBurritoRecipe.meatType = "chicken" or String meat = myBurritoRecipe.
meatType;, classic OOP says you must use myBurritoRecipe.setMeatType("chicken"); or
String meat = myBurritoRecipe.getMeatType();—I suspect this might be confusing, so
for now, you can go ahead and be naughty and just target your properties directly, which
is actually encouraged in Processing.

In addition to the getter and setter methods, most classes also have additional methods
that do more interesting things (thank goodness). For example, the printRecipe()
method in this program outputs burrito cooking instructions.

void printRecipe(){
println("Burrito Recipe:");
println("---------------");
if (this.tortillaFlavor!=null){
println("Steam or lightly pan heat a " + this.tortillaFlavor + ➥

" tortilla.");
if (this.beanType!=null){
println("Sauté fresh onions, garlic, cilantro, slowly ➥

mixing in " + this.beanType + " beans and white wine.");
}
if (this.meatType!=null){
println("Grill " + this.meatType+" along with fresh green ➥

pepper, jalapeno pepper, chile pepper, onions and garlic.");
}
if (this.toppings!=null){
for (int i =0; i< toppings.length; i++){
println("Add " + toppings[i]+".");

}
}
if (this.salsaTemperature>0){
println("Finish off with a generous spritz of " + ➥

this.salsaTemperature+" alarm salsa.");
}

}
else {
println("Uh, you'll need to give me some ingredients\n" + ➥

"if you actually want me to produce a recipe.");
}
// go to next line after printing
// cooking instructions to the screen

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

312

617xCH08.qxd 4/20/07 3:15 PM Page 312

println();
}

}

This method may look complex at first glance, but it is really just a bunch of if statements
sending output to the text window. One thing that is new in the method is the use of the
keyword null in some of the if statements. For example

if (this.tortillaFlavor!=null){

The conditional expression != means “is not equal to.” So the if statement is then true
when this.tortillaFlavor is not equal to null. This type of logic can seem tricky when
you first start using it. Just try to remember that if statements are checking if the condi-
tion between the parentheses is true, not for a universal truth. So, if I say ira = tall (I’m
not really), then the conditional if (ira==tall) would evaluate to true, as would if
(ira!=short). To explain why I used the null keyword in the first place, I need to go back
to the discussion about declaring variables/properties.

Notice that in the class, when I declare a property using the String data type, that String
has an initial cap. (Remember that Java and Processing are case sensitive, so the capital S
matters.) Also, throughout the book, when variables of a primitive type have been
declared—such as int or float—all lowercase letters were used. The capital S in String
should inform you that the String data type is a class. Variables or properties declared of
type String, or of any class for that matter, are not primitive types like int, float, or
boolean that actually evaluate to specific values, but instead are object reference variables
that evaluate to the memory address where the objects are stored. Now you don’t need to
worry about memory addresses. But what you do need to know is that the default value of
an object reference, once it has been declared and before it has been defined, is null.

In the printRecipe() method, I needed to find a way to keep the program from crashing
when it couldn’t a find a value it expected. By writing the if statements the way I did, I
ensured that if the property was initialized, and therefore wasn’t equal to null, the block
of code would run. However, if it was still equal to null, then the relevant print statement
would be skipped, keeping the program from crashing. This is actually a pretty common
thing to do in coding, and you will see more of it later on in the book.

Throughout the method, I also used the concatenation operator, +, to join the string liter-
als in quotes with the properties. Remember, literals are just actual words or numbers that
you write—for example, “art” (a string literal) or 10 (a number literal, which is referred to
as a constant). A literal’s meaning or value is explicitly what is written. To join a literal with
a property or variable, you need to use the concatenation operator, as follows:

this.beanType + " beans and white wine."

Also notice within the method that most of the if statements are nested within an outer
if statement, which determines if there is a tortilla. If there isn’t a tortilla, then the pro-
gram skips the remaining statements and outputs the following:

"Uh, you'll need to give me some ingredients if you actually want me
to produce a recipe."

OBJECT-ORIENTED PROGRAMMING

313

8

617xCH08.qxd 4/20/07 3:15 PM Page 313

Alas, if there is no tortilla, there is no way to make a burrito. Lastly, notice how the for
loop is used to run through the list of toppings. Using an array for the toppings and the
array’s length property as the limit on the for loop, any number of toppings can be added
to the recipe, and the for loop will automatically loop through the entire array, using the
value of the array’s length property to determine when to stop. Throughout the rest of
the book, you’ll see many similar examples using for loops and arrays.

Finally, here’s a complete Processing implementation that actually uses the class. Enter all
the following code into Processing and run the sketch—or better yet, download the
complete code (BurritoRecipe.pde) from the Download section of the friends of ED site
(www.friendsofed.com/).

/*
title: BurritoRecipe class example
description: create some tasty burritos
created: August 9, 2005
revised: March 10, 2006

October 23, 2006
by: Ira Greenberg
note: Enjoy and use plenty of guac.
*/

void setup(){
// create some burrito recipes
//use constructor 1
BurritoRecipe b1 = new BurritoRecipe();
b1.printRecipe();

//use constructor 2
BurritoRecipe b2 = new BurritoRecipe("spinach", "black", "chicken");
b2.printRecipe();

//use constructor 3
String[]tpgs = {"tomato", "lettuce", "corn"};
BurritoRecipe b3 = new BurritoRecipe("whole wheat", "pinto", ➥

"beef", tpgs , 8);
b3.printRecipe();

}

class BurritoRecipe {

// properties
int size;
String tortillaFlavor;
String meatType;
String beanType;

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

314

617xCH08.qxd 4/20/07 3:15 PM Page 314

String[]toppings;
int salsaTemperature;

//3 constructors--default, basic, monster
//default burrito recipe constructor
BurritoRecipe (){
}

//regular burrito recipe constructor
BurritoRecipe (String tortillaFlavor, String beanType, ➥

String meatType){
//initialize properties
this.tortillaFlavor = tortillaFlavor;
this.beanType = beanType;
this.meatType = meatType;

}

//monster burrito recipe constructor(uuummmm)
BurritoRecipe (String tortillaFlavor, String beanType, ➥

String meatType, String[]toppings, int salsaTemperature){
//initialize properties
this.tortillaFlavor = tortillaFlavor;
this.beanType = beanType;
this.meatType = meatType;
this.toppings = toppings;
this.salsaTemperature = salsaTemperature;

}

//get/set methods
int getSize() {
return this.size;

}

void setSize(int size) {
this.size = size;

}

String getTortillaFlavor(){
return this.tortillaFlavor;

}

void setTortillaFlavor(String tortillaFlavor){
this.tortillaFlavor = tortillaFlavor;

}

String getMeatType(){
return this.meatType;

}

OBJECT-ORIENTED PROGRAMMING

315

8

617xCH08.qxd 4/20/07 3:15 PM Page 315

void setMeatType(String meatType){
this.meatType = meatType;

}

String getBeanType(){
return this.beanType;

}

void setBeanType(String beanType){
this.beanType = beanType;

}

String[] getToppings(){
return this.toppings;

}

void setToppings(String[] toppings){
this.toppings = toppings;

}

int getSalsa(int salsaTemperature){
return this.salsaTemperature;

}

void setSalsa(int salsaTemperature){
this.salsaTemperature = salsaTemperature;

}

void printRecipe(){
println("Burrito Recipe:");
println("---------------");
if (this.tortillaFlavor!=null){
println("Steam or lightly pan heat a " + this.tortillaFlavor + ➥

" tortilla.");
if (this.beanType!=null){
println("Sauté fresh onions, garlic, cilantro, slowly ➥

mixing in " + this.beanType + " beans and white wine.");
}
if (this.meatType!=null){
println("Grill " + this.meatType+" along with fresh green ➥

pepper, jalapeno pepper, chile pepper, onions and garlic.");
}
if (this.toppings!=null){
for (int i =0; i< toppings.length; i++){
println("Add " + toppings[i]+".");

}
}
if (this.salsaTemperature>0){
println("Finish off with a generous spritz of " + ➥

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

316

617xCH08.qxd 4/20/07 3:15 PM Page 316

this.salsaTemperature+" alarm salsa.");
}

}
else {
println("Uh, you'll need to give me some ingredients\n" + ➥

"if you actually want me to produce a recipe.");
}
// go to next line after printing
// cooking instructions to the screen
println();

}
}

There are a couple of ways of using a class in Processing. For one, you can simply add it in
your main tab with the rest of your sketch code, just as you’ve been doing with functions.
(To use a custom class or function, you must also include Processing’s setup() function.)
You can also enter a class (or function) in a separate tab. The sketch will still see it/treat it
as if it exists in the main tab. Finally, you can also work in Java mode, which I’ll cover in
Chapter 14. For the BurritoRecipe example, I used the simplest solution, and just entered
the class code directly below the setup() function. At the top of the sketch, within
the setup() function, I instantiated three BurritoRecipe objects, and called the
printRecipe() method for each of them. When the sketch runs, it outputs burrito
cooking directions, based on the arguments I passed when I instantiated the three
BurritoRecipe objects.

In the first instantiation statement, I didn’t pass any arguments:

BurritoRecipe b1 = new BurritoRecipe();

The printRecipe() method outputs the following:

Burrito Recipe:

Uh, you'll need to give me some ingredients
if you actually want me to produce a recipe.

In the second instantiation statement, I passed three arguments:

BurritoRecipe b2 = new BurritoRecipe ("spinach", "black", "chicken");

The printRecipe() method outputs the following:

Burrito Recipe:

Steam or lightly pan heat a spinach tortilla.
Sauté fresh onions, garlic, cilantro, slowly mixing in black beans ➥

and white wine.
Grill chicken along with fresh green pepper, jalapeno pepper, ➥

chile pepper, onions and garlic.

OBJECT-ORIENTED PROGRAMMING

317

8

617xCH08.qxd 4/20/07 3:15 PM Page 317

Finally, when I created the third BurritoRecipe object, I passed in a bunch of stuff:

String[]tpgs = {"tomato", "lettuce", "corn"};
BurritoRecipe b3 = new BurritoRecipe("whole wheat", "pinto", ➥

"beef", tpgs , 8);

The printRecipe() method outputs the following:

Burrito Recipe:

Steam or lightly pan heat a whole wheat tortilla.
Sauté fresh onions, garlic, cilantro, slowly mixing in pinto beans ➥

and white wine.
Grill beef along with fresh green pepper, jalapeno pepper, ➥

chile pepper, onions and garlic.
Add tomato.
Add lettuce.
Add corn.
Finish off with a generous spritz of 8 alarm salsa.

Hopefully, this example has given you a clear sense of how OOP is implemented in
Processing. However, I don’t think my (albeit very tasty) example properly illustrated the
potential power of OOP. One simple way OOP is useful is in sheer efficiency. It may not
seem worth it to generate a whole BurritoRecipe class just to generate a few burritos, but
what if you needed to generate thousands of different burrito recipes. Clearly, the time
spent creating the class begins to pay off big-time. Another way OOP is useful is in organ-
izing the coding process. Let’s say I decide to construct an interactive recipe book of 100
favorite dishes from around the world, and of course I want to include my burrito recipe.
My little BurritoRecipe class included 5 properties and 13 methods, and the other 99
world recipes would each contain around the same level of detail. If I don’t use classes, I
might try to code all the hundreds of properties as global and local variables. I’d then need
to use lots and lots of functions to sort all this stuff out—pretty much a nightmare sce-
nario.

Besides this being a royal pain, I would also lose the connection of each property to its
respective recipe. Instead, if I use classes, each recipe will enclose, or encapsulate, its
respective properties and methods, shielding users of the class from much of the internal
procedural complexity and organizing all the hundreds of properties into logical concep-
tual structures (classes). Remember, OOP was developed based on the real world and our
brains’ predilections for thinking of things as discrete units. Going one step further, it
would even be possible to create a RecipeBook class that could encapsulate the individual
recipe objects within the larger organizing class. The bottom line is, as coding problems
get more complex, the benefits gained from OOP begin to far outweigh the costs of imple-
menting it.

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

318

617xCH08.qxd 4/20/07 3:15 PM Page 318

Advanced OOP concepts
Next, I’ll introduce some advanced OOP concepts, including encapsulation/information
hiding, inheritance, composition, interfaces, and polymorphism. These concepts are fun-
damental to OOP, but they’re somewhat difficult to grasp and even harder to effectively
apply. Understanding these concepts becomes increasingly important as your projects
increase in size and complexity, especially when you want to create reusable code. If
you’re a new coder (and are still recovering from the basic OOP whirlwind tour), you
might want to skip this next section (for now). Just be sure to return to it, as you’ll defi-
nitely want to know about this stuff to fully leverage the power of Processing and Java.
Fortunately, you can learn these concepts incrementally as you progress as a coder. It’s
also possible, if you’re anything like me, that you may end up finding this stuff fascinating.

Encapsulation and data hiding

Encapsulation is one of the more “slippery” terms you’ll stumble across when you begin to
learn programming. On the one hand, its meaning in programming is similar to its mean-
ing in English—the encasing or enclosing of something. You can think about the way a
function encases lines of code into an invokable unit as a form of encapsulation. One of
the benefits of this arrangement is that the interface to a function and the implementation
within the function are separated; this allows the implementation to change over time
while still maintaining a consistent interface. For example, if I have a function called
createPortrait() that initially draws a lousy stick-figure head, over time I can improve
the algorithm to generate a more photorealistic head. The user, then, can just keep calling
createPortrait() as the interface to the function remains constant, in spite of the
improvements made to the guts of the function.

In OOP, encapsulation refers to the encasing and grouping of an object’s data fields (prop-
erties) with its methods. As mentioned earlier, objects are created from classes, each with
its own copies of the properties and methods defined in the class. In classic OOP, you don’t
generally interact with an object’s properties directly. Instead, you use the object’s meth-
ods to get or set its property values. This principle is referred to as data or information
hiding. In Java, for example, you normally use the keyword private when declaring prop-
erties to make them inaccessible. You declare methods (which are the structures that users
of the class must use to interact with the properties) as public to get and set their values.
For example, if I have class that has a name property, I would declare the property as pri-
vate like this:

private String name;

And I would create public get and set methods to provide indirect access to the private
name property, as follows:

public String getName (){
return name;

}
public void setName (String n){
name = n;

}

OBJECT-ORIENTED PROGRAMMING

319

8

617xCH08.qxd 4/20/07 3:15 PM Page 319

One of the benefits of data hiding is that dependencies between properties can be better
managed. For example, if an object uses the values of a number of properties to calculate
something, and users are allowed to go in willy-nilly and change any property values
directly, calculations could be adversely affected. However, if you use a method, property
values can be both set and checked prior to performing any calculation, improving upon
both program efficiency and reliability.

All that being said, in Processing, everything is public by default, meaning that to a user of
the Processing API, everything is directly accessible. This design decision was made to keep
Processing as simple as possible. However, it is possible, especially when working in Java
mode, to make your properties private and enforce data hiding. In Chapter 14, you’ll work
in Java mode, making your object properties private and using public get and set methods
to interact with them. To learn more about this concept, check out http://java.sun.com/
docs/books/tutorial/java/concepts/object.html.

Inheritance

Inheritance in OOP is the ability of a class A to inherit or extend another class, B, enabling
class A to have access to the properties and methods within the extended class B. In this
constructed relationship, class B is referred to as the superclass that class A extends, and
class A becomes the subclass that extends class B. In addition, class A can add its own addi-
tional properties and methods, and even overwrite specific properties and methods of
class B (its extended superclass). Inheritance proceeds in a general-to-specific direction.
For example, if I have a class called GermanShepherd, I could start with a very general base
class, called Mammal, a subclass of Mammal called Quadruped, a subclass of Quadruped called
Canine, and a subclass of Canine called GermanShepherd. A Feline class could also inherit
from Quadruped, while a Human class might come from a Biped class that inherited from
Mammal. Figure 8-1 shows a diagram of this.

Figure 8-1. OOP inheritance diagram

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

320

617xCH08.qxd 4/20/07 3:15 PM Page 320

http://java.sun.com/

Inheritance in Java is absolutely fundamental to the language’s design. In fact, every class
in Java except the Object class has at a minimum one superclass, and every class except
the Object class has a lineage that goes back to Object. For example, when you export a
Processing sketch, a Java applet is created. Here is the Applet class’s lineage:

java.lang.Object
java.awt.Component

java.awt.Container
java.awt.Panel

java.applet.Applet

The classes are the words that start with an initial cap (Object, Component, Container,
Panel, and Applet). The words connected to them by a dot are the packages the classes
live in. Packages are just directories or folders that hold class files. In this lineage, Applet
inherits from Panel, which inherits from Container, which inherits from Component, which
inherits from Object. Therefore, the Applet class has access to all the accessible proper-
ties and methods declared within its own class and from all the classes above it—giving the
Applet class access to over 200 methods. However, the inheritance chain doesn’t go the
other way. Object doesn’t have access to any properties or methods besides those
declared within its own class description, as it is at the top of the inheritance chain for all
classes. On the other hand, the Panel class has access to methods/properties in
Container, Component, and Object—but not Applet.

Applying inheritance
Using inheritance is pretty straightforward. In the following example, I have a very simple
Shape class and Polygon class. The Polygon class inherits from (or extends) the Shape class.

class Shape {
//class properties
int x;
int y;
int w;
int h;

//constructors
Shape (){
}

Shape (int x, int y, int w, int h){
this.x = x;
this.y = y;
this.w = w;
this.h = h;

}
}

class Polygon extends Shape{
int pts;
//constructor

OBJECT-ORIENTED PROGRAMMING

321

8

617xCH08.qxd 4/20/07 3:15 PM Page 321

Polygon (int x, int y, int w, int h, int pts){
//Optional call to superclass constructor must come first
super(x, y, w, h);
// add any remaining initializations
this.pts = pts;

}

//method to draw poly
void create(){
float px = 0, py = 0;
float angle = 0;
beginShape();
for (int i=0; i<pts; i++){
px = cos(radians(angle))*w;
py = sin(radians(angle))*h;
vertex(px, py);
angle+=360.0/pts;

}
endShape(CLOSE);

}
}

The Shape class is very simple and hopefully makes some sense to you. The Polygon class
has some new syntax. The class declaration uses the extends keyword to create the inher-
itance relationship between the superclass (Shape) and the subclass (Polygon). A super-
class-subclass relationship is purely contextual. Therefore, if I create a new ComplexPolygon
class that extends the Polygon class, then in that context, Polygon is the superclass and
ComplexPolygon is the subclass. Polygon would still be a subclass in regard to the Shape
class. Simply using the extends keyword is all it takes to create an inheritance relationship.

Within the Polygon constructor is the other new keyword, super. The super keyword, as
you might have guessed, refers to the superclass. If you call super from within a construc-
tor, it needs to be the first line in the subclass’s constructor, or else the complier will give
an error. The call to super in this context is a call to the superclass constructor. So all I’m
doing here is initializing the properties in the Shape class by passing through the argu-
ments sent to the subclass’s constructor when the object was instantiated. You don’t need
to explicitly call the superclass constructor from the subclass; it’s generally only done
when you want to initialize properties within the superclass, as I did in the example. In
Processing, a subclass like Polygon has access to its superclass’s properties and methods,
meaning that it can use those properties and methods as if they were declared within
itself. That’s why in the Polygon create() method I’m able to use the w and h properties
that were only declared within the Shape superclass. (Don’t get confused with the use of
the same named w and h parameters in the Polygon constructor. Those are local variables
to the constructor and not visible down in the create() method.) To try out the Polygon
class (and its Shape superclass) from within Processing, add the following setup function
along with the two classes:

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

322

617xCH08.qxd 4/20/07 3:15 PM Page 322

void setup(){
size(400, 400);
background(50);
smooth();
Polygon p = new Polygon(0, 0, 175, 175, 8);
translate(width/2, height/2);
p.create();

}

One final point: Processing and Java allow a superclass to be assigned an object reference
to any class that has extended it or is below it in the inheritance lineage. Thus, an object of
the Object class can be assigned an object reference to any class, because the Object class
sits alone at the very top of the entire class lineage. So it is perfectly legal and common to
write a statement like this:

Shape myShape = new Polygon(10, 19, 233, 100, 8);

Inheritance gives Processing and Java a lot of power, efficiency, and flexibility. Applying it
judiciously, however, is not always so simple. One of the potential problems with inheri-
tance is that classes get locked into dependencies. So, if I eventually decide to change a
class for reuse, I may inadvertently mess up another program that depends, through inher-
itance, on a certain implementation within a superclass. This scenario and how to deal with
it is a pretty advanced and subtle concern that won’t apply to most new coders, but it is
something to keep in the back of your mind as you begin to develop larger and more
complex projects.

Composition

One alternative (and also complimentary) approach to inheritance is called composition.
Composition is another technique for developing relationships between classes. Composition
is pretty straightforward to implement, and I think easier to get your head around than
inheritance. Let’s imagine I’m trying to develop a virtual house. My house will be really
simple; it will only contain windows. The windows, however, are pretty fancy. In OOP, it is
virtuous to be able to modularize a construct into a class, encapsulating its properties and
behavior. Thus, it would be a good idea to create a Window class and have the class inter-
nally take care of creating and customizing the windows. Then, in my House class, I could
just worry about where the windows are going to go and maybe how big to scale them; the
Window class would take care of everything else. This is good OOP design. However, this
approach also involves having multiple classes interacting with one other. The challenge of
this inter-class communication is that unless there is an inheritance relationship, an object
from one class can’t effectively communicate with an object of an unrelated class. In my
previous inheritance example, the Polygon class extended the Shape class. This made
sense because a polygon is a type of shape. Can I do the same thing with the House and
Window? Not really, as a window is not a type of house. Thus inheritance doesn’t concep-
tually seem like the right choice.

OBJECT-ORIENTED PROGRAMMING

323

8

617xCH08.qxd 4/20/07 3:15 PM Page 323

Composition can solve this problem elegantly. Although I can’t say that a window is a type
of house, I can say that a house has a window. This is the difference between inheritance
and composition. Inheritance involves an is-a relationship and composition involves a
has-a relationship. Which approach would work with the following class groupings?

Mammal, Cat

Artist, CreativeCoder

Monkey, Tail

Foot, Finger

EatingTool, Spoon, Fork

Well, a cat is a mammal, and a creative coder is an artist—these are both examples of
inheritance. A monkey has a tail, which is an example of composition. A foot, however,
doesn’t have a finger; nor is a finger a type of foot—so neither relationship makes sense—
this is an annoying tricky one. Lastly, a spoon and a fork are both eating tools, which is
another example of inheritance.

Following is some class code illustrating how to apply the composition relationship.

class Window {
/* declare static properties: the final keyword ensures

that these constant values can't be changed. */
static final int RECTANGLUAR = 1;
static final int ELLIPTICAL = 2;
static final int OCTAGONAL = 3;

// instance properties
int panes;
boolean isDoublePaned;
int configuration;

// constructor
Window (int panes, boolean isDoublePaned, int configuration){
this.panes = panes;
this.isDoublePaned = isDoublePaned;
this.configuration = configuration;

}
// other Window methods would go here

}

class House {
// instance properties

/* The House class contains a property
of type Window */

Window win;

// constructor
/* The House constructor expects

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

324

617xCH08.qxd 4/20/07 3:15 PM Page 324

a Window object argument */
House(Window win){
this.win = win;

}
// other House methods would go here
}

From within Processing, I could use these classes like this (assuming, of course, that the
two classes were pasted below the setup() function, or each in their own separate tab):

void setup(){
Window myWin = new Window(4, true, Window.ELLIPTICAL);
House myHouse = new House(myWin);

}

Notice that I included three constants in the Window class. It is a coding convention to use
all caps for constant names. One of the most common uses for constants is for preset
values. In my example, I am giving a user of the Window class a choice of three different
window configurations. I could have just forced the user to type in a number, but it is eas-
ier for most people to remember a name. In my Window class, I would eventually want to
add a method that figures out what constant the user selected (which is just an int value),
and then have that type of window created. You’ll notice in the Processing setup() func-
tion that I use the static ELLIPTICAL property by attaching it to the class name with a dot
(Window.ELLIPTICAL). Static properties are class properties that are accessible from any
class. There is no need to instantiate an object of the class to use them. Remember also
that Processing and Java are case sensitive, so when using the class name, you need the ini-
tial capital.

After the static properties, I declare three instance properties, which should hopefully look
familiar by now. Next, in the Window constructor, I do my normal parameter-to-property
assignments. I didn’t include any other methods in the class for the sake of brevity (as if
that were still possible).

The House class is very short, but gives a clear example of class composition. I only
declared one instance variable, and you’ll notice it is of type Window. Now this may look
pretty odd, as you normally declare a property or variable as a valid data type, built into
the Processing and Java core languages. Well, it so happens that any class you create is a
valid data type. The subtlety of this concept took me some time to fully grasp. Just remem-
ber that a class is a data type. So it is perfectly valid to declare a property of a class type.

In the House constructor, there is a parameter of type Window that requires that an argu-
ment of type Window be passed in when a House object is instantiated. Within the House
constructor, I do a standard assignment, using the parameter and property—both of type
Window. The really cool thing is that now I can communicate directly with the Window
object from within the House class, through its internal reference passed into the House
constructor. Of course, if I were to finish the class, I would want to include additional
properties and methods, allowing the Window object to be placed and sized within the
house.

OBJECT-ORIENTED PROGRAMMING

325

8

617xCH08.qxd 4/20/07 3:15 PM Page 325

There are many advantages for House and Window to have this special compositional rela-
tionship. By letting the house control when and where to draw the windows, it can ensure
that the windows always fit, regardless of whether the house is resized or moved. By let-
ting the windows take care of actually drawing themselves, the house only has to worry
about the number of windows, their scale, and where they go. This is good, clean OOP in
action.

I realize that this is not easy stuff to grasp in its entirety, but I hope you are getting a sense
of what OOP is and why it might be useful. The best way to learn OOP is to practice and
experiment writing classes/programs. You can read this stuff over and over, but until you
apply it, it’s hard to get it to stick. The final concepts we’ll look at in this long chapter are
not easy, so read at your own risk. If you choose to jump ahead, which is fine, do try to
come back at some point.

Interfaces
In the example on inheritance a couple of pages back, a Polygon class extended a Shape
class. This allowed the Polygon class to access the class members of the Shape class. This
made sense because of the is-a relationship. A polygon is a shape. In the composition
example, the House class contained a reference to the Window class through an instance
variable of type Window. This was the right solution because a house has a window, but a
window is not a house. I could have also used the Shape class as a base class for both the
House and Window classes, as both a window and a house are shapes (of a sort). It is possi-
ble and actually very common to combine inheritance and composition when designing
classes.

However, there are times when you’ll have a class that has an is-a relationship to two or
more classes. For example, a Bicycle class could have an is-a relationship to a Vehicle
class and also a SportsGear class. Since the SportsGear class and the Vehicle class don’t
have much in common, you can’t logically create an inheritance chain, where the Bicycle
class extends the SportsGear class that extends the Vehicle class. The most logical solu-
tion is one of multiple inheritance, where the Bicycle class extends both the Vehicle class
and the SportsGear class. In a language like C++, this could be done. However, in Java and
Processing, this is illegal, as the languages don’t support multiple class inheritance, which
many people think is a good thing. If you want to learn more about this issue, check out
www.javaworld.com/jw-12-1998/jw-12-techniques.html. However, Java/Processing does
support another approach to multiple inheritance, often referred to as multiple inheri-
tance of interface.

Interfaces are class-like constructs that can only include method definitions and constants.
Interfaces can’t include method implementations, the stuff between the curly braces.
Method definitions include a return type (or the keyword void), the identifier (name) of
the method, and the number and type of parameters. For example, method definitions in
a SportsGear interface might include the following:

String getBrandName();
float getUnitCost();
void setUnitCost(float unitCost);
void printWarranty();

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

326

617xCH08.qxd 4/20/07 3:15 PM Page 326

The entire SportsGear interface in Processing would be:

interface SportsGear{
String getBrandName();
float getUnitCost();
void setUnitCost(float unitCost);
void printWarranty();

}

It’s pretty simple to create interfaces. However, using them is a bit trickier, and using them
polymorphically is trickier still. We’ll take it one step at a time. Here’s a Bicycle class that
extends a Vehicle class and implements the SportsGear interface (this code is not meant
to be run):

class Bicycle extends Vehicle implements SportsGear{
//instance variables
String brandName;
float unitCost;

// constructor
Bicycle(String brandName, float unitCost){
this.brandName = brandName;
this.unitCost = unitCost;

}

/* We're required to implement all methods
from the SportsGear interface*/

String getBrandName(){
return brandName;

}
float getUnitCost(){
return unitCost;

}
void setUnitCost(float unitCost){
this.unitCost = unitCost;

}
void printWarranty(){
println("Bicycle: full replacement value for 1 year");

}
}

To keep things simple in the example, I didn’t bother adding any properties or methods to
the Vehicle class, or extra properties/methods to the Bicycle class. Instead, the Bicycle
class gets all of its members just by implementing the SportsGear interface. Whenever a
class implements an interface—through the use of the implements keyword—the class
must implement all the methods in the interface, which means that it needs to include all
the method definitions contained within the interface, as well as fill in the method blocks.
This is enforced by the compiler, which will generate an error if it’s not done.

OBJECT-ORIENTED PROGRAMMING

327

8

617xCH08.qxd 4/20/07 3:15 PM Page 327

When I first learned about interfaces, by about this point in the discussion I got kind of
annoyed. I was able to follow how to code interfaces, but I didn’t get the benefit. I mean,
if you are forced to implement all the methods in the interface, why not just add the
methods directly to the class to begin with? Wouldn’t this be less work and less confusing?
What is the interface really giving you for this added effort? I think in retrospect that this
was a good question. At this point, there is not much apparent benefit.

Let’s now create another class that also implements the SportsGear interface, to see if you
can begin to see the power of interfaces. (This code is not intended to be run either—I’ll
get to that shortly.)

class Skis implements SportsGear{
//instance variables
String brandName;
float unitCost;

// constructor
Skis(String brandName, float unitCost){
this.brandName = brandName;
this.unitCost = unitCost;

}
// required implemented interface methods
String getBrandName(){
return brandName;

}
float getUnitCost(){
return unitCost;

}
void setUnitCost(float unitCost){
this.unitCost = unitCost;

}
void printWarranty(){

println("Skis: full replacement value for 5 years");
}

}

In the Skis class, you can see that I included the same method definitions as in the
Bicycle class. Notice also that I implemented the printWarranty() method a little differ-
ently in each of the two classes. I have the freedom to do this because the interface
methods are empty. This is one of the benefits of using interfaces. They provide a shared
interface for communicating with a group of related classes, but still allow a customized
implementation of each of the common methods. As you get more experienced with
coding, you’ll begin to recognize some recurring patterns in how related classes are
designed, and even eventually be able to guess at some of the classes’ methods

The customized implementation benefit I just mentioned is helpful, but still for my money,
not quite enough to add so much complexity or extra work to my process. However,
before you write off interfaces, there is another much more powerful benefit to using
them that justifies the extra effort—polymorphism.

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

328

617xCH08.qxd 4/20/07 3:15 PM Page 328

Polymorphism
Polymorphism sounds a lot worse than it really it is; it just means assuming multiple forms
or shapes. Whether you realize it or not, you’re already very familiar with how polymor-
phism works. For example, imagine you and a friend decide to spend one Sunday building
a birdhouse. You’d probably want some tools—say, a screwdriver and a saw. These tools
don’t have much in common with one another except their general classification as tools.
In OOP speak, we could say that each tool has two types: the type Tool and also its more
specific type (Screwdriver or Saw). As you’re building the birdhouse, your friend is hold-
ing a screw and asks you to pass him a tool. Unless you’re a prankster, you pass him the
screwdriver. Even though your friend didn’t specify which tool; the context determined
which was appropriate. Also, since both the screwdriver and the saw are tools, there was
no risk (when he asked for a tool) of you passing him a ham sandwich or whatever. This
dynamic binding between a more general classification (tool) and a specific object (screw-
driver), based on context, is precisely how polymorphism works in OOP.

In technical terms, polymorphism in Processing/Java is based on the JVM’s ability to be
able to link a method to a specific class’s implementation on the fly, making it possible for
a well-designed program to actually expand and grow over time, without necessarily going
back into the source code. For example, let’s say you created a video game that included
creatures who could each cast different magical spells. Using polymorphism, it would be
possible to code a system that could handle any number of creatures, including new ones
you added after the main game engine was complete—without ever having to go back
into the engine’s source code. Here’s a very simple code example of this scenario that you
can run in Processing:

// polymorphism example using inheritance
void setup(){
Creature c = new Creature();
Ogre o = new Ogre();
Elf e = new Elf();
Engine eng = new Engine();
eng.addCreature(c);
eng.addCreature(o);
eng.addCreature(e);

}

//superclass
class Creature{
void castSpell(){
println("nothing to say");

}
}

//subclass 1
class Ogre extends Creature{
void castSpell(){
println("I miss ya donkey");

}
}

OBJECT-ORIENTED PROGRAMMING

329

8

617xCH08.qxd 4/20/07 3:15 PM Page 329

//subclass 2
class Elf extends Creature{
void castSpell(){
println("Gotta make the cookies");

}
}

/* game engine--with embedded superclass
reference in the addCreature() method */
class Engine{
void addCreature(Creature c){
c.castSpell();

}
}

In the example, the Ogre and Elf classes each extend the Creature class. Through this
inheritance relationship, any Ogre and Elf objects instantiated will now also be of the sec-
ondary type Creature. Thus, it would be perfectly legal to assign new Ogre and Elf objects
to variables declared of type Creature.

Creature o = new Ogre();
Creature e = new Elf();

However, as you continue to expand this example, you’ll want the Ogre and Elf objects to
be assigned to variables of type Ogre and Elf, respectively—so if you tried using the pre-
ceding superclass assignment lines (which would work for now), make sure you put them
back to what they were:

Ogre o = new Ogre();
Elf e = new Elf();

This capability of unrelated objects (created from different classes) to have a relationship
through a common parent class (which each class extends) allows you to create more-
flexible programs. For example, if you create a game that includes the Ogre and Elf crea-
tures, inside the game engine you’d either have to hard-code reference variables for each
of the creatures, or use a common extended class. For only two creatures, either option
might be fine. However, what if your game included 20 creatures, or even the capability
for players to create their own creatures? The last thing you’d want to do is to keep going
into your game engine code and adding new reference variables every time a player cre-
ated a new creature. Rather, by including a common superclass reference variable in your
engine, you could simply require players creating a new creature class to extend your base
Creature superclass. This would allow your game to scale up, without you’re ever having
to touch the game engine source code.

Besides including a reference to the superclass in your game engine, you’d also need com-
mon methods within the Creature superclass and all the individual subclasses. In my last
example, notice the common castSpell() method within the Creature superclass and
both the Ogre and Elf subclasses. These methods have identical signatures (same name
and parameter list). However, their implementations (the code between the curly braces
of the methods) are different. As I mentioned earlier, one of the benefits of inheritance is

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

330

617xCH08.qxd 4/20/07 3:15 PM Page 330

that a subclass has access to the superclass’s methods (and properties). It’s also possible
for a subclass to override methods within the superclass. This is accomplished by creating
methods in the subclass with identical signatures to methods in its superclass.

In the last example, the following three instantiation lines

Creature c = new Creature();
Ogre o = new Ogre();
Elf e = new Elf();

create Creature, Ogre, and Elf objects (the Ogre and Elf objects are also of type
Creature, through inheritance). The addCreature(Creature c) method in the Engine
class includes a parameter of type Creature, allowing not only objects of type Creature to
be passed to the method as arguments, but also any subclasses of Creature. Inside this
method is a call, using the passed-in object reference, to the common castSpell()
method. Here’s where the magic happens. In setup(), when I call the Engine
addCreature() method three times:

eng.addCreature(c);
eng.addCreature(o);
eng.addCreature(e);

passing in Creature, Ogre, and Elf objects, respectively, the JVM automatically figures out
which implementation of the castSpell() method to call, based on the passed-in argu-
ment. In the first call, I’m passing in an object of type Creature, so the castSpell() imple-
mentation in the superclass is used. But in the next two calls, the castSpell()
implementations within the Ogre and Elf subclasses, respectively, are used. This is poly-
morphism in action and a powerful feature of Processing and Java.

Polymorphism with interfaces

Another variation on polymorphism in Java/Processing involves the use of interfaces. As I
mentioned earlier, classes are data types, and a class that extends another class becomes
of that secondary type as well. Interfaces are also legal data types—you can declare an
object reference variable as an interface type, just like a class type. In the SportsGear
interface discussion a few pages back, the Bicycle and Skis classes each implemented the
SportsGear interface. Thus, instantiated Bicycle and/or Skis objects would also both be
of the secondary type SportsGear. The Bicycle class also extended a Vehicle class, so it
would actually be of three types: Bicycle, Vehicle, and SportsGear. In Processing and
Java, a class is only allowed to extend a single class, but it can implement as many inter-
faces as you’d like. This is why it is said that multiple inheritance of interface is permitted
in Processing/Java.

At the risk of scaring readers away from the last few pages of this chapter, I
feel it’s only fair to warn you that you’re about to head down a double black
diamond trail (of the mind). This material is very advanced and presented in
a condensed format. Read it at your own risk.

OBJECT-ORIENTED PROGRAMMING

331

8

617xCH08.qxd 4/20/07 3:15 PM Page 331

Returning to the creature engine example, let’s say some of the creatures have archery
capabilities. It would be possible to add archery capabilities directly within the Creature
class (which each class extends), but of course not all creatures would be archers, so it
really doesn’t belong in the Creature superclass. Another possible option might be to
create a new Archer class, but the problem there is that you’re not allowed to have a class
in Processing/Java extend more than one class. Since each creature needs to extend the
Creature class, it wouldn’t be possible to also extend the Archer class. Using an interface
can help solve this problem. As discussed, an interface can only include constants and
unimplemented methods (method signatures). Here’s a very simple Archer interface:

interface Archer{
void shoot();

}

This interface only includes a shoot() method; notice the absence of curly braces follow-
ing the shoot() method signature. To use the interface, you need to add the implements
keyword along with the interface name to the end of another class declaration. I’ll add the
interface to the Elf class and also to a new Knight class. Here’s what the class declaration
statements look like:

class Elf extends Creature implements Archer
class Knight extends Creature implements Archer

And here are the completed Elf and Knight classes:

// Elf class
class Elf extends Creature implements Archer{
void castSpell(){
println("Gotta make the cookies");

}

// required method from interface
void shoot(){
println("Elf shoots");

}
}

//Knight class
class Knight extends Creature implements Archer{
void castSpell(){
println("Mirror, mirror on thw wall...");

}
// required method from interface
void shoot(){
println("Knight shoots");

}
}

Notice that both classes contain the shoot() method, including their own unique imple-
mentations. It’s important to remember that any class that implements an interface is

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

332

617xCH08.qxd 4/20/07 3:15 PM Page 332

forced to literally implement the interface—meaning add curly braces and fill in the body
of the method. Next, I’ll add a launchArrow(Archer a) method to the Engine class, which
includes a parameter of the Archer interface type. Here’s the completed Engine class:

class Engine{
void addCreature(Creature c){
c.castSpell();

}
void launchArrow(Archer a){
a.shoot();

}
}

The launchArrow() method works the same way as the addCreature() method. When the
launchArrow() method is called, the respective shoot() method implementation (in a
class implementing the Archer interface) will be selected based on what specific type the
more general Archer types evaluate to. Finally, here’s the updated setup() function,
including the new Knight instantiation and launchArrow() method calls:

void setup(){
Creature c = new Creature();
Ogre o = new Ogre();
Elf e = new Elf();
Knight k = new Knight();
Engine eng = new Engine();

eng.addCreature(c);
eng.addCreature(o);
eng.addCreature(e);

eng.launchArrow(e);
eng.launchArrow(k);

}

I want to make one final modification to this example. In the setup() function, I originally
instantiated the Creature object only to help illustrate how method implementations can
be dynamically selected, based on the type of the passed argument. When I passed in a
subclass object, its castSpell() implementation was used, but when I passed in the super-
class object, the castSpell() implementation within the superclass was actually used. In
reality, you generally wouldn’t want to instantiate a Creature object. Instead, you’re only
interested in using the Creature class as a base for more specific creatures.

Java includes the reserved keyword abstract, which can be used to enforce this behavior.
You simply preface the class declaration with the abstract keyword, turning the class into
an abstract class. Here’s the Creature class as an abstract class:

abstract class Creature{
void castSpell(){
println("nothing to say");

}
}

OBJECT-ORIENTED PROGRAMMING

333

8

617xCH08.qxd 4/20/07 3:15 PM Page 333

Once a class is declared abstract, the complier will not allow it to be instantiated. So, in the
last example, if I add the abstract keyword in front of the Creature class, I’ll get an error
when I try to run the sketch. However, if I remove the Creature instantiation line as well as
the line below it, where the engine adds the Creature object c, the sketch will run fine.
Besides enforcing this behavior, abstract classes also allow you to add abstract methods to
the class. Abstract methods are simply method declarations (like in interfaces) that also
require the abstract keyword. Here’s an example:

abstract String getCreatureName();

Also similar to interfaces, any class that extends an abstract class must implement all
abstract methods within the superclass. However, unlike interfaces, abstract classes also
allow you to include concrete methods (regular implemented methods) within the class. It
is not necessary for a subclass to reimplement the abstract superclass’s concrete methods,
but of course, as in the example, it can override them. Here’s the completed polymor-
phism example, including the Archer interface and abstract Creature superclass. I also
added an abstract getCreatureName() method to the Creature superclass, which I then
implemented in each of the (concrete) subclasses.

/* polymorphism example using
inheritance, interface and
an abstract class */
void setup(){
Ogre o = new Ogre();
Elf e = new Elf();
Knight k = new Knight();
Engine eng = new Engine();

eng.addCreature(o);
eng.addCreature(e);

eng.launchArrow(e);
eng.launchArrow(k);

println(o.getCreatureName());
println(e.getCreatureName());
println(k.getCreatureName());

}

// abstract Creature superclass
abstract class Creature{
/* this method will be overriden by
Creature subclasses */
void castSpell(){
println("nothing to say");

}

//abstract getCreatureName method
abstract String getCreatureName();

}

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

334

617xCH08.qxd 4/20/07 3:15 PM Page 334

// Ogre subclass
class Ogre extends Creature{
// overriden method within Creature superclass
void castSpell(){
println("I miss ya donkey");

}

/* required method implementation
from abstract Creature superclass */
String getCreatureName(){
return "I am an an Ogre";

}
}

// Elf subclass
class Elf extends Creature implements Archer{
// overriden method within Creature superclass
void castSpell(){
println("Gotta make the cookies");

}

/* required method implementation
from interface Archer */
void shoot(){
println("Elf shoots");

}

/* required method implementation
from abstract Creature superclass */
String getCreatureName(){
return "I am an an Elf";

}
}

// Knight subclass
class Knight extends Creature implements Archer{
// overriden method within Creature superclass
void castSpell(){
println("Mirror, mirror on thw wall...");

}

/* required method implementation
from interface Archer */
void shoot(){
println("Knight shoots");

}

OBJECT-ORIENTED PROGRAMMING

335

8

617xCH08.qxd 4/20/07 3:15 PM Page 335

/* required method implementation
from abstract Creature superclass */
String getCreatureName(){
return "I am a Knight";

}
}

interface Archer{
void shoot();

}

/* game engine-with embedded superclass
reference in the addCreature() method
and embedded interface reference in
launchArrow method */
class Engine{
void addCreature(Creature c){
c.castSpell();

}
void launchArrow(Archer a){
a.shoot();

}
}

Sorry if the text output is anticlimactic. Later on in the book, you’ll use OOP and polymor-
phism to generate some interesting visuals. In this chapter, we needed to get some theory
out of the way—which we’ve now done.

Summary
This was not an easy chapter. OOP introduces many abstract concepts to an already
abstract activity—programming. However, as you begin to create more complex sketches,
the organizational and reusability benefits of OOP make it well worth the added complex-
ity. Also, like any craft-based pursuit, the process gets easier through practice. The first
part of the chapter dealt with the basics of OOP—classes and objects. I think you’ll find
working with simple classes in Processing straightforward and helpful. For example, when
creating an animation, it’s helpful to encapsulate the animated object’s properties (e.g., x,
y, width, and height) inside a class, allowing you to target the properties using dot syntax
(e.g., animatedObject.x). In the advanced OOP section, you looked at some pretty com-
plex concepts, including inheritance, interfaces, abstract classes, and polymorphism.
Understanding and implementing these concepts takes time. Fortunately, you can do a lot
without them. However, as you build ever more complex sketches, these advanced fea-
tures can provide much greater flexibility and efficiency to your sketch design. You’ll be
using most of the features discussed in this chapter throughout the book (to accomplish
more interesting things than getting some text output).

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

336

617xCH08.qxd 4/20/07 3:15 PM Page 336

617xCH08.qxd 4/20/07 3:15 PM Page 337

617xCH09.qxd 4/18/07 3:38 PM Page 338

9 SHAPES

617xCH09.qxd 4/18/07 3:38 PM Page 339

Shapes are a natural extension of lines and curves. In the simplest sense, a shape is just the
enclosed space formed between three or more lines. Of course, a single continuous curve
can enclose space as well (e.g., an ellipse). Shapes can be generally categorized. For exam-
ple, an enclosed three-sided shape is referred to as a triangle, even if its size or configura-
tion can’t be determined. Fundamental 2D shapes (e.g., rectangles, circles, and triangles)
are commonly referred to as primitives. Primitives are essential building-block shapes,
which when combined allow you to (efficiently) construct most other shapes. Processing
includes both 2D and 3D primitive functions. In this chapter, you’ll just be dealing with 2D
shape functions.

I’ll begin by creating some simple sketches based on Processing’s primitive 2D shape func-
tions. These sketches will also provide a quick review of some of the core concepts
covered in earlier chapters. Using Processing’s drawing commands, I’ll then show you how
to create your own custom shapes, and eventually you’ll work your way to implementing
an OOP approach for shape creation—putting to good use some of the concepts you
looked at in the last chapter. Before you dive in, first a word of encouragement.

Patterns and principles (some encouragement)
Hopefully by this point in the book you’re beginning to recognize some common coding
and implementation patterns, duplicated in many of the examples. From my experiences
in the classroom, I find most students are able to grasp these coding patterns and princi-
ples much more quickly than they can remember the specific language commands/syntax.
You can always look up a command—that’s what the language reference (API) is for.
Conceptualization and design are far more important factors than language retention.
Thus, if you’re beginning to get the bigger picture, but are still struggling with implemen-
tation details, you’re doing well. If on the other hand, fundamental coding concepts such
as variables, loops, conditional statements, and arrays still seem unclear, you might want to
review Chapter 3 again.

Processing’s shape functions
Processing comes with pre-made shape creation commands, some you’ve looked at
already. However, I’ll discuss each again with some simple examples. As you review these
functions, I recommend trying to deduce the underlying algorithms operating within the
functions, rather than simply trying to memorize how to apply them. For example, if you
were to create your own rectangle-drawing function, how would you do it? This algorithm-
centered approach will lead you to a deeper understanding of coding and Processing, and
ultimately allow you to code any shape, rather than make you helplessly reliant on the few
functions included in the API.

The first shape I’ll cover is the rectangle. Using Processing, creating a rectangle couldn’t be
easier (and something you’re probably very familiar with by now). The following code
creates the rectangle shown in Figure 9-1:

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

340

617xCH09.qxd 4/18/07 3:38 PM Page 340

void setup(){
size(400, 400);
background(255);
strokeWeight(10);
fill(127);
rect(100, 50, 200, 300);

}

Figure 9-1. Processing’s rect() function

The shape functions in Processing rely on a drawing mode variable for defining their
origin—the point from which the shapes are drawn. The default origin point for a rectan-
gle is the top-left corner, while for an ellipse it’s the center. However, you can easily
change these by calling rectMode() or ellipseMode() before calling the rect() or
ellipse() function, respectively. This next example (shown in Figure 9-2) draws three rec-
tangles utilizing three different drawing modes: rectMode(CORNER), rectMode(CENTER),
and rectMode(CORNERS).

void setup(){
size(400, 400);
background(255);
strokeWeight(10);
fill(127);
rect(103, 120, 130, 100);
rectMode(CENTER);
rect(103, 120, 130, 100);
rectMode(CORNERS);
rect(233, 220, 363, 320);

}

SHAPES

341

9

617xCH09.qxd 4/18/07 3:38 PM Page 341

Figure 9-2. rectMode() example

The default mode is rectMode(CORNER), which draws the rectangle from the top-left
corner. Since this is the default, I didn’t need to explicitly call it in the sketch. The CENTER
and CORNER modes treat the four rect() arguments as x, y, width, and height. However,
the CORNERS mode treats the four arguments as x1, y1, x2, y2, specifying the top-left and
bottom-right corner points of the rectangle. If I add one more rect() call to the bottom
of the program, without specifying another drawing mode call, what mode do you think
will be used? This question is a little tricky, as many people will assume the default state
(CORNER) will be used, but the answer is actually (CORNERS). Every time you issue one of
these drawing mode commands in a program, you change the current state of the drawing
mode. This type of programming change is referred to as a state change, as you are chang-
ing the drawing state of the program, at least in terms of drawing rectangles.

Processing’s ellipse() function, which has the same four parameters as rect(int x,
int y, int w, int h), works similarly. However, as mentioned earlier, the default draw-
ing mode for ellipse() is ellipseMode(CENTER). ellipse() also has access to one
additional mode, ellipseMode(CENTER_RADIUS). This mode does the same thing as
CENTER, only it treats the width and height arguments as radii rather than diameters. One
somewhat useful thing to do with these two modes together is to quickly generate an
ellipse within an ellipse (see Figure 9-3):

size(400, 400);
background(255);
strokeWeight(10);
fill(127);
ellipseMode(CENTER_RADIUS);
ellipse(200, 200, 170, 170);
fill(255);
ellipseMode(CENTER);
ellipse(200, 200, 170, 170);

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

342

617xCH09.qxd 4/18/07 3:38 PM Page 342

Figure 9-3. ellipseMode() example

This next example is the earlier rectMode example converted to draw ellipses (see
Figure 9-4). I left in the rect() calls, treating them as bounding boxes around the ellipses.

//Ellipses with Bounding Boxes
void setup(){
size(400, 400);
background(255);
strokeWeight(10);
fill(127);
ellipse(103, 120, 130, 100);
ellipseMode(CORNER);
ellipse(103, 120, 130, 100);
ellipseMode(CORNERS);
ellipse(233, 220, 363, 320);

// bounding boxes
strokeWeight(1);
noFill();
rect(103, 120, 130, 100);
rectMode(CENTER);
rect(103, 120, 130, 100);
rectMode(CORNERS);
rect(233, 220, 363, 320);

}

SHAPES

343

9

617xCH09.qxd 4/18/07 3:38 PM Page 343

Figure 9-4. Ellipses with Bounding Boxes sketch

A bounding box is the smallest rectangular region that encloses a shape. Bounding boxes
are important in computer graphics, as it’s simpler and less computationally demanding
for the computer to calculate the area of a rectangle than an ellipse or some other irreg-
ular shape. Thus, in a game, for example, collision detection can be calculated with regard
to the bounding box of a shape, instead of the shape’s actual perimeter. This will allow the
game to perform better (but there may be some loss of accuracy with regard to how the
actual detection looks on the screen).

In addition to the rect() and ellipse() shape functions, Processing includes point(),
arc(), triangle(), and quad() functions. I discussed point() exhaustively in Chapters 6
and 7, and technically a point is not a shape (mathematically speaking), so I’ll skip it. I also
covered arc() in the context of curves—but here’s one more example, illustrating the
arc() function’s pie shape feature (see Figure 9-5):

//Arcs with Bounding Boxes
void setup(){
size(400, 400);
background(255);
strokeWeight(10);
fill(127);
arc(103, 120, 130, 100, 0, PI);
ellipseMode(CORNER);
arc(103, 120, 130, 100, 0, HALF_PI);
ellipseMode(CORNERS);
arc(233, 220, 363, 320, 0, TWO_PI-HALF_PI);

// bounding boxes
strokeWeight(1);
noFill();

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

344

617xCH09.qxd 4/18/07 3:38 PM Page 344

rect(103, 120, 130, 100);
rectMode(CENTER);
rect(103, 120, 130, 100);
rectMode(CORNERS);
rect(233, 220, 363, 320);

}

Figure 9-5. Arcs with Bounding Boxes sketch

In this last sketch, I used the ellipse() example code and simply switched the ellipse
keyword with arc, adding the two additional required start and end angle arguments. (The
angle arguments need to be specified in radians, and the value of PI in radians is equiva-
lent to 180 degrees, or 1/2 rotation around an ellipse.) I was able to use the ellipse()
example source code, as arc() shares the same four initial arguments as ellipse() and
also uses the ellipseMode() function to specify its drawing mode. Really, an arc and an
ellipse are related, as both are internally implemented the same way using cosine and sine
functions. Later in the chapter, I’ll show you how to create an ellipse in Processing using
some trig functions. As I demonstrated in Chapter 7, if you use 0 and TWO_PI as your two
angle arguments when calling arc(), you’ll get an ellipse. I leave that for you to try on your
own, if you missed it earlier. Next is an example that uses Processing’s triangle() function
(see Figure 9-6):

//Triangle
Point[]p = new Point[3];
void setup(){
size(400, 400);
background(190);
p[0] = new Point(2, height-2);
p[1] = new Point(width-2, height-2);
p[2] = new Point(width/2, 2);

SHAPES

345

9

617xCH09.qxd 4/18/07 3:38 PM Page 345

stroke(0);
strokeWeight(2);
fill(225);
triangle(p[0].x, p[0].y, p[1].x, p[1].y, p[2].x, p[2].y);

}

Figure 9-6. Triangle sketch

The examples thus far in the chapter have been pretty dull, so we’ll do something a little
more interesting with the triangle() function. Also note that I used Java’s Point class
again, as I find it very convenient when plotting stuff. This class is not included in
Processing, so you won’t find it in the Processing reference. However, it’s in the Java API (see
http://java.sun.com/j2se/1.4.2/docs/api/java/awt/Point.html). Arrays in Processing
and Java can be declared of any data type. (Remember from Chapter 8 that a class is also
a data type.) Point is a class in Java and thus a valid data type. This allowed me to create a
Point array and to refer to each Point object in the array by a single index value (e.g.,
p[0] or p[1]). Since each Point object has an x and y property, this is a convenient data
type for keeping track of both components (x and y) at the same time. If I had just used
arrays of type float instead of the Point class, I’d need to use either two separate paral-
lel arrays—one for x and one for y—or I’d need to use a multidimensional array (p[][]).
I think using an array of Points is the simplest solution. Here’s a little variation on the
Triangle sketch (see Figure 9-7):

//Triangle Zoom
Point[]p = new Point[3];
float shift = 10;
void setup(){
size(400, 400);
background(190);
smooth();
p[0] = new Point(1, height-1);

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

346

617xCH09.qxd 4/18/07 3:38 PM Page 346

http://java.sun.com/j2se/1.4.2/docs/api/java/awt/Point.html

p[1] = new Point(width-1, height-1);
p[2] = new Point(width/2, 1);
stroke(0);
strokeWeight(1);
fill(225);
triangle(p[0].x, p[0].y, p[1].x, p[1].y, p[2].x, p[2].y);
triBlur();

}
void triBlur(){
triangle(p[0].x+=shift, p[0].y-=shift/2, p[1].x-=shift, ➥

p[1].y-=shift/2, p[2].x, p[2].y+=shift);
if(p[0].x<width/2){
// recursive call
triBlur();

}
}

Figure 9-7. Triangle Zoom sketch

This sketch introduces a new advanced concept called recursion. Recursion is a process in
which a function calls itself, as happened in triBlur() in the last example. I didn’t need
to use recursion in this last example—I could have also handled the multiple calls to
triangle() iteratively using a while or for loop, but it was a good excuse to demonstrate
how recursion works. One danger in using recursion is the increased possibility of gener-
ating an infinite loop, which is a lot easier to do than you might assume. The notion of
something calling itself can be a little confusing, and therefore it’s not that hard to make
a simple logic mistake. I avoided an endless loop by wrapping the recursive call in a

SHAPES

347

9

617xCH09.qxd 4/18/07 3:38 PM Page 347

conditional statement. Since I increased the value of p[0].x each time the function exe-
cuted, I used the conditional to ensure that p[0].x would never exceed the midpoint of
the display window. Next, I’ll add a gradient blur effect to the sketch (see Figure 9-8):

//Triangle Blur
Point[]p = new Point[3];
float shift = 2;
float fade = 0;
float fillCol = 0;
void setup(){
size(400, 400);
background(0);
smooth();
fade = 255.0/(width/2.0/shift);
p[0] = new Point(1, height-1);
p[1] = new Point(width-1, height-1);
p[2] = new Point(width/2, 1);
noStroke();
triBlur();

}
void triBlur(){
fill(fillCol);
fillCol+=fade;
triangle(p[0].x+=shift, p[0].y-=shift/2, p[1].x-=shift, ➥

p[1].y-=shift/2, p[2].x, p[2].y+=shift);
if(p[0].x<width/2){
// recursive call
triBlur();

}
}

Figure 9-8. Triangle Blur sketch

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

348

617xCH09.qxd 4/18/07 3:38 PM Page 348

The blur was generated by incrementing the fill color from black to white each loop itera-
tion, based on the fade factor. I also turned off the stroke and decreased the value of the
shift variable to make the transition seamless. Hopefully you’ve been able to follow all
this. With the exception of the recursion, there’s nothing new here. In the next modifica-
tion, I’ll introduce a new concept. I’ll add some rotation to the triangles, which in itself isn’t
very complicated. However, the first attempt won’t pan out as you might expect. I’ll then
discuss some new concepts to get the sketch working. Here’s the flawed initial attempt
(see Figure 9-9):

//Triangle Spin
Point[]p = new Point[3];
float shift = 2;
float fade = 0;
float fillCol = 0;
float spin = 0;

void setup(){
size(400, 400);
background(0);
smooth();
fade = 255.0/(width/2.0/shift);
spin = 360.0/(width/2.0/shift);
p[0] = new Point(1, height-1);
p[1] = new Point(width-1, height-1);
p[2] = new Point(width/2, 1);
noStroke();
triBlur();

}
void triBlur(){
fill(fillCol);
fillCol+=fade;
rotate(spin);
triangle(p[0].x+=shift, p[0].y-=shift/2, p[1].x-=shift, ➥

p[1].y-=shift/2, p[2].x, p[2].y+=shift);
if(p[0].x<width/2){
// recursive call
triBlur();

}
}

SHAPES

349

9

617xCH09.qxd 4/18/07 3:38 PM Page 349

Figure 9-9. Triangle Spin sketch

Transforming shapes

In the last example, I wanted to create a nice, even rotation around the center point of the
triangles. Instead, what I got was the triangles spinning out of the display window. What
happened? The computer didn’t actually do anything wrong (although I suspect you real-
ized that). I asked it to rotate 3.6 degrees each iteration of the loop, and it did just that.
When you call the rotate() function, Processing rotates around the origin, which is (0, 0),
or the top-left corner of the display window. The triangles, however, are centered in the
middle of window. So Processing did exactly what I asked of it—it rotated around the ori-
gin, not the center point of the triangles or the display window.

To fix this issue, I either need to write my own custom triangle and rotate functions using
some trig functions, or (the much simpler way) I can draw my triangles centered around
the origin (0,0), and then use Processing’s translate() function to move them to the cen-
ter of the display window. In reality, this shifts the graphics context of the entire display
window, not just the triangles. The graphic context is the virtual drawing space of the dis-
play window. Here’s the last example corrected using Processing’s translate() function
(see Figures 9-10 and 9-11):

//Triangle Flower
Point[]p = new Point[3];
float shift = 1.0;
float fade = 0;
float fillCol = 0;
float rot = 0;

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

350

617xCH09.qxd 4/18/07 3:38 PM Page 350

float spin = 0;
void setup(){
size(400, 400);
background(0);
smooth();
fade = 255.0/(width/2.0/shift);
spin = 360.0/(width/2.0/shift);
p[0] = new Point(-width/2, height/2);
p[1] = new Point(width/2, height/2);
p[2] = new Point(0, -height/2);
noStroke();
translate(width/2, height/2);
triBlur();

}
void triBlur(){
fill(fillCol);
fillCol+=fade;
rotate(spin);
// another interesting variation: uncomment the line below
// rotate(rot+=radians(spin));
triangle(p[0].x+=shift, p[0].y-=shift/2, p[1].x-=shift, ➥

p[1].y-=shift/2, p[2].x, p[2].y+=shift);
if(p[0].x<0){
// recursive call
triBlur();

}
}

Figure 9-10. Triangle Flower sketch, variation 1

SHAPES

351

9

617xCH09.qxd 4/18/07 3:38 PM Page 351

Figure 9-11. Triangle Flower variation sketch, variation 2

Look at this sketch carefully, as the concepts are important. Also notice that I included a
second rotate() option. Simply uncomment the // rotate(rot+=radians(spin)); state-
ment to see the effect.

If you want to create any multi-shape object, you usually need to deal with translation. In
Java, the class that encapsulates this sort of thing is called AffineTransform. Affine trans-
form is a term used to describe a special type of transformation involving matrices. You
can simply think of a matrix (singular of matrices) as a table structure composed of rows
and columns. In computer graphics, the use of matrices is an efficient way to represent
coordinate geometry. It is possible to use a matrix to store the position, scale, and rotation
of point coordinates. It is also possible to transform the data in the matrix, and ultimately
the coordinate geometry, using simple operations (e.g., addition and multiplication).
Matrices are too complex an issue to cover in depth here, but here’s a good link with
information about them: http://en.wikipedia.org/wiki/Matrix_%28mathematics%29.

An affine transformation allows shapes to be moved, scaled, rotated, and even sheared
without distortion by ensuring that lines that are parallel and/or straight prior to the trans-
formation remain so afterwards. Affine transformations in Processing affect the graphics
context and are cumulative. In other words, If I rotate with the function call rotate(PI),
and then again with rotate(HALF_PI), the graphics context will be rotated 1 1/2 pi, or 270
degrees. What has already been drawn on the screen won’t be effected, but any new data
added to the screen will now be initially rotated 1 1/2 pi. This same cumulative effect
occurs when using the rotate(), translate(), and scale() functions. Transformations
can be confusing when you first start using them. Here’s a simple example that uses a
series of transformations to construct a little truck (see Figure 9-12):

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

352

617xCH09.qxd 4/18/07 3:38 PM Page 352

http://en.wikipedia.org/wiki/Matrix_%28mathematics%29

//Toy Truck
int truckW = 300;
int truckH = 100;
int truckX = -truckW/2;
int truckY = -truckH/2;

void setup(){
size(500, 200);
background(0);
smooth();

//body1
translate(width-truckW/2-50, height/2);
rect(truckX, truckY, truckW, truckH);

//body2
translate(-width+316, 17);
scale(.2, .65);
rect(truckX, truckY, truckW, truckH);

//body3
translate(-width+250, 20);
scale(.7, .59);
noStroke();
rect(truckX, truckY, truckW, truckH);

//tires
stroke(255);
strokeWeight(7);
scale(.70, .75);
translate(160, 172);
ellipse(truckX, truckY, truckW, truckH);
translate(1300, 0);
ellipse(truckX, truckY, truckW, truckH);
translate(1800, 0);
ellipse(truckX, truckY, truckW, truckH);
translate(400, 0);
ellipse(truckX, truckY, truckW, truckH);

//window mask
translate(-3355, -284);
scale(.7, .9);
noStroke();
fill(0);
triangle(truckX, truckY + truckH, truckX+truckW, ➥

truckY, truckX, truckY);
}

SHAPES

353

9

617xCH09.qxd 4/18/07 3:38 PM Page 353

Figure 9-12. Toy Truck sketch

When looking at the code in the last example, I hope some of you protested, exclaiming
“Hey, you can’t use all those magic numbers!” It’s true, it isn’t good practice to use magic
numbers. And this really is a pretty lousy implementation of a truck (although it’s kind of
cute, don’t you think?). The problem I faced was dealing with all the accumulating matrix
transformations and having to manually plug in and try different values until I got my
truck. Because of the scaling effect, some of the translation values got pretty wacky, with
a few values far exceeding the display window dimensions. Fortunately, there is a much
better way to handle resetting the matrix values, which I’ll discuss shortly.

The last basic shape function I’ll cover is quad(). This function works just like the
triangle() function, but uses four vertices instead of three. The function requires eight
arguments, defining the x and y components of each of the four vertices. Unlike the
rect() function, in which each corner is 90 degrees, quad() can create a four-point poly-
gon with different angles for each corner. In the following simple quad() example, I illus-
trate this using the random() function for each vertex (see Figure 9-13):

// Simple Quad
size(300, 300);
background(0);
noStroke();
smooth();
// quad(p1.x, p1.y, p2.x, p2.y, p3.x, p3.y, p4.x, p4.y)
quad(50+random(-25, 25), 50+random(-25, 25), ➥

250+random(-25, 25), 50+random(-25, 25), ➥

250+random(-25, 25), 250+random(-25, 25), ➥

50+random(-25, 25), 250+random(-25, 25));

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

354

617xCH09.qxd 4/18/07 3:38 PM Page 354

Figure 9-13. Simple Quad sketch

Next is a more interesting quad() example that also includes Processing’s resetMatrix()
function, used to reset the affine transformation matrix discussed earlier (see Figure 9-14):

// Disintegrating Quad Wall

float randShift = .2;
int quadW = 15;
int quadH = quadW;
float[]q = { -quadW/2, -quadH/2, quadW, quadH };

void setup() {
size(600, 600);
background(255);
smooth();
noStroke();
/* generate a table structure of
quads progressivley adding more
randomization to each quad */
for (int i=0, k=1; i<height-quadH; i+=quadH, k++){
/* resetting the transformation matrix
keeps the translations from continually
accumulating. Try commenting out the
resetMatrix() call to see the effect. */
resetMatrix();
translate(0, quadH*k);
for (int j=0; j<width-quadW; j+=quadW){
translate(quadW, 0);
fill(random(0, 255));
// r(k) is a function call
quad(q[0]+r(k), q[1]+r(k), ➥

SHAPES

355

9

617xCH09.qxd 4/18/07 3:38 PM Page 355

q[0]+q[2]+r(k), q[1]+r(k), ➥

q[0]+q[2]+r(k), q[1]+q[3]+r(k), ➥

q[0]+r(k), q[1]+q[3]+r(k));
}

}
}

float r(int i){
return random(-i*randShift, i*randShift);

}

Figure 9-14. Disintegrating Quad Wall sketch

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

356

617xCH09.qxd 4/18/07 3:38 PM Page 356

This is a dense little sketch, so it may not be apparent at first glance what’s happening. The
nested for loop generates a table structure of quadrilaterals. In the outer for loop head, I
initialized two variables (i and k) since I needed one variable to be incremented by quadH
(i) and one to be incremented by 1 (k). The first line in the loop, after the comment, is the
function call resetMatrix(). This simple step clears the transformation matrix at the
beginning of each iteration of the loop. Since the matrix was getting reset each time, I
couldn’t use it to step down the rows of the table. I solved this by multiplying the second
argument (which controls the y position) in the outer loop translate() call with k, as in
translate(0, quadH*k). However, by resetting the matrix, I was able to repeatedly call
translate(quadW, 0) within the inner loop, which took care of stepping the quadrangles
across the display window. Finally, I set up a convenient little function, r(val), to add a
random offset to the quadrangle points. Since I used the outer loop variable k to specify
the random range, randomization increased as the loop ran. Try changing the randShift
variable at the top of the sketch to see how it affects the output.

Before moving on to some other drawing functions, I want to provide one more example
that will hopefully help clarify the matrix transformations. The next sketch uses a conven-
ient Processing function, printMatrix(), which actually prints to the screen the current
contents of the transformation matrix. As I mentioned earlier, transformations affect the
virtual drawing, or graphics context, so in this next example, all I include are the actual
matrix transformations—which is all I need to see how the individual transformation func-
tion calls affect the overall matrix. You don’t need to spend too much time on this, but just
look at which part of the matrix is affected by each call (see Figure 9-15):

// printMatrix()
//initial state
println(" before transformations");
printMatrix();

//translate
translate(150, 225);
println(" after translate()");
printMatrix();

//scale
scale(.75, .95);
println(" after translate() and scale()");
printMatrix();

//rotate
rotate(PI*.3);
println(" after translate(), scale() and rotate()");
printMatrix();

//reset
resetMatrix();
println(" after resetMatrix()");
printMatrix();

SHAPES

357

9

617xCH09.qxd 4/18/07 3:38 PM Page 357

Figure 9-15. printMatrix() sketch

Plotting shapes

Although the basic shape functions rect(), ellipse(), triangle(), and quad() offer
some convenience, they are also pretty limited. Processing has a more general and versa-
tile approach to shape creation that you’ve looked at before. Utilizing beginShape(),
endShape(), and a series of vertex() commands, any shape can be created using
Processing. These shapes can include combinations of both straight and curved sections.
beginShape() also offers some advanced modes, allowing more complex polygonal struc-
tures to be created. You’ve used these functions before, so some of this will likely be
review. I’ll begin by examining the default closed mode, which will generate a polygon (see
Figure 9-16):

//Octagon
size(400, 400);
background(255);
smooth();
int margin = 50;
fill(0);
stroke(127);
strokeWeight(6);
beginShape();
vertex(3, height/2);
vertex(margin, margin);

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

358

617xCH09.qxd 4/18/07 3:38 PM Page 358

vertex(width/2, 3);
vertex(width-margin, margin);
vertex(width-3, height/2);
vertex(width-margin, height-margin);
vertex(width/2, height-3);
vertex(margin, height-margin);
endShape(CLOSE);

Figure 9-16. Octagon sketch

The default beginShape() mode is a filled but open shape. By adding the CLOSE argument
to the endShape() call, the shape is closed (by connecting the last vertex to the initial ver-
tex), as illustrated in the Octagon example. Plotting the octagon wasn’t too difficult
because an 8-sided regular shape on a 4-sided window boils down to plotting vertices at
the corners and midpoints of the display window—but what about switching to a penta-
gon or heptagon (7 sides), or even an enneakaidecagon (a 19-sided polygon)? Using a lit-
tle trig, you can very easily create a general-purpose polygon creator. In the following
example, I’ve parameterized lots of details to make the makePoly() function useful. I’ve
also called this function a bunch of times in the sketch to showcase the range of images it
can create (see Figure 9-17).

/*
Polygon Creator
Ira Greenberg, December 26, 2005
*/
void setup(){
size(600, 600);
background(127);
smooth();
/*

SHAPES

359

9

617xCH09.qxd 4/18/07 3:38 PM Page 359

//complete parameter list
makePoly(x, y, pts, radius 1, radius 2, initial rotation, ➥

stroke Color, stroke Weight, fill Color, endcap, stroke join)
*/
// makePoly function calls
makePoly(width/2, height/2, 72, 420, 270, 45, color(0, 0, 0), ➥

16, color(255, 255, 255));
makePoly(width/2, height/2, 16, 300, 250, 45, color(200, 200, 200),➥

10, color(20, 20, 20));
makePoly(width/2, height/2, 60, 210, 210, 45, color(255,255,255), ➥

8, color(0,0,0), PROJECT, ROUND);
makePoly(width/2, height/2, 60, 200, 155, 45, color(120, 120, 120),➥

6, color(255, 255, 255), PROJECT, ROUND);
makePoly(width/2, height/2, 50, 280, -200, 45, ➥

color(200, 200, 200), 6, color(50, 50, 50), PROJECT, ROUND);
makePoly(width/2, height/2, 8, 139, 139, 68, color(255, 255, 255), ➥

5, color(0,0,0));
makePoly(width/2, height/2, 24, 125, 60, 90, color(50, 50, 50), 12,➥

color(200, 200, 200), ROUND, BEVEL);
makePoly(width/2, height/2, 4, 60, 60, 90, color(0,0,0), 5, ➥

color(200,200,200), ROUND, BEVEL);
makePoly(width/2, height/2, 4, 60, 60, 45, color(255, 255, 255), 5,➥

color(20, 20, 20), ROUND, BEVEL);
makePoly(width/2, height/2, 30, 30, 30, 90, color(75, 75, 75), 10, ➥

color(60,60,60), ROUND, BEVEL);
makePoly(width/2, height/2, 30, 28, 28, 90, color(255, 255,255), 2,➥

color(60,60,60), ROUND, BEVEL);
makePoly(width/2, height/2, 24, 10, -25, 45, #000000, .75, ➥

color(255, 255, 255), SQUARE, MITER);
}

//default - if no args passed
void makePoly(){
// call main makePoly function
makePoly(width/2, height/2, 4, width/4, width/4, ➥

45, #777777, 4, #AAAAAA, SQUARE, MITER);
}

// x, y, pts args
void makePoly(float x, float y, int pts){
// call main makePoly function
makePoly(x, y, pts, width/4, width/4, ➥

45, #777777, 4, #AAAAAA, SQUARE, MITER);
}

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

360

617xCH09.qxd 4/18/07 3:38 PM Page 360

// x, y, pts, rad1, rad2 args
void makePoly(float x, float y, int pts, float rad1, float rad2){
// call main makePoly function
makePoly(x, y, pts, rad1, rad2, 45, #777777, 4, #AAAAAA, ➥

SQUARE, MITER);
}

// x, y, pts, rad1, rad2,, initRot, strokeCol, strokeWt, fillCol args
void makePoly(float x, float y, int pts, float rad1, float rad2, ➥

float initRot, color strokeCol, float strokeWt, color fillCol){
// call main makePoly function
makePoly(x, y, pts, rad1, rad2, initRot, strokeCol, strokeWt, ➥

fillCol, SQUARE, MITER);
}

// main function - called by other overloaded functions/methods
void makePoly(float x, float y, int pts, float rad1, float rad2, ➥

float initRot, color strokeCol, float strokeWt, ➥

color fillCol, int endCap, int endJoin){

float px = 0, py = 0, angle = initRot;
stroke(strokeCol);
strokeWeight(strokeWt);
strokeCap(endCap);
strokeJoin(endJoin);
fill(fillCol);

beginShape();
for (int i = 0; i< pts; i++){
if (i%2 == 0){
px = x+cos(radians(angle))*rad1;
py = y+sin(radians(angle))*rad1;

}
else {
px = x+cos(radians(angle))*rad2;
py = y+sin(radians(angle))*rad2;

}
vertex(px, py);
angle+=360/pts;

}
endShape(CLOSE);

}

SHAPES

361

9

617xCH09.qxd 4/18/07 3:38 PM Page 361

Figure 9-17. Polygon Creator sketch

The trig functions, based on unit circle relationships, do most of the real work in this
sketch. I’ve included sin() and cos() expressions in numerous examples earlier in the
book, and a general discussion about trig and the unit circle can be found in Chapter 4 and
also in Appendix B. In addition, I owe some debt to Ric Ewing, who a couple years ago pub-
lished a series of wonderful drawing methods for ActionScript that have informed my own
approach (see www.macromedia.com/devnet/flash/articles/adv_draw_methods.html).

I nested the trig functions in a conditional if...else structure as a simple way to gener-
ate two radii. I’ve used this technique in other places in the book as well. The modulus
operator, %, returns the remainder of the division between the two operands (e.g., 9 % 5 =
4, as 5 goes into 9 once, leaving a remainder of 4). I used (i%2 == 0) in the head of the
conditional so that points would alternate between radius 1 and radius 2. If you don’t see
it yet, this works because only even numbers will return 0, but odds won’t.

The other possibly surprising aspect of this sketch is the use of five makePoly() function
definitions, in which—in all but one of them—another makePoly() function is called. This
approach of creating multiple functions (or methods) with the same name is a common
technique in OOP, and is referred to as method overloading. As long as the method signa-
tures are different, the compiler sees them as unique structures. The signature, in Java and
Processing, is a combination of the method name and parameter list (including the num-
ber and type of parameters). If the number and/or type of parameters is different in
the signatures, then the compiler sees the methods as unique, regardless of whether the
methods share the same name. This is a convenient implementation, as it gives users a
choice of how to call/use the method.

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

362

617xCH09.qxd 4/18/07 3:38 PM Page 362

I created five versions of the makePoly() function. It is possible to create a lot more,
although it’s probably not necessary. Only one of the makePoly() functions includes the
full parameter list; the others use a partial list, and one of them includes no parameter.
Each of the four makePoly() functions (without the full parameter list) internally calls the
makePoly() function with the full list. I did this so that the actual plotting algorithm could
be put in one place—inside the makePoly() function with the full parameter list.

When one of the functions without the full parameter list is called, it internally passes the
arguments it received—adding default values for the remaining ones—to the makePoly()
function with the full parameter list and plotting implementation. I recommend trying to
add your own version of a makePoly() function to the sketch to get a better sense of how
this all works.

Regular and star polygons are fine, but there are some other useful shapes that you can
build by modifying the last algorithm a bit. Here’s a sprocket creator sketch, in which I call
the makeSprocket()function a bunch of times to demonstrate the range of shapes the
function is capable of generating (see Figure 9-18).

/*
Sprocket Creator
Ira Greenberg, December 27, 2005
*/

void setup(){
size(600, 600);
background(65);
smooth();

makeSprocket(width/2, height/2, 20, 280, 440, 45, color(0, 0, 0), ➥

20, color(255, 255, 255), SQUARE, MITER);
makeSprocket(width/2, height/2, 120.0, 275, -230, 45, ➥

color(200, 200, 200), 2, color(20, 20, 20), SQUARE, ROUND);
makeSprocket(width/2, height/2, 20.0, 250, 120, 45, color(0, 0, 0),➥

12, color(255, 255, 255), PROJECT, MITER);
makeSprocket(width/2, height/2, 8.0, 120, 190, 45, ➥

color(20, 20, 20), 14, color(200, 200, 200), PROJECT, MITER);
makeSprocket(width/2, height/2, 8.0, 120, 170, 22.5, ➥

color(245, 245, 245), 20, color(10, 10, 10), PROJECT, MITER);
makeSprocket(width/2, height/2, 25.0, 90, 35, 45, ➥

color(255, 255, 255), 2, color(0, 0, 0), PROJECT, MITER);
makeSprocket(width/2, height/2, 8.0, 25, 10, 45, ➥

color(127, 127, 127), 4, color(255, 255, 255), PROJECT, MITER);
}

void makeSprocket(float x, float y, float spokes, float rad1, ➥

float rad2, float initRot, color strokeCol, float strokeWt, ➥

color fillCol, int endCap, int endJoin){

SHAPES

363

9

617xCH09.qxd 4/18/07 3:38 PM Page 363

float px = 0, py = 0, angle = initRot;
float ang = (360.0/spokes)/2.0;
float ang2 = (360.0/spokes)/4.0;
stroke(strokeCol);
strokeWeight(strokeWt);
strokeCap(endCap);
strokeJoin(endJoin);
fill(fillCol);

beginShape();
for (int i = 0; i<spokes; i++){
px = x+cos(radians(angle))*rad1;
py = y+sin(radians(angle))*rad1;
vertex(px, py);
angle+=ang;
px = x+cos(radians(angle))*rad1;
py = y+sin(radians(angle))*rad1;
vertex(px, py);
angle+=ang2;
px = x+cos(radians(angle))*rad2;
py = y+sin(radians(angle))*rad2;
vertex(px, py);
angle+=ang2;

}
endShape(CLOSE);

}

Figure 9-18. Sprocket Creator sketch

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

364

617xCH09.qxd 4/18/07 3:38 PM Page 364

The Sprocket Creator sketch is similar to the Polygon Creator sketch. The main difference
is the few extra trig expressions in the makeSprocket() function. Instead of plotting ver-
tices at equal angle rotations, each spoke of the sprocket is composed of three vertices.
The first and second share the same radius and are the outer edge of the spoke. The third
vertex is an inner radius, and is at the base between each spoke. Notice also that I used
two different angle values. I somewhat arbitrarily defined the angle between the two
spoke vertices (within the spoke) as twice as large as the angle between the spokes. The
final angle incrementation (angle+=ang2) ensures that there is symmetry between each
spoke.

As reading descriptions like this can be confusing, I suggest playing with the sketch and
creating some of your own sprockets. You might also want to try to spin your own shape
by modifying the existing drawSprocket() method.

Creating hybrid shapes

The beginShape() and endShape() functions allow you to combine straight and curved
lines to form hybrid shapes. Once you introduce curves into to your shapes, calculating
coordinates can get a little tricky. It often helps to break the problem down into more
manageable sections—in the next two example sketches, I do just that. In the first sketch,
I hack out a list of coordinates (using magic numbers) and individual drawing function calls
that create a hybrid shape. In the second sketch, I develop a more general plotting algo-
rithm, removing all the magic numbers. Here’s the initial code in all its magic number glory
(see Figure 9-19):

// Hybrid Shape
size(600, 600);
curveTightness(-.4);
smooth();

beginShape();
curveVertex(200, -300);
curveVertex(200, 100);
curveVertex(400, 100);
curveVertex(400, -300);

vertex(500, 100);
vertex(500, 200);

curveVertex(800, 200);
curveVertex(500, 200);
curveVertex(500, 400);
curveVertex(800, 400);

vertex(500, 500);
vertex(400, 500);

SHAPES

365

9

617xCH09.qxd 4/18/07 3:38 PM Page 365

curveVertex(400, 800);
curveVertex(400, 500);
curveVertex(200, 500);
curveVertex(200, 800);

vertex(100, 500);
vertex(100, 400);

curveVertex(-200, 400);
curveVertex(100, 400);
curveVertex(100, 200);
curveVertex(-200, 200);

vertex(100, 100);
endShape(CLOSE);

Figure 9-19. Hybrid Shape sketch

The next step was looking at the ugly code I had written and seeing if I could figure out an
algorithm to generalize the form. This backward approach—making before thinking—
seems to be a general pattern I use when I get stuck. I guess if you’re better at math than
me, you might be able to lay down clean algorithms by just thinking about problems, but
I usually have to get my hands dirty first. Because the shape created in the sketch is sym-
metrical, and there is a recurring pattern of function calls in the code, I knew it would be
possible, without too much hair pulling, to figure out the algorithm. I also knew, because
of the radial symmetry, that using trig functions would somehow be the easiest solution.
Here’s what I got (see Figure 9-20):

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

366

617xCH09.qxd 4/18/07 3:38 PM Page 366

// Hybrid Shape 2
size(600, 600);
curveTightness(-.4);
smooth();
strokeWeight(10);
float sides = 8;
float angle = 360.0/sides/2;
float px = 0, py = 0;
float cx = 0, cy = 0;
float ang = 360.0/(sides+sides/2.0);
float ang2 = ang/2.0;
float rad1 = 250.0;
float rad2 = rad1*2.0;
int x = width/2;
int y = height/2;

beginShape();
for (int i=0; i<sides; i++){
cx = x+cos(radians(angle))*rad2;
cy = y+sin(radians(angle))*rad2;
curveVertex(cx, cy);
px = x+cos(radians(angle))*rad1;
py = y+sin(radians(angle))*rad1;
curveVertex(px, py);
angle+=ang;
px = x+cos(radians(angle))*rad1;
py = y+sin(radians(angle))*rad1;
curveVertex(px, py);
cx = x+cos(radians(angle))*rad2;
cy = y+sin(radians(angle))*rad2;
curveVertex(cx, cy);
px = x+cos(radians(angle))*rad1;
py = y+sin(radians(angle))*rad1;
vertex(px, py);
angle+=ang2;
px = x+cos(radians(angle))*rad1;
py = y+sin(radians(angle))*rad1;
vertex(px, py);

}
endShape(CLOSE);

SHAPES

367

9

617xCH09.qxd 4/18/07 3:38 PM Page 367

Figure 9-20. Hybrid Shape 2 sketch

This sketch makes a good gear shape. If you change the value of the sides variable in the
example, the shape scales nicely. I think it would be a good exercise to try to “functional-
ize” this last example. In other words, try sticking the main drawing routine in a function
with a bunch of parameters, as I did with the polygon and sprocket examples. Besides
curveVertex(), you can also use bezierVertex() in conjunction with regular vertex()
calls, but I’ll also leave that for you to try on your own.

The other shape modes

There are a number of additional shape modes. Many of these are more applicable to 3D
than 2D, for creating a skin or polygonal mesh around a 3D form. In the 3D chapters, you’ll
learn how to plot some 3D forms. For now, I’m just going to give a brief overview of what
the other modes do. The first two you’ll look at, TRIANGLES and QUADS, don’t form a con-
tiguous mesh, but rather simply create individual triangles and quadrangles from lists of
coordinates. In the next example, I’ll generate 90 triangles using a for loop and the
TRIANGLES mode (see Figure 9-21):

//Random Triangles
size (500, 500);
background(255);
smooth();
beginShape(TRIANGLES);
for (int i=0; i<90; i++){
stroke(random(0, 200));
fill(random(225, 255), 150);
strokeWeight(random(.5, 5));
vertex(random(width), random(height));

}
endShape();

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

368

617xCH09.qxd 4/18/07 3:38 PM Page 368

Figure 9-21. Random Triangles sketch (TRIANGLES mode)

Although you could relatively easily write your own function to pull this sort of thing off,
it is still convenient having this option. It would be a good exercise to try to re-create the
functionality of the beginShape(TRIANGLES) mode using the triangle() function or
the no-argument version of beginShape().

Notice the extra argument in the command fill(random(225, 255), 150);, after the
closed parentheses of the random call. This optional second argument allows you to con-
trol the alpha, or transparency, of the grayscale fill. The value range is from 0 to 255
(0 being transparent and 255 being completely opaque). If you don’t specify an argument,
the default value is 255. The stroke() and fill() commands each allow you to specify
one, two, three, or four arguments. In the next chapter, I’ll discuss color and imaging, and
concepts like alpha in greater detail.

beginShape(QUADS) mode works similarly to TRIANGLE mode, except that shapes are
closed in groups of four vertex() calls instead of three. In this next example, I generate
random quads, bounded within a rectangular region, forming a sort of shape texture (see
Figure 9-22).

//Random Bounded Quads
size (250, 250);
background(255);
smooth();
int[]boundinBox = {50, 50, 150, 150};
fill(0);

SHAPES

369

9

617xCH09.qxd 4/18/07 3:38 PM Page 369

rect(boundinBox[0], boundinBox[1], boundinBox[2], boundinBox[3]);
strokeJoin(BEVEL);
beginShape(QUADS);
for (int i=0; i<1000; i++){
stroke(random(50, 255));
fill(0, 0);
strokeWeight(random(.5, 2));
vertex(random(boundinBox[0], boundinBox[0]+boundinBox[2]), ➥

random(boundinBox[1], boundinBox[1]+boundinBox[3]));
}
endShape();

Figure 9-22. Random Bounded Quads sketch
(QUADS mode)

You’ll notice in the output that the shapes don’t form a pattern of little rectangles, even
though they were generated by using QUADS mode. This is because a quadrilateral is not
necessarily a rectangular structure. It is possible to create a quadrilateral in which no
two sides are parallel; this shape is sometimes referred to as a trapezium. If any two of the
sides are parallel, it’s usually called a trapezoid, which I assume you remember from some
math class. There is a simple and complex classification for polygons, which affects quadri-
laterals as well. Simple polygons don’t intersect with themselves, while complex ones do.
Here’s an example of each, using QUADS mode (see Figure 9-23):

//Simple/Complex Quads
size (300, 150);
smooth();
beginShape(QUADS);
//simple quad
vertex(25, 40);
vertex(125, 30);

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

370

617xCH09.qxd 4/18/07 3:38 PM Page 370

vertex(120, 120);
vertex(20, 118);
//complex quad
vertex(175, 40);
vertex(275, 30);
vertex(170, 118);
vertex(270, 120);
endShape();

Figure 9-23. Simple/Complex Quads sketch

Simple vs. complex polygons is a big issue in 3D, where quadrilateral surfaces can become
non-planar and cause anomalies when rendering. Triangles, on the other hand, are always
planar. For our current purposes, in 2D, complex quads just form an interesting pattern. If
you want to learn more about quads in general, check out http://en.wikipedia.org/
wiki/Quadrilateral (I especially like the taxonomic classification chart). One other minor
but significant point about using either TRIANGLE or QUADS mode is that you’ll want to
make sure that you use the right number of vertex() commands. The number of com-
mands should be divisible by 3 for TRIANGLES and 4 for QUADS. Additional vertex() lines
that aren’t grouped in three or four lines, respectively, will be disregarded. For example,
as shown in Figure 9-24, the fourth and fifth lines in the following sequence will be
disregarded:

size (120, 120);
beginShape(TRIANGLES);
vertex(20, 20);
vertex(100, 100);
vertex(40, 100);
vertex(30, 60);
vertex(20, 50);
endShape();

SHAPES

371

9

617xCH09.qxd 4/18/07 3:38 PM Page 371

http://en.wikipedia.org/

Figure 9-24. Disregarded extra vertex() calls

The last three modes I’ll discuss briefly are TRIANGLE_STRIP, TRIANGLE_FAN, and
QUAD_STRIP. These modes build contiguous meshes of polygons, which is very useful in 3D.
They work sort of similarly to the last two modes discussed, except that the multiple forms
created are attached. Also, extra vertex() lines are not disregarded. However, a minimum
number of vertex() commands need to be issued—three for TRIANGLE_STRIP and
TRIANGLE_FAN, and four for QUAD_STRIP—before any shapes are rendered. Here’s an
example using TRIANGLE_STRIP mode (see Figure 9-25):

// TRIANGLE_STRIP Mode
size(400, 400);
smooth();
int x = width/2;
int y = height/2;
int outerRad = 150;
int innerRad = 200;
float px = 0, py = 0, angle = 0;
float pts = 36;
float rot = 360.0/pts;

beginShape(TRIANGLE_STRIP);
for (int i=0; i<pts; i++) {
px = x+cos(radians(angle))*outerRad;
py = y+sin(radians(angle))*outerRad;
angle+=rot;
vertex(px, py);
px = x+cos(radians(angle))*innerRad;
py = y+sin(radians(angle))*innerRad;
vertex(px, py);
angle+=rot;

}
endShape();

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

372

617xCH09.qxd 4/18/07 3:38 PM Page 372

Figure 9-25. TRIANGLE_STRIP Mode sketch

I reused the basic trig functions I’ve been using throughout the book for generating an
ellipse. By setting an outer and inner radius, this shape could be useful as an end cap for a
hollow 3D cylinder. Next, I simply decreased the radii and fill color value (from white to
black) each loop iteration, creating a spiral (see Figure 9-26):

// TRIANGLE_STRIP Spiral
size(400, 400);
background(0);
smooth();
int x = width/2;
int y = height/2;
int outerRad = 160;
int innerRad = 200;
float px = 0, py = 0, angle = 0;
int pts = 36;
float rot = 360.0/pts;
int fillCol = 255;
int fillfade = fillCol/pts;

beginShape(TRIANGLE_STRIP);
for (int i=0; i<pts; i++) {
px = x+cos(radians(angle))*outerRad;
py = y+sin(radians(angle))*outerRad;
angle+=rot;
vertex(px, py);
px = x+cos(radians(angle))*innerRad;
py = y+sin(radians(angle))*innerRad;
vertex(px, py);
outerRad-=4;

SHAPES

373

9

617xCH09.qxd 4/18/07 3:38 PM Page 373

innerRad-=4.25;
fill(fillCol);
fillCol-=fillfade;
angle+=rot;

}
endShape();

Figure 9-26. TRIANGLE_STRIP Spiral sketch

Tessellation

Another interesting thing you can do with these functions is create a tessellation. A
tessellation is a pattern of shapes that fit together, without any gaps, covering a surface.
For more of a definition, have a look at what Wikipedia has to say about tessellations, at
http://en.wikipedia.org/wiki/Tessellation. TRIANGLE_FAN mode is a little tricky, as it
needs to rotate clockwise, and the initial point should define the center part of the fan. In
3D, forms are commonly converted to and/or rendered as triangle meshes. TRIANGLE_FAN
mode is a somewhat convenient function for triangulating planar geometry. Triangulating
means converting a larger polygon into triangles, which is a form of tessellation. Since tri-
angles are always planar and simple (with regard to polygons—not a commentary on their
intelligence), they are easier for the computer to render than quadrilaterals. This mode

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

374

617xCH09.qxd 4/18/07 3:38 PM Page 374

http://en.wikipedia.org/wiki/Tessellation

works by defining the center point of the fan and then selecting the vertices in a clockwise
fashion along the perimeter of the shape you want to triangulate. Once again, the trig
functions come in handy. Here’s an example sketch that triangulates any regular polygon,
using TRIANGLE_FAN mode (see Figure 9-27):

//TRIANGLE_FAN
size(400, 400);
smooth();
strokeWeight(1.5);
float px = 0, py = 0;
float angle = 0;
float radius = 150;
int pts = 8;
int x = width/2;
int y = height/2;

// needs to rotate clockwise
beginShape(TRIANGLE_FAN);
vertex(x, y);
for (int i=0; i<=pts; i++){
px = x+cos(radians(angle))*radius;
py = y+sin(radians(angle))*radius;
vertex(px, py);
angle+=360/pts;

}

Figure 9-27. TRIANGLE_FAN sketch

SHAPES

375

9

617xCH09.qxd 4/18/07 3:38 PM Page 375

Next, I’ll use the last solution as part of a sketch for a tessellated plane (see Figure 9-28):

/*
Tessellated Plane
Ira Greenberg, December 30, 2005
*/
void setup(){
size(400, 400);
smooth();
tesselate(6, 20);

}

void tesselate(int points, int radius){
/* catch and handle out of
range point count */
if (points<=5){
points = 4;

}
else {
points = 6;

}

// eventually add some more patterns
switch(points){
case 4:
for (int i = 0, k = 0; i<=width+radius; i+=radius*2, k++){
for (int j = 0; j<=height+radius; j+=radius*2){
drawPoly(i-radius, j-radius, points, 0, radius);
drawPoly(i, j, points, 0, radius);

}
}
break;

case 6:
for (float i = 0, k = 0; i<=width+radius; i+=radius*1.5, k++){
for (float j = 0; j<=height+radius*2; j+=(cos(radians(30))* ➥

radius)*2){
if (k%2==0){
drawPoly(i, j-cos(radians(30))*radius, points, 0, radius);

}
else{
drawPoly(i, j, points, 0, radius);

}
}

}
break;

}
}

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

376

617xCH09.qxd 4/18/07 3:38 PM Page 376

// draw triangle fan
void drawPoly(float x, float y, int pts, float initAngle, float rad){
strokeWeight(1.5);
float px = 0, py = 0;
float angle = initAngle;
// needs to rotate clockwise
beginShape(TRIANGLE_FAN);
vertex(x, y);
for (int i=0; i<=pts; i++){
fill(255/pts*i);
px = x+cos(radians(angle))*rad;
py = y+sin(radians(angle))*rad;
vertex(px, py);
angle+= 360/pts;

}
}

Figure 9-28. Tesselated Plane sketch

This last example is fairly complex; though not much is new. It took some finessing to get
the geometry to tile properly and a bit of trig for the hexagon tiling. There are two things
that I think are significant about this sketch. The first involves encapsulation and the latter
involves exception handling. Both custom functions tessellate() and drawPoly() involve

SHAPES

377

9

617xCH09.qxd 4/18/07 3:38 PM Page 377

somewhat complicated implementations. However, to use both functions in the last exam-
ple, all that needed to be called was tessellate(6, 20);. When you encapsulate proce-
dural complexity into self-contained modular units such as functions, it becomes relatively
simple to use even the most complexly implemented procedures. This illustrates a general
notion of the concept of encapsulation. There is also the more specific but related defini-
tion of encapsulation (discussed in Chapter 8) that applies specifically to OOP.

The second point, exception handling, is illustrated by the conditional statement at the top
of the tessellate() function. The conditional syntax you’ve seen before, but the concept
is new. I only wrote tessellation routines for four- and six-sided polygons. However, some-
one could conceivably use the function at some point and put in a value other than 4 or 6.
Rather than generate an unexpected error, I wrote code to catch the out-of-range value
and correct it. Eventually, additional tessellation routines could be added to the program,
at which time you would simply update the conditional. The concept of building in code
structures to catch and deal with input errors is generally referred to as exception
handling. In a language like Java, exception handling is formalized, with numerous class
structures. Processing doesn’t have its own native exception handling structures (but
you’re free to use Java’s structures). Generally speaking, though, a formalized exception
handling process is beyond what most people will want to do with Processing. In addition,
the places where exception handling is required in Processing (e.g., input/output) are
already encapsulated and invisible to the user. Remember that this is kind of the whole
point of Processing—to minimize the annoying lower-level stuff, allowing people to more
freely express themselves. So there may be times, as in my last example, that you might
want to build in some simple safety checks. If, however, you do end up building something
that you feel requires a more elaborate and formal error-checking system, you’ll want to
look into Java’s exception handling capabilities. Here’s some info from Sun: http://
java.sun.com/docs/books/tutorial/essential/exceptions/.

Applying OOP to shape creation
The last section of this chapter utilizes an OOP approach. Chapter 8 dealt exclusively with
OOP, but I’ll review some of the fundamental concepts here as well. OOP is not easy for
new coders to get their heads around, so try not to be too hard on yourself if you find
some of the material difficult—it really is.

The “object-oriented” part of OOP is an approach to programming that treats concepts
(both things and processes) as self-contained modular units. These units, called classes, are
like blueprints describing a concept, which includes attributes (properties) and functions
(methods) contained within the class definition. For example, if you create a class called
Rectangle, the properties of this class might include its x and y position, its width and
height, its stroke and fill color, and so on. Its methods might include getting and setting its
width or height, and drawing itself. To use the Rectangle class, you create (instantiate)
objects from it. Since the class is like a blueprint, when you make an object, you get a copy
of all the properties and methods defined in the class; and each object remains independ-
ent from all the other objects made from the same class. This allows you to have ten rec-
tangle objects, each with different postion, size, color, and so on. Since I’ve gone this far
with the rectangle metaphor, let’s actually constuct a simple rectangle class and imple-
ment it in Processing.

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

378

617xCH09.qxd 4/18/07 3:38 PM Page 378

http://java.sun.com/docs/books/tutorial/essential/exceptions/

void setup(){
// create new rectangle object
new Rectangle();

}

// class description
class Rectangle {
}

This is all it takes to create a class in Processing. Of course, this class won’t do anything, but
it’s a start. To create a class, you use the class keyword followed by the name of the class.
You capitalize the name of your classes. To create an object from the Rectangle class, you
use the new keyword. Typically, you also assign the new object to a variable so that you can
refer to it later in your program. In the last example, even though I created a Rectangle
object, I can’t communincate with it, as there is no variable assigned a reference to the
object. Figure 9-29 shows an improved (and more useful) version of the last sketch:

// object (reference) variable
Rectangle r1;

void setup(){
// create new rectangle object
r1 = new Rectangle(100, 200, 150, 150);

}

// class description
class Rectangle {

//class constructor
Rectangle(int x, int y, int w, int h) {
println("x pos = "+ x+"\ny pos = " + y);
println("width = "+ w+"\nheight = " + h);

}
}

Figure 9-29. OOP println() output example

SHAPES

379

9

617xCH09.qxd 4/18/07 3:38 PM Page 379

This wasn’t much of an improvement, but I got some output at least. However, there are a
bunch of new concepts to discuss in this sketch. At the top of the program, I declared a
variable of type Rectangle. Remember that variables in Processing and Java need to be
declared of a data type. The data type controls things like how much memory is allocated
to the variable and what type of data the variable can be assigned. As I discussed earlier in
the book, there are two types of variables in Processing: primitive and reference.

Primitive variables, which were discussed extensively in Chapter 3, are assigned actual
values. int, float, and char are examples of primitive variable types. Primitive variables
are relativley simple for the computer to handle, as each evaluates to a single value.

Reference variables are more complex, as they each often need to refer to multiple values.
To solve this problem, reference variables, rather than directly being assigned a value, hold
a reference or link to the data in memory. Thus, the Rectangle r1 variable will ultimately
hold a reference to the Rectangle object data, not the data directly. There are some
important issues due to this arrangement, but nothing you need to worry about right now.
The important point to remember is that the data type of the variable dictates what type
of data can be assigned to it; and each class you create is a unique data type. Rectangle
r1 can be assigned object references of the Rectangle type (or a subclass of the Rectangle
type), but it can’t be assigned an int or a String value or reference of another data type.

Looking at the class definition, you’ll notice that I added a constructor. Remember that the
constructor begins with the same name as the class and also utilizes parentheses for a
parameter list. When an object is created from a class, a constructor inside the class is
always run. You can think of a constructor as an object initializer function. If you don’t
explicitly include a constructor, a default (internal) class constructor is called that has no
parameters. By creating my own constructor, new Rectangle objects will now use my con-
structor, instead of the default one. Therefore, if a Rectangle object is now created with-
out four int arguments, an errror will occur. Try replacing r1 = new Rectangle(100, 200,
150, 150); with r1 = new Rectangle(); to see what happens. When the constructor is
called successfully, the code within its block (between the curly braces) is executed.

In this revised version of the sketch, the constructor outputs some sensational information
about the Rectangle object’s properties. (Don’t worry, you’ll make some images eventu-
ally.) Also notice the syntax I used in the println() commands. I generated four lines of
output with just two println() calls by using the newline escape sequence, \n. Escape
sequences are little character shortcuts you can include in strings to do things like add a
new line or include special characters. For example, if you need to include a quote char-
acter in output, you’d do it like this: println("\"Help! I'm surrounded by quotes\"");.
For a list of escape character sequences, check out http://java.sun.com/docs/books/
jls/second_edition/html/lexical.doc.html. Finally, the following code gets the
Rectangle class to actually draw something (see Figure 9-30):

// Drawing with OOP
// object (reference) variable
Rectangle r1;

void setup(){
size(400, 400);
background(255);

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

380

617xCH09.qxd 4/18/07 3:38 PM Page 380

http://java.sun.com/docs/books/

// create new rectangle object
r1 = new Rectangle(100, 200, 150, 150);

}

// class description
class Rectangle {

//class constructor
Rectangle(int x, int y, int w, int h) {
rect(x, y, w, h);
}

}

Figure 9-30. Drawing with OOP sketch

Creating a neighborhood
Hopefully, this last sketch makes some sense. Don’t worry if it doesn’t yet. Also, you’d be
correct in thinking that it doesn’t really make much sense to go through the bother of
creating a class just to call rect(), which you could call from within setup(). This is cer-
tainly true. So let’s add some stuff to make all this class business worth it. Let’s build a
simple house, with a door, some windows, and a roof, and then let’s put a couple houses
together to form a little neighborhood. I’m going to make a class for each of the following
elements: door, window, roof, and house. In this example, I’ll keep things simple by not
adding decorative features like paint, shingles, cornices, and so on. And I’ll keep all the
classes within the same PDE file (which isn’t really necessary). Later in the book, I’ll show
you how to begin working with multiple files in separate Processing tabs.

SHAPES

381

9

617xCH09.qxd 4/18/07 3:38 PM Page 381

Door class

In designing these really simple classes, it helps to think a little bit about how the house
will fit together. I’ll begin with the door—what properties will the door have? I want to
keep everything really simple for now. The door will have an x position, a y position, width
and height, and a doorknob. What methods will the door have? Working in pure Java, I
would set up a set and get method for each of the properties. For example, for the x prop-
erty, I’d have a setX() and a getX() method. In addition, in pure Java, I’d make the
properties private, meaning that users couldn’t call the properties directly (e.g., d1.x), but
would be forced to use the respective set and get methods for each property (e.g.,
d1.getX()). Although this is the classic OOP approach, it is not really the Processing
approach. So I won’t make the properties private, nor will I create set and get methods for
all the properties, which will actually save me a ton of work. The only methods I will add
to the Door class are setknob() and drawDoor(). The setknob() method will control the
side of the door on which the doorknob is drawn, and the drawDoor() method will draw
the door. Here’s the Door class:

class Door{
// instance properties
int x;
int y;
int w;
int h;

// for knob
int knobLoc = 1;

// constants - class properties
final static int RT = 0;
final static int LFT = 1;

// constructor
Door(int w, int h){
this.w = w;
this.h = h;

}

// draw the door
void drawDoor(int x, int y) {
rect(x, y, w, h);
int knobsize = w/10;
if (knobLoc == 0){
//right side
ellipse(x+w-knobsize, y+h/2, knobsize, knobsize);

}
else {
//left side
ellipse(x+knobsize, y+h/2, knobsize, knobsize);

}
}

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

382

617xCH09.qxd 4/18/07 3:38 PM Page 382

// set knob position
void setKnob(int knobLoc){
this. knobLoc = knobLoc;

}
}

At the top of the class, I declared some variables. The first five variables are properties that
each Door object will have access to; these are called, in OOP terminology, instance vari-
ables or object properties. Each Door object will have its own unique set of these variables,
so an object can assign its own values to the variables without affecting any other Door
objects. For the doorknob, I needed some variables to specify which side of the door the
knob should be on. I created two variables, LFT and RT, which I declared as constants. I
used the Java keyword final to specify that the value of the two constants can’t be
changed—which is precisely what a constant is. Secondly, I used the Java keyword static
to specify that these constants are static variables, also sometimes referred to as class
variables.

Static variables, unlike instance variables, are not unique to each object created from the
class. Instead they each hold a single value, accessible from any class, using the syntax
class name.property. For example, if I wanted to use the Door class’s LFT property, I
would simply write Door.LFT. I don’t need to create an object to do this, and I can do it
from any class. So theoretically, if you ever needed the value 1, you could use Door.LFT.
However, I don’t recommend doing that unless using the constant name makes sense in
the context of the program, as in setKnob(Door.LFT);. You’ll see more how these con-
stants are used shortly, when an actual door is created.

The next code block is the constructor, in which I included two parameters for the door’s
width and height (which is perhaps the measurements you’d think about if you were to
actually purchase a door). OOP is modeled after the physical world, so it’s not a bad idea
when designing classes to think about how you would accomplish the same task in the real
world. Within the constructor block are two possibly odd looking assignments (although
they’re discussed in Chapter 8):

this.w = w;
this.h = h;

Since the instance variables declared at the top of the class and the parameters specified
between the parentheses of the constructor have the same identifiers (names), I need a
way to identify which is which. I could have simply given the parameters different names
from the instance variables. However, it is pretty common practice to use the same
names for instance variables and parameters in the constructor, and I tend to like doing it.

The parameters represent the values that will be passed into the constructor when an
object is created. These values will need to be seen throughout the class. However, param-
eters only have local scope (meaning they can only be “seen” within the method or func-
tion they’re declared in). This is a problem if another method in the class wants to be able
to access these values. By assigning the value of the parameters to the instance variables
declared at the top of the class—giving them global scope—the values can now be seen
throughout the class. Since the parameters have this special relationship to their partner
instance variables, I find it convenient to give them the same name.

SHAPES

383

9

617xCH09.qxd 4/18/07 3:38 PM Page 383

Outside of the constructor, w and h always refer to the values of the instance variables by
those names. But in the constructor, w and h refer to the values of the parameters. That’s
because local scope takes precedence over global scope. By using the special keyword
this preceding the instance variable names (connected with a dot), this.w and this.h
are now seen as the instance variables, not the parameters. The w and the h, when not pre-
ceded with this, are still the parameters.

Let’s skip the drawDoor() method for a moment and look at the setKnob() method. This
method contains another assignment, similar to the ones in the constructor. In the
drawDoor() method, which I’ll discuss next, you’ll need to know which side to draw
the doorknob on. By assigning a value to the knobLoc instance variable in the setKnob()
method, the drawDoor() method will now be able to assess the side on which to attach the
knob. Notice also that at the top of the class I gave the knobLoc variable an initial value
when I declared it. I did this just in case a position wasn’t eventually specified using the
setKnob() method.

Finally, in the drawDoor() method, I simply draw the door, using Processing’s rect() func-
tion. Using a conditional statement and the knobLoc property, the method also figures out
which side to draw the knob on, which it then does using Processing’s ellipse() function.
The next sketch uses the Door class to actually draw a door (see Figure 9-31):

// Drawing a Door
// object (reference) variable
Door door1;

void setup(){
size(200, 350);
background(200);
smooth();

// create new Door object
door1 = new Door(100, 250);
door1.setKnob(Door.LFT);
door1.drawDoor(50, 50);

}

class Door{
//door properties
int x;
int y;
int w;
int h;

// for knob
int knobLoc = 1;
//constants
final static int RT = 0;
final static int LFT = 1;

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

384

617xCH09.qxd 4/18/07 3:38 PM Page 384

// constructor
Door(int w, int h){
this.w = w;
this.h = h;

}

// draw the door
void drawDoor(int x, int y) {
rect(x, y, w, h);
int knobsize = w/10;
if (knobLoc == 0){
//right side
ellipse(x+w-knobsize, y+h/2, knobsize, knobsize);

}
else {
//left side
ellipse(x+knobsize, y+h/2, knobsize, knobsize);

}
}

// set knob position
void setKnob(int knobLoc){
this. knobLoc = knobLoc;

}
}

The three lines at the top of the sketch create the door.

door1 = new Door(100, 250);
door1.setKnob(Door.LFT);
door1.drawDoor(50, 50);

Figure 9-31. Drawing a Door sketch

SHAPES

385

9

617xCH09.qxd 4/18/07 3:38 PM Page 385

First, I need to create the Door object; in OOP this is called instantiation. Then I optionally
set its knob position. Notice how I used the static variable LFT, preceded by the class name
and a dot. Finally, the door is drawn. Look carefully at the syntax—the door object door1
is attached directly to its method with a dot. If you eventually wanted to change the value
of one of the properties, you’d target it the same way. For example, to change the x prop-
erty to 194, you’d write: door1.x = 194. Of course, this command would have to come
after the Door object has been instantiated: door1 = new Door(100, 250);. Before you
move on to the Window class, I strongly recommend you review the Door class a few times,
as well as my description. I also suggest trying to make some more doors on your own. This
little sketch covers a lot of important issues that will be built upon.

Window class

A window shares certain characteristics with a door. Both have an x and y position, as well
as width and height. If this example were more detailed, both objects might also have
color, material, price, and inventory number characteristics. There is a way of minimizing
this redundancy between classes in OOP, called inheritance (covered extensively in
Chapter 8), in which classes can inherit properties and methods from other classes.
However, inheritance adds another level of abstraction and complexity, so for this example
I’ll redundantly create the same properties in the different classes. Later on in the book,
when you’re an advanced object-oriented programmer, you’ll apply inheritance. Here’s a
sketch that draws three windows using the new Window class (see Figure 9-32):

// Drawing Some Windows
void setup(){
size(450, 250);
background(200);
smooth();

Window window1 = new Window(100, 150);
window1.drawWindow(50, 50);
Window window2 = new Window(100, 150, true, Window.DOUBLE);
window2.drawWindow(175, 50);
Window window3 = new Window(100, 150, true, Window.QUAD);
window3.drawWindow(300, 50);

}

class Window{
//window properties
int x;
int y;
int w;
int h;

// customized features
boolean hasSash = false;

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

386

617xCH09.qxd 4/18/07 3:38 PM Page 386

// single, double, quad pane
int style = 0;
//constants
final static int SINGLE = 0;
final static int DOUBLE = 1;
final static int QUAD = 2;

// constructor 1
Window(int w, int h){
this.w = w;
this.h = h;

}
// constructor 2
Window(int w, int h, int style){
this.w = w;
this.h = h;
this.style = style;

}
// constructor 3
Window(int w, int h, boolean hasSash, int style){
this.w = w;
this.h = h;
this.hasSash = hasSash;
this.style = style;

}

// draw the window
void drawWindow(int x, int y) {
//local variables
int margin = 0;
int winHt = 0;
int winWdth = 0;

if (hasSash){
margin = w/15;

}

switch(style){
case 0:
//outer window (sash)
rect(x, y, w, h);
//inner window
rect(x+margin, y+margin, w-margin*2, h-margin*2);
break;

case 1:
winHt = (h-margin*3)/2;
//outer window (sash)
rect(x, y, w, h);

SHAPES

387

9

617xCH09.qxd 4/18/07 3:38 PM Page 387

//inner window (top)
rect(x+margin, y+margin, w-margin*2, winHt);
//inner windows (bottom)
rect(x+margin, y+winHt+margin*2, w-margin*2, winHt);
break;

case 2:
winWdth = (w-margin*3)/2;
winHt = (h-margin*3)/2;
//outer window (sash)
rect(x, y, w, h);
//inner window (top-left)
rect(x+margin, y+margin, winWdth, winHt);
//inner window (top-right)
rect(x+winWdth+margin*2, y+margin, winWdth, winHt);
//inner windows (bottom-left)
rect(x+margin, y+winHt+margin*2, winWdth, winHt);
//inner windows (bottom-right)
rect(x+winWdth+margin*2, y+winHt+margin*2, winWdth, winHt);
break;

}
}

// set window style (number of panes)
void setStyle(int style){
this.style = style;

}
}

Figure 9-32. Drawing Some Windows sketch

Although the Window class is longer than the Door class, it works very similarly. In the
sketch, I created three windows, each with different features. The major difference
between the Door and Window classes is the use of multiple constructors in the Window
class. Remember that in Processing, you’re allowed to name multiple methods and func-
tions with the same identifier, as long as their signatures are different. In OOP speak, this
is called method overloading. It is quite common practice to do this with constructors, as

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

388

617xCH09.qxd 4/18/07 3:38 PM Page 388

it provides an easy way for users to instantiate objects with various initial configurations
and values, as I did in this last example. One other minor point is that I created a couple
local variables in the drawWindow() method:

//local variables
int margin = 0;
int winHt = 0;
int winWdth = 0;

Like parameters, these variables are only scoped within the method that they are defined
within. In general, it’s a good rule to only give variables the scope they require. These vari-
ables are only used within the drawWindow() method, so it made sense to make them
local. Take a few minutes to look at the switch statement in the drawWindow() method, as
well as the procedure I used to draw the different windows. Again, I relied on Processing’s
rect() function to take care of all the drawing.

Roof class

The last piece of our house I need is the roof. Next is a sketch that draws a roof using the
new Roof class (see Figure 9-33):

// Drawing Some Roofs
void setup(){
size(400, 150);
background(200);
smooth();
Roof roof1 = new Roof();
roof1.drawRoof(25, 100, 100, 150);
Roof roof2 = new Roof(Roof.GAMBREL);
roof2.drawRoof(150, 100, 100, 150);
Roof roof3 = new Roof(Roof.DOME);
roof3.drawRoof(275, 100, 100, 100);

}

class Roof{
//roof properties
int x;
int y;
int w;
int h;

// roof style
int style = 0;
//constants
final static int CATHEDRAL = 0;
final static int GAMBREL = 1;
final static int DOME = 2;

SHAPES

389

9

617xCH09.qxd 4/18/07 3:38 PM Page 389

// default constructor
Roof(){
}

// constructor 2
Roof(int style){
this.style = style;

}

// draw the roof
void drawRoof(int x, int y, int w, int h) {
switch(style){
case 0:
beginShape();
vertex(x, y);
vertex(x+w/2, y-h/3);
vertex(x+w, y);
endShape(CLOSE);
break;

case 1:
beginShape();
vertex(x, y);
vertex(x+w/7, y-h/5);
vertex(x+w/2, y-h/2.75);
vertex(x+(w-w/7), y-h/5);
vertex(x+w, y);
endShape(CLOSE);
break;

case 2:
ellipseMode(CORNER);
arc(x, y-h/2, w, h, PI, TWO_PI);
line(x, y, x+w, y);
break;

}

}

// set roof style
void setStyle(int style){
this.style = style;

}
}

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

390

617xCH09.qxd 4/18/07 3:38 PM Page 390

Figure 9-33. Drawing Some Roofs sketch

There is nothing new in this sketch, and I now have all the House component classes built.
The next thing to do is put them all together. Again, it is worthwhile considering this prob-
lem in the context of the real world. If you were really building a house, you would be at
the stage at which you have identified your door, window, and roof suppliers, and have
established an agreed upon set of properties and methods. In a sense, you have developed
a contractual agreement with your suppliers. This is precisely how OOP works.

House class

The public properties and methods of a class are referred to as the public interface to the
class. If you know the public interface to a class, you don’t even need to know what hap-
pens within the class. The interface, in a sense, enforces the contract. Classes should be as
modular and self-contained as possible. Thus, each of the classes takes care of calculating
and drawing itself. The House class is no exception. The House class, besides drawing some
type of external structure, will need to orchestrate how the Door, Window, and Roof com-
ponent classes are used in its own creation. To make this happen, you need to somehow
include these classes within the House class. You also want to be able to customize these
component classes. There is a classic OOP way to solve this problem, which is called com-
position. I’ll actually include variables of the respective component types within the House
class. In other words, I’ll include reference variables of the Door, Window, and Roof data
types within the House class definition. When I instantiate the House class, I’ll actually pass
in Door, Window, and Roof object references as arguments, which, you’ll remember, will
need to be received by parameters of the same data type within a House constructor.

Here’s the House class. Please note that the following code is not a finished sketch yet, but
only the House class. Shortly, I’ll put all the classes (Window, Door, Roof, and House)
together into a sketch to draw a little neighborhood.

class House{
//house properties
int x;
int y;
int w;
int h;

SHAPES

391

9

617xCH09.qxd 4/18/07 3:39 PM Page 391

//component reference variables
Door door;
Window window;
Roof roof;

//optional autosize variable
boolean AutoSizeComponents = false;

//door placement
int doorLoc = 0;
//constants
final static int MIDDLE_DOOR = 0;
final static int LEFT_DOOR = 1;
final static int RIGHT_DOOR = 2;

//constructor
House(int w, int h, Door door, Window window, Roof roof, ➥

int doorLoc) {
this.w = w;
this.h = h;
this.door = door;
this.window = window;
this.roof = roof;
this.doorLoc = doorLoc;

}

void drawHouse(int x, int y, boolean AutoSizeComponents) {
this.x = x;
this.y =y;
this.AutoSizeComponents = AutoSizeComponents;

//automatically sizes doors and windows
if(AutoSizeComponents){
//autosize door
door.h = h/4;
door.w = door.h/2;

//autosize windows
window.h = h/3;
window.w = window.h/2;

}
// draw bldg block
rect(x, y, w, h);

// draw door
switch(doorLoc){
case 0:

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

392

617xCH09.qxd 4/18/07 3:39 PM Page 392

door.drawDoor(x+w/2-door.w/2, y+h-door.h);
break;

case 1:
door.drawDoor(x+w/8, y+h-door.h);
break;

case 2:
door.drawDoor(x+w-w/8-door.w, y+h-door.h);
break;

}

// draw windows
int windowMargin = (w-window.w*2)/3;
window.drawWindow(x+windowMargin, y+h/6);
window.drawWindow(x+windowMargin*2+window.w, y+h/6);

// draw roof
roof.drawRoof(x, y, w, h);

}

// catch drawHouse method without boolean argument
void drawHouse(int x, int y){
// recall with required 3rd argument
drawHouse(x, y, false);

}
}

The House class is implemented similarly to the Door, Window, and Roof classes. It contains
a constructor; it has x, y, w, and h instance variables; and it has some constants and a
drawHouse() method. Again, the redundant elements and structures in these classes could
be handled more efficiently using inheritance, which I covered in Chapter 8 and will also
use in later chapters. What’s markedly different between these classes, however, is the
compositional relationship between the House class and its component classes. The House
class contains reference variables of the Door, Window, and Roof classes. When I instantiate
the House class, I’ll include Door, Window, and Roof objects as arguments that will be sent
to the House constructor.

Within the House constructor, the Door, Window, and Roof instance properties declared at
the top of the House class will each be assigned the values (object references) of their
matching parameters. Remember, the parameters declared within the constructor head
(between the parentheses) are local to the constructor, so it’s necessary to do these
assignments in the constructor to create global visibility for these passed-in values so that
they may be seen throughout the class. Because the House class will now contain object
references to these component classes (Door, Window, and Roof), the properties and meth-
ods of each of these classes can be utilized from within the House class with the normal
syntax object.property (e.g., roof1.x) or object.method (e.g., window1.drawWindow()).
Without the object references being passed into the House constructor, the House class
would have no way of communicating with its Door, Window, or Roof components.

SHAPES

393

9

617xCH09.qxd 4/18/07 3:39 PM Page 393

The abstraction of OOP takes some time to get your head around. So if your head is spin-
ning, you’re definitely not alone. It’s helpful to remember that each class in OOP should be
a self-contained modular unit. Someone using the class shouldn’t need to look inside the
class to see how it’s implemented. Instead, they just need to know the class’s pubic inter-
face (its public properties and methods, including any constructors). When you use a class,
the class should, in a sense, take care of itself. So when you create a window and then ask
the window to draw itself, you don’t need to be privy to how it actually implements the
drawing; you just need to make sure you ask properly—using the correct method and any
required arguments.

When the House class creates itself through its drawHouse() method, it will need to com-
pose its components—position and size its door, window, and roof. For the House class to
be able to do this, it needs the object references to these components, and when
requested to do so, each of the components will be responsible for drawing itself. Since
the position of each of the house’s components is ultimately dependent on the size and
position of the house, it makes sense for the house to make these calls after its own posi-
tion and size have been determined.

One last point is that it’s also possible (albeit not very desirable) to totally encapsulate the
creative (customization) process from the user. In the upcoming neighborhood sketch, I’ll
provide the user the capability to customize the individual House components (Door,
Window, and Roof) as each component object is instantiated. The user will then simply pass
these customized component objects as arguments when instantiating a House object.
Instead of giving the user this customization ability—to select a roof style, for example—
you could just let the House class set all the style properties for the individual components.
The House class could even take care of instantiating the component Door, Window,
and Roof objects from within its own class, hiding this process entirely from the user and
avoiding the need to pass in any object reference arguments. This greatly simplifies the
process of using the House class for the user, but also removes any customization options.
Thus, balance needs to be considered carefully when you design a class—on one hand,
you should think about ease of use, but on the other, you should think about providing
users with enough creative freedom to make the class ultimately worth using.

I’m going to end this chapter with a completed Neighborhood sketch (see Figure 9-34),
including the Door, Window, Roof, and House classes. However, the following example code
only includes the final sketch’s setup() function, since the four finished classes are printed
in their entirety earlier in the chapter. To run the sketch, of course, you’ll need to add the
Door, Window, Roof, and House classes to the sketch. (Note that when adding the class
code, you should not include the setup() functions from the earlier individual class sketch
examples—just the code beginning with class, down to the final closing curly brace at the
bottom of the entire class.) You can either type/paste the class code directly into
Processing, below the setup() function at the top of the Neighborhood sketch, or better
yet, download the completed Neighborhood sketch code from the book’s Download sec-
tion on the friends of ED site (www.friendsofed.com/).

The Neighborhood sketch’s setup() function primarily includes instantiation statements.
Each of the three houses in the Neighborhood sketch has its own Door, Window, and Roof
objects passed into its constructor when instantiated. Notice how I instantiate the compo-
nent classes first and then pass the reference variables for each of the component objects
as arguments when I instantiate the House.

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

394

617xCH09.qxd 4/18/07 3:39 PM Page 394

In laying out the neighborhood, I used the previous house’s x and w positions to ensure
that the houses lined up properly, but also didn’t overlap.

In spite of the sketch’s length (when the four classes are added), the object-oriented struc-
ture adds organization and (reusable) modularity to the code, as compared to a long series
of function calls. In addition, the OOP structure provides a logical framework in which to
add new features to the entire neighborhood, the House class, or any of the component
classes. Really take your time going through (and playing) with this example. I also suggest
trying to reimplement some of the internal drawing methods. For example, the cathedral
roof could be drawn with Processing’s triangle() function, and the dome roof could be
created with the bezier() or curve() function. Changing the internal implementation of
a class, if done properly, should have no effect on how you use the class. In addition (if
you’re feeling ambitious), you could even try to apply a tessellated texture as a skin to
some of the houses.

/*
Neighborhood
Ira Greenberg, January 1, 2006
Happy New Year!
*/
void setup(){
size(600, 400);
background(190);
smooth();
//ground plane
int groundHeight = 10;
fill(0);
rect(0, height-groundHeight, width, groundHeight);
fill(255);

// Houses
Door door1 = new Door(40, 80);
Window window1 = new Window(100, 125, false, Window.DOUBLE);
Roof roof1 = new Roof(Roof.DOME);
House house1 = new House(150, 150, door1, window1, roof1, ➥

House.MIDDLE_DOOR);
house1.drawHouse(50, height-groundHeight-house1.h, true);

Door door2 = new Door(40, 80);
Window window2 = new Window(100, 125, true, Window.QUAD);
Roof roof2 = new Roof(Roof.GAMBREL);
House house2 = new House(200, 120, door2, window2, roof2, ➥

House.LEFT_DOOR);
house2.drawHouse(50+house1.w, height-groundHeight-house2.h, true);

Door door3 = new Door(40, 80);
door3.setKnob(Door.RT);
Window window3 = new Window(125, 125, true, Window.SINGLE);

SHAPES

395

9

617xCH09.qxd 4/18/07 3:39 PM Page 395

Roof roof3 = new Roof(Roof.CATHEDRAL);
House house3 = new House(150, 200, door3, window3, roof3, ➥

House.RIGHT_DOOR);
house3.drawHouse(house2.x+house2.w, height-groundHeight-house3.h, ➥

true);
}
// add Door class
// add Window class
// add Roof class
// add House class

Figure 9-34. Neighborhood sketch

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

396

617xCH09.qxd 4/18/07 3:39 PM Page 396

Summary
Beginning with Processing’s simple shape commands, rect(), ellipse(), triangle(),
arc(), and quad(), this chapter introduced some of the underlying computer graphics
principals involved in generating and working with shapes, including the definition of an
origin point, the use of bounding boxes, and the concept of state changes. Moving beyond
simple shape functions, you learned about a more general and powerful approach for
shape creation, using Processing’s vertex() function and companion beginShape() and
endShape() record functions. Utilizing a powerful programming technique called recur-
sion, you learned about an alternative approach to iterating, including the risk of generat-
ing infinite loops with recursion. You looked under the hood at Processing’s matrix
functions and how drawing in Processing happens internally in a graphics context, which
has its own local coordinate system. Finally, you looked at applying an object-oriented
approach to generating shapes, developed a simple neighborhood example, and used an
advanced OOP concept called composition. Next chapter, I’ll introduce color/imaging
techniques using Processing, and also expand the discussion of OOP to incorporate some
more advanced concepts.

SHAPES

397

9

617xCH09.qxd 4/18/07 3:39 PM Page 397

617xCH10.qxd 4/17/07 1:33 PM Page 398

10 COLOR AND IMAGING

617xCH10.qxd 4/17/07 1:34 PM Page 399

Thus far in the book I’ve focused on the structural aspects of creative coding—an armature
upon which to build. However, I’ve barely scraped the surface of Processing’s expressive
potential. Nowhere is this potential more evident than in Processing’s extensive color and
imaging capabilities. I’ll begin this chapter by exploring Processing’s high-level color
and imaging functions, which conceal the internal mathematics while still providing lots of
creative range. Working at the pixel level, you’ll learn how to generate custom gradients
and even spin some of your own cool imaging filters. Finally, you’ll apply an object-
oriented approach to imaging and color, building upon the OOP concepts introduced in
Chapters 8 and 9.

The importance of color
One of the major contributing factors in creating expressive work is color. This is not in any
way to imply that powerfully expressive work can’t be done in grayscale—artists such as
Francisco de Goya, Franz Kline, and William Kentridge immediately come to mind.
However, I’ve found that I have a different relationship with my work and process when I
work in color. As a painter, I found I could express a wider range of thoughts and feelings
when my palette included a full range of color, as opposed to just grayscale. I think this
holds true for creative coding as well.

In the beginning, when you are first learning the basics of coding, the whole process might
seem purely analytical, but like any discipline, once you develop some fluency, certain
processes go on autopilot, freeing you to access other cognitive states. Coding grayscale
normally uses 8 bits of information per pixel, providing 256 different values from black to
white—black being 0 and white being 255. Color generally uses 24 bits of information per
pixel (or 256 ✕ 256 ✕ 256, giving you 16,777,216 different colors). In addition, an extra
8 bits of data is often used for alpha, or transparency. At the risk of sounding overly new-
agey, color seems to provide us with a wider range of responses to map to a wider range
of emotions than grayscale does. Once we begin to explore color at the pixel level we are
only a few steps away from digital imaging, or using code and procedural processing to
affect all or a range of the pixels making up a continuous tone image—like a photograph.
Processing comes with a bunch of cool functions for doing just this. In addition, this chap-
ter will explore how to spin some of your own imaging filters. To begin, though, let’s look
at some simple color examples (see Figure 10-1):

// Color Shift
size(800, 450);
background(50);
noStroke();
int spacing = 50;
int w = (width-spacing*2)/2;
int h = w;
color swatch = color(100, 100, 120);

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

400

617xCH10.qxd 4/17/07 1:34 PM Page 400

//left squares
fill(255, 120, 0);
rect(spacing, spacing, w, h);
fill(swatch);
rect(spacing+w/3, spacing+h/3, w/3, h/3);

//right squares
fill(45, 140, 255);
rect(w+spacing, spacing, w, h);
fill(swatch);
rect(w+spacing+w/3, spacing+h/3, w/3, h/3);

Figure 10-1. Color Shift sketch

Color theory
For those of you with degrees in art, the preceding example will look familiar. To those of
you who escaped the torture of cutting out hundreds of little pieces of colored paper
while squinting and gluing your fingers together, this sketch illustrates an exercise for
studying the relativity of color, specifically color interaction. Two important artists and
teachers, Josef Albers and Johannes Itten, formalized the modern study of color for artists.
Their artwork and writings led to the creation of color theory foundation courses in
Western art curricula throughout the world. The sketch illustrates a classic exercise in
which two identical small swatches of color are placed on two larger sheets of differing
colors. The problem involves trying to make the smaller swatches appear to be two differ-
ent colors, by substituting different colors behind the swatches. This and similar studies
developed by Albers, Itten, and others reveal interesting and unexpected color phenom-
ena, including color and value shifts, afterimages, scale distortions, and even 3D spatial
movements—sometimes referred to as “push-pull,” a term coined by another major artist/
colorist/educator, Hans Hofmann.

COLOR AND IMAGING

401

10

617xCH10.qxd 4/17/07 1:34 PM Page 401

Not everyone seems to be able to see these often subtle color relationships. Squinting or
crossing your eyes, turning an image upside down, or changing your viewing distance to an
image are techniques that can sometimes help you to better see these phenomena. I’ve
had very bright, talented students really struggle when it came to seeing and mixing color,
while other students seem to take to it very naturally. It’s led me to believe that, just as
some people can more naturally distinguish subtle modulations in pitch (I’m not one of
them), there is a similar mechanism for perceiving and differentiating color. However, I
feel it’s also important to point out that great art has been created by both strong and
weak colorists. Some artists/art professors even believe that innate gifts, such as color sen-
sitivity or drawing facility, can even at times impede a person’s development as an artist.
So if you can’t see the color shift in the example, try not to freak out.

Color has three distinctive properties: hue, value, and chromatic intensity. Hue relates to
the actual names we associate colors with (red, green, blue, etc.). Hue is controlled by the
wavelength of the light. For example, the hue of a ripe lemon is yellow, while the hue of a
stop sign is red. An object absorbs all the colors in the visual spectrum (light) except the
color we perceive reflected back to our eyes. Thus, a red object absorbs all the colors
except red.

Value relates to the brightness vs. darkness of the color. Value is also strongly determined
by light. Although it is possible to shift the hue of a color, as in the last example, it can only
be shifted so far in the physical world. However, the value of a color has less constancy.
The value of the color on an orange’s surface is drastically different in a dark room than
outside in the sun. Value often confuses people when first learning about color. When
looking at an object, they tend to see what they know about an object—which is usually
primarily defined by the hue. For example, if I create a still life and place an egg in shadow
next to an eggplant under a light source, most beginning art students will assume the egg
surface has greater value than the eggplant, as they associate white with brightness and
the eggplant’s dark purple as darkness. Under the same exact lighting conditions, an egg-
plant would be darker than an egg, so the gestalt function in our mind codes a predictable
pattern, which usually holds true, until some sneaky art professor sticks an eggplant under
a bright lamp.

The last component of color is chromatic intensity. Two colors can have similar hue and
value, but very different chromatic intensities. Consider the difference in color between a
brick and an orange. The hue in both is orangish, and the value could be very similar, but
there is still a difference in the color, which is controlled by chromatic intensity. When a
color loses some of its chromatic intensity, we speak of it getting neutralized or moving
toward gray. In the artist’s color wheel, which we’ll look at next, certain colors have a com-
plimentary relationship. When two complimentary colors mix, they neutralize each other,
reducing the chromatic intensity of each. Before you look at the color wheel, I want to
make sure you understand the syntax in these two lines of code:

color swatch = color(100, 100, 120);
fill(swatch);

color is a Processing data type. The function call color(100, 100, 120) returns a color
value, which I assigned to the variable swatch, declared of the type color. The three argu-
ments I passed to the color function represent the red, green, and blue components of

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

402

617xCH10.qxd 4/17/07 1:34 PM Page 402

the color. Up to this point in the book, I’ve been passing single integer arguments to the
fill() and stroke() functions, generating grayscale values. However, to generate color,
you can pass three (or four) arguments to the fill()/stroke() calls, representing red,
green, and blue (and alpha); or combine the three values into a color variable, as I did in
the example. Thus, the following two fill() calls are equivalent:

color swatch = color(100, 100, 120);
fill(swatch);

fill(100, 100, 120);

Here’s a simple example using random stroke colors, shown in Figure 10-2:

//Rotated Triangle
size(350, 350);
background(255);
smooth();
strokeWeight(3);
noFill();
translate(width/2, height/2);
for (int i=0; i<20; i++){
stroke(random(255), random(255), random(255));
triangle(-120, 120, 120, 120, 0, -120);
rotate(TWO_PI/20);

}

Figure 10-2. Rotated Triangle sketch

COLOR AND IMAGING

403

10

617xCH10.qxd 4/17/07 1:34 PM Page 403

In the next example, I use the color data type to create some arrays in conjunction with
the fill() command. Hopefully, the output in Figure 10-3 looks familiar.

/*
Subtractive Color Wheel
Ira Greenberg, January 4, 2005
primaries (r, y, b)
secondaries(g, p, o)
tertiaries(y-o, r-o, r-p, b-p, b-g, y-g)
*/
int segs = 12;
float rotAdjust = radians(360/segs/2);
float radius = 175.0;
float ratio = .65;
float interval = TWO_PI/segs;
int SHADE = 0;
int TINT = 1;

void setup(){
size(800, 400);
background(0);
smooth();
ellipseMode(CENTER_RADIUS);
noStroke();
createWheel(width/4, height/2, SHADE);
createWheel(width - width/4, height/2, TINT);

}

void createWheel(int x, int y, int valueShift){
radius = 175;
ratio = .65;
if (valueShift == SHADE){
// left wheel
for (int j=1; j<5; j+=1){
color[]cols = {
color(255/j, 255/j, 0), color(255/j, (255/1.5)/j, 0), ➥

color(255/j, (255/2)/j, 0), color(255/j, (255/2.5)/j, 0), ➥

color(255/j, 0, 0), color(255/j, 0, (255/2)/j), ➥

color(255/j, 0, 255/j), color((255/2)/j, 0, 255/j), ➥

color(0, 0, 255/j), color(0, 255/j, (255/2)/j), ➥

color(0, 255/j, 0), color((255/2)/j, 255/j, 0)
};
for (int i=0; i<segs; i++){
fill(cols[i]);
arc(x, y, radius, radius, interval*i+rotAdjust, ➥

interval*(i+1)+rotAdjust);

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

404

617xCH10.qxd 4/17/07 1:34 PM Page 404

}
radius*=ratio;
ratio-=.1;

}
}
else if (valueShift == TINT){
//right wheel
for (float j=0; j<1.5; j+=.3){
color[]cols = {
color(255, 255, 255*j), color(255, (255/1.5)+255*j, 255*j),
color(255, (255/2)+255*j, 255*j),
color(255, (255/2.5)+255*j, 255*j), color(255, 255*j, 255*j),
color(255, 255*j, (255/2)+255*j),
color(255, 255*j, 255), color((255/2)+255*j, 255*j, 255),
color(255*j, 255*j, 255),
color(255*j, 255, (255/2)+255*j), color(255*j, 255, 255*j),
color((255/2)+255*j, 255, 255*j) };

for (int i=0; i<segs; i++){
fill(cols[i]);
arc(x, y, radius, radius, interval*i+rotAdjust, ➥

interval*(i+1)+rotAdjust);
}
radius*=ratio;
ratio-=.1;

}
}

}

Figure 10-3. Subtractive ColorWheel sketch

COLOR AND IMAGING

405

10

617xCH10.qxd 4/17/07 1:34 PM Page 405

I’m sure most of you recognized the output as the classic color wheel, composed of the
three primaries (red, yellow, and blue), the three secondaries (green, purple, and orange)
and the six tertiaries (yellow-orange, red-orange, red-purple, blue-purple, blue-green, and
yellow-green). The two wheels (one showing shades of the colors and the other showing
tints) represent color relationships as perceived off a reflective colored surface, such as a
painting. This color model is referred to as subtractive. When the full spectrum of colors is
mixed together in the subtractive model, we get a dark, neutral color that approaches
black. In contrast, the colors we perceive on a computer monitor, through projected light,
are considered additive. These colors, when mixed together, create white light. In addition,
the primaries in the additive model are red, green, and blue, as opposed to red, yellow,
and blue, as in the subtractive model.

The preceding sketch uses the arc() function to create a series of circles (composed of
pie wedges) that overlap one another. The overlapping circles get progressively smaller,
while the value of the color darkens and lightens on the left and right circles, respectively.
Since the colors are fully opaque, there is no mixing of the overlapping pie wedges—
rather, the shift in value is determined solely by the calculations within the cols[] array.
The array uses Processing’s color data type. I create and fill the arrays from scratch each
iteration of the loop, using anonymous color objects; they’re anonymous only in the sense
that I’m not assigning each color object to a variable. As a fun problem to try on your own,
try modifying the previous sketch to generate two similar wheels based on the additive
model.

Controlling alpha transparency

Besides the color component properties, you can also specify an alpha component, which
controls the transparency of the color. For grayscale, you pass an optional second argu-
ment, and for color you pass an optional fourth argument. Here’s a combined example
that shows both (see Figure 10-4):

// Alpha
size(400, 315);
for (int i=0; i< height; i+=width/15){
float r=random(255);
float g=random(255);
float b=random(255);
for (int j=0, a=255; j<width; j+=width/10, a*=.8){
strokeWeight(5);
stroke(0, a);
fill(r, g, b, a);
rect(j, i, width/10, width/10);

}
}

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

406

617xCH10.qxd 4/17/07 1:34 PM Page 406

Figure 10-4. Alpha sketch

In this example, each row of cells overlaps the preceding row, illustrating some of the
beautiful translucent effects you can get by procedurally altering the alpha. By incorporat-
ing color and alpha modulations with some of the other techniques you’ve looked at
earlier—such as generating a series of simple shapes iteratively through translations—you
can create aesthetically interesting images of layered geometry that begin to approximate
other media, such as painting. Here’s an example, shown in Figure 10-5:

/*
Fade-Spin
Ira Greenberg, January 7, 2006
*/

int w = 20, h = 20;
float ang = 0;
float amp = 60;
void setup(){
size(500, 300);
background(170, 120, 150);
noStroke();
smooth();

for (int i=0, x=0; i<width; i++, x++){
fill(200-255/width*i, 200-255/width*i, 165/width*i, 140);
resetMatrix();
translate(x, height/4);
rotate(radians(x*.45));

COLOR AND IMAGING

407

10

617xCH10.qxd 4/17/07 1:34 PM Page 407

rect(-w, -h, w*.2, h*random(-.1, .4));
}

resetMatrix();
for (int i=0, x=0; i<width; i++, x++){
fill(255.0/width*i, 255.0-255.0/width*i, 127.0/width*i, 95);
pushMatrix();
translate(x, height-height/5);
rotate(radians(x*1.75));
rect(-w, -h, w, h);
popMatrix();

}

for (float i=0, x=0, y=0; i<width; i++, x++){
fill(160-50/width*i, 255.0/width*i, 200-190/width*i, 20);
pushMatrix();
translate(x, height/2+y);
rotate(radians(x*1.75));
rect(-w*.55, -h*.55, w*.55+y*.125, h*.55+y*.125);
popMatrix();
y = sin(radians(ang+=2))*amp+random(15);

}

for (float i=0, x=0, y=0; i<width; i++, x+=1.5, y++){
fill(50.0-255.0/width*i, 127.0-255.0/width*i, 200.0/width*i, 10);
pushMatrix();
translate(-50+x, y);
rotate(radians(x*1.75));
rect(-w*3.55, -h*3.55, w*3.55, h*3.55);
popMatrix();

}
}

Figure 10-5. Fade-Spin sketch

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

408

617xCH10.qxd 4/17/07 1:34 PM Page 408

A quick review of creating transformations
I think the preceding sketch illustrates nicely how numbers, code, and even rigid geometry
can begin to approximate organic forms. You may have also noticed that I snuck in two
new commands, pushMatrix() and popMatrix(), and also used resetMatrix(), which you
looked at a little in Chapter 9. In that chapter, I also discussed Processing’s translate()
function and talked a little bit about the underlying affine transformation matrix that con-
trols how the coordinate geometry you create is ultimately mapped to the display window.
This is important (albeit a little confusing) information, so I want to review some of it
again. Processing’s display window is technically a Java component. Components include
such things as buttons, panels, frames, and labels. Components utilize a graphics object to
actually paint stuff in the component. The graphics object is just a Java class that encapsu-
lates lower-level rendering stuff, which you don’t have to worry about. If, however, you
would like to learn some more about these under-the-hood issues, check out http://
java.sun.com/products/jfc/tsc/articles/painting/.

When the display window’s graphics object does its thing, coordinate data is mapped from
a kind of a virtual object coordinate space to the actual display window coordinate space.
By default, these two spaces start out in sync. However, when I call a function like
translate(), I can shift the virtual object space in reference to the display window—
making the two coordinate spaces no longer in sync. For example, prior to calling
translate(), the call rect(50, 50, 100, 100) draws a rectangle 50 pixels down and to
the right from the top-left corner of the display window. However, if I call translate(25,
25) prior to the rect(50, 50, 100, 100) call, the rectangle will be drawn 75 pixels down
and to the right of the top-left corner of the display window. In addition, the transformed
virtual coordinate space will remain in this changed state. So, with any additional drawing
calls I make, the new geometry will be shifted 25 pixels down and to the right. If I call
translate(25, 25) again, all new drawing calls will now be shifted 50 pixels down and to
the right from the literal values passed to the respective drawing calls.

When resetMatrix() is called, Processing in a sense resets the transformation state—
putting the object coordinate space back in sync with the display window space. However,
there are times when you don’t want to reset the entire transformation, and that’s when
the functions pushMatrix() and popMatrix() come in.

Pushing and popping the matrix
When you surround a transform operation (such as translate(), rotate(), or scale())
with the function calls pushMatrix() and popMatrix(), the original state of the matrix
before the pushMatrix() call is restored after the popMatrix() call, regardless of what
happens between the pushMatrix() and popMatrix() calls. Here’s an example that prints
the matrix values before, during, and after to illustrate this point (see Figure 10-6):

COLOR AND IMAGING

409

10

617xCH10.qxd 4/17/07 1:34 PM Page 409

http://java.sun.com/products/jfc/tsc/articles/painting/

// Transformation Matrix
printMatrix();

pushMatrix();
translate(50, 50);
rotate(PI);
scale(.5);
printMatrix();
popMatrix();

printMatrix();

If you look at the output, you’ll see that the transformation matrix output is the same
before and after the pushMatrix()/popMatrix() calls. Using pushMatrix() and
popMatrix(), I was able to localize the transformation so that the transformation state
isn’t changed for all future calls. Returning to the earlier Fade-Spin example, I used the
push and pop calls to do precisely the same thing. Try commenting out the
pushMatrix()/popMatrix() calls to see what happens. To learn some more about trans-
formations, check out www.developer.com/net/vb/article.php/626051#_Introduction.

Finally, the Fade-Spin example was procedurally a little dense, as I used for loops to ini-
tialize and increment a bunch of values. Also, you’ll notice that sometimes I initialized the
loop values as type int and other times as type float. If you specify a variable as type int
and then try to increment it with a non-integer value, you’ll get unexpected results due to
rounding, which can drastically change a sketch. Look at the values in this example:

for (int i=0; i<10; i+=1.5){
println(i);

}

Even though I’m asking the loop to increment by 1.5, the values get rounded down to the
nearest integer value because i is of type int. Before moving on, I want to look at one
more example that uses overlapping geometry. A few years ago, I started a series of images
generated with code that I called Protobytes. The Protobytes are formed from overlapping
geometry. I was interested in generating organic forms that had some loose connections to
natural organisms. I built the forms up incrementally, as I’ll try to do here in a few separate
steps. Since trig functions generate smooth repeating curves, I find them especially handy
for this type of experimentation. This next example, shown in Figure 10-7, is entitled
Nematode.

Figure 10-6. Transformation Matrix sketch

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

410

617xCH10.qxd 4/17/07 1:34 PM Page 410

/*
Nematode - stage 1
Ira Greenberg, January 7, 2006
stage 1
*/
size(500, 300);
background(255);
strokeWeight(.2);
smooth();
noFill();
float radius = 0;
float thickness = .35;
float x = 0;
float y = height/2;
float amp = .5;
float angle = 0;
for (int i=0; i<width; i++){
stroke(65, 10, 5);
translate(2, y);
ellipse(-radius/2, -radius/2, radius*.75, radius);
y = sin(radians(angle+=5))*amp;
radius+=thickness;
if (i==width/4){
thickness*=-1;

}
}

Figure 10-7. Nematode sketch (stage 1)

In the first stage of the sketch, I created the basic outer structure of the nematode. By
overlapping a series of ellipses and altering their position and scale slightly, I was able to
generate the body. I used a sin() function to control the y position, and by altering the
thickness of the radius I was able to define the end sections of the organism. Let’s add a
little internal structure and some more detail (see Figure 10-8):

COLOR AND IMAGING

411

10

617xCH10.qxd 4/17/07 1:34 PM Page 411

/*
Nematode - stage 2
Ira Greenberg, January 7, 2006
*/
size(500, 300);
background(255);
strokeWeight(.2);
smooth();
noFill();
float radius = 0;
float thickness = .35;
float x = 0;
float y = height/2;
float amp = .5;
float angle = 0;
float angle2 = 0;
for (int i=0; i<width/2-15; i++){
stroke(65, 10, 5);
noFill();
translate(2, y);
if (i >= width/2-40) {
fill(195, 110, 105, 70);

}
else if (i >= width/4-40 && i <= width/2-100){
fill(195, 110, 105, 8);

}
else {
fill(195, 110, 105, 2);

}
ellipse(-radius/2, -radius/2, radius*.75, radius);
noStroke();
fill(205, 110, 105, 40);
ellipse(-radius/2, -radius/2, radius*.25, radius*.25);
fill(205, 110, 105, 200);
ellipse(-radius/2, -radius/2, radius*.05, radius*.05);
y = sin(radians(angle+=5))*amp;
radius+=thickness;
radius+=sin(radians(angle2+=random(30)))*.4;
if (i==width/4){
thickness*=-.9;

}
}

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

412

617xCH10.qxd 4/17/07 1:34 PM Page 412

Figure 10-8. Nematode sketch (stage 2)

In this stage, I mostly just added some more ellipses, controlling their radii and color/alpha.
I also added a sin() function, with random amplitude to add some jitter to the nema-
tode’s body. I think nematodes are actually pretty smooth, but I’ll invoke artistic license
here. Here’s a finished nematode (see Figure 10-9):

/*
Finished Nematode
Ira Greenberg, January 7, 2006
*/
void setup(){
size(500, 300);
background(255);
smooth();
strokeWeight(.2);
noFill();
float radius = 0;
float thickness = .35;
float x = 0;
float y = height/2;
float amp = .5;
float angle = 0;
float angle2 = 0;

//ground plane
stroke(150, 100, 20);
line(0,50, width, 50);

for (int i=0; i<width/2-15; i++){
noFill();
translate(2, y);
// add some surface shading
if (i >= width/2-40) {
fill(195, 110, 105, 50);

}
else if (i >= width/4-40 && i <= width/2-100){
fill(195, 110, 105, 10);

COLOR AND IMAGING

413

10

617xCH10.qxd 4/17/07 1:34 PM Page 413

}
else {
fill(195, 110, 105, 2);

}
//outer shell 1
stroke(145, 10, 5, 175);
ellipse(-radius/2, -radius/2, radius*.75, radius);

//outer shell 2
stroke(65, 10, 100, 150);
ellipse(-radius/2, -radius/2, radius*.71, radius*.71);

// organs 1
stroke(200, 200, 30, i*.8);
ellipse(-radius/2, -radius/2, segment(radius, angle), ➥

segment(radius, angle));

// organs 2
noStroke();
fill(150, 75, 100, 28);
ellipse(-radius/2, -radius/2, segment(radius*.7, angle), ➥

segment(radius*.7, angle));

// inner tube
fill(205, 110, 105, 40);
ellipse(-radius/2, -radius/2, radius*.25, radius*.25);

// inner vein
fill(205, 110, 105, 200);
ellipse(-radius/2, -radius/2, radius*.05, radius*.05);
y = sin(radians(angle+=5))*amp;
radius+=thickness;
radius+=sin(radians(angle2+=random(30)))*.4;
if (i==width/4){
thickness*=-.9;

}
}

}

float segment(float rad, float angle){
if(rad>25){
rad*=1.5+random(.15);

}
else{
rad*=random(.2);

}
float r = cos(radians(angle*=1.3))*rad*.5;
return r;

}

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

414

617xCH10.qxd 4/17/07 1:34 PM Page 414

Figure 10-9. Finished Nematode sketch

There’s so much more that could be done with the nematode, but I’ll leave that to you.
However, I’ll include one more nematode image, shown in Figure 10-10, on a dark back-
ground with some minor changes to a few of the stroke values. Since the nematode image
is translucent, when you add a dark background, the image takes on an interesting look
and feel, resembling a film negative or X-ray.

Figure 10-10. Finished Inverted Nematode sketch

Setting the color mode
So far, this chapter has been using the fill() and stroke() functions with the default
RGB color mode. Using this mode, each of the R, G, and B color components can be
assigned an int or float value from 0 to 255. However, Processing has an alternative HSB
color mode, which can be set by calling colorMode(HSB). HSB stands for hue, saturation,
and brightness. These components correlate to the three color properties of hue, chro-
matic intensity, and value, which I discussed earlier in the “Color theory” section of the
chapter. By default, RGB and HSB modes use a value range of 0 to 255 for each of
the three components. In the next example, I create the six primary and secondary colors
and cyan using both modes (see Figure 10-11):

COLOR AND IMAGING

415

10

617xCH10.qxd 4/17/07 1:34 PM Page 415

// Color Modes RGB/HSB
size(400, 114);
smooth();
color red1 = color(255, 0, 0);
color orange1 = color(255, 127, 0);
color yellow1 = color(255, 255, 0);
color green1 = color(0, 255, 0);
color cyan1 = color(0, 255, 255);
color blue1 = color(0, 0, 255);
color purple1 = color(255, 0, 255);

colorMode(HSB);
color red2 = color(0, 255, 255);
color orange2 = color(21.25, 255, 255);
color yellow2 = color(42.5, 255, 255);
color green2 = color(85, 255, 255);
color cyan2 = color(127.5, 255, 255);
color blue2 = color(170.0, 255, 255);
color purple2 = color(212.5, 255, 255);

color[][]cols = { ➥

{ red1, orange1, yellow1, green1, cyan1, blue1, purple1 },
{ red2, orange2, yellow2, green2, cyan2, blue2, purple2 }

};

int w = width/cols[0].length;
int h = w;
for (int i=0; i<2; i++){
for (int j=0; j<cols[i].length; j++){
fill(cols[i][j]);
rect(w*j, h*i, w, h);
}

}

Figure 10-11. Color Modes RGB/HSB sketch

If you look carefully at the HSB section in the last example, you’ll notice that, with the
exception of orange2, all the colors represent an increase of 42.5. 42.5 is equal to 255
divided by 6. This progression in color from red to purple follows the same color order as

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

416

617xCH10.qxd 4/17/07 1:34 PM Page 416

the decreasing wavelengths of the individual colors forming the visible light spectrum—
the small fraction of the total electromagnetic spectrum our eyes can see. Red’s wave-
length is approximately 700 nanometers (nm), and violet’s is around 400 nm. Perhaps you
remember roy g biv (red, orange, yellow, green, blue, indigo, violet), a mnemonic many of
us learned to remember the colors in the rainbow. Following is a simple sketch that
creates a smooth color gradient across the visual spectrum (see Figure 10-12):

// ROY G BIV
size(400, 120);
noStroke();
colorMode(HSB);
float w = width/(255-42.5);
for (int i=0; i<width; i+=w){
fill(i, 255, 255);
rect(w*i, 0, w, height);

}

Figure 10-12. ROY G BIV sketch

There are times when it would be more convenient to use a different range than 0 to 255
to control the color components. In the last example, I was forced to do a little math to
figure out the ratio of the width of the display window to the range of color values, in the
line float w = width/(255-42.5);. I don’t mean to be lazy, but it would have been easier
to simply specify the range of color from 0 to the display window width and let the
calculation-loving computer deal with the crunching. Happily, Processing includes a simple
way to do just that. The colorMode() function has some optional arguments for setting a
range of color values. For example, here’s a math-lite version of the last sketch.

// ROY G BIV
// math-lite version
size(400, 120);
noStroke();
colorMode(HSB, width);
for (int i=0; i<width; i++){
fill(i, width, width);
rect(i, 0, i, height);

}

COLOR AND IMAGING

417

10

617xCH10.qxd 4/17/07 1:34 PM Page 417

This sketch is not a pure copy, as there is some extra red at the end of the spectrum. To
remove this, I’d still need to deal with the extra one-sixth of color range—which means I’m
back to doing a little math—so I’ll tolerate the extra pretty red on the right. Not only can
you specify the overall range, you can do it per component, and the ranges you assign to
each component can be bizarrely different. Here’s a rather silly example illustrating this
(see Figure 10-13):

// Multi Modes
size(720, 100);
noStroke();
// standard values
colorMode(HSB, 360, 100, 100);
for (int i=0; i<360; i++){
for (int j=0; j<100; j++){
fill(i, j, j);
rect(i, j, 1, 1);

}
}

// ridiculous, but possible
colorMode(HSB, 1.0, .01, 3000);
for (float i=0, ii=0; i<1.0; i+=1.0/360.0, ii++){
for (float j=0, jj=0, k=0; j<.01; j+=.01/100.0, ➥

jj++, k+=3000.0/100.0){
fill(i, j, k);
rect(360+ii, jj, 1, 1);

}
}
strokeWeight(2);
stroke(0);
noFill();
rect(0, 0, 360, 100);
rect(360, 0, 360, 100);

Figure 10-13. Multi Modes sketch

The first gradient was generated using 360, 100, and 100 as the ranges for the H, S, and B
components, respectively. This is actually a standard way for representing HSB, where 360
represents the degrees around the color circle and the two 100s represent 100 percent
saturation and 100 percent brightness. I then created an identical gradient using bizarre

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

418

617xCH10.qxd 4/17/07 1:34 PM Page 418

values, just to illustrate the possibility. This second nested for loop is pretty frightening
looking, so don’t give yourself a hard time if you don’t feel like unraveling it. You can also
specify individual component color ranges for RGB mode, again specifying one or three
optional arguments when calling the colorMode(RGB) function; I’ll leave that for you to try
on your own.

More convenient color functions
Before moving on to imaging, I want to look at some more convenient color functions
included in Processing. For creating quick, easy color blends, Processing includes two
functions: blendColor() and lerpColor(). Here’s a blendColor() example, shown in
Figure 10-14:

//blendColor
size(400, 400);
smooth();
noStroke();
color c1 = color(255, 127, 0);
color c2 = color(0, 75, 150);

color[] blends = {
blendColor(c1, c2, ADD), /*tan*/
blendColor(c1, c2, SUBTRACT), /*red*/
blendColor(c1, c2, DARKEST), /*green*/
blendColor(c1, c2, LIGHTEST) /*pink*/

};

// background
fill(c1);
rect(0, 0, width, height);

for (int i=0; i<4; i++){
fill(blends[i]);
arc(width/2, height/2, width/1.25, height/1.25, ➥

PI/2*i, PI/2*i+PI/2);
}

// front circle
fill(c2);
arc(width/2, height/2, width/4, height/4, 0, TWO_PI);

COLOR AND IMAGING

419

10

617xCH10.qxd 4/17/07 1:34 PM Page 419

Figure 10-14. blendColor() sketch

blendColor() takes two colors as arguments and a third mode argument that controls
how the two colors are blended. The different modes are BLEND, ADD, SUBTRACT, DARKEST,
and LIGHTEST. The underlying math behind each of these modes is a little complicated—
I’ll look at that a bit later in the chapter when I discuss imaging, which includes a similar
blending function. (Please note that as of this writing, BLEND mode, which I did not include
in the example, requires the second color argument in the blendColor() call to have an
alpha setting below 255, or no apparent blend will be detectable.)

An alternative to blendColor() is lerpColor(). The lerp part of the function name refers
to linear interpolation. Interpolation just means finding values between other discrete
values. Processing actually includes a math function called lerp() that does just this.
Here’s a lerp() example:

// lerp()
int a = 1;
int b = 2;
int steps = 5;
float interpolationValue = 1.0/steps;
for (int i=1; i<steps; i++){
println(lerp(a, b, interpolationValue*i));

}

This example outputs the values 1.2, 1.4, 1.6, and 1.8. lerp() requires three arguments: the
two discrete values to interpolate between and an interpolation value (a percentage
expressed as a value between 0 and 1.0). For example, to find a value midway between two
numbers, you’d use an interpolation value of .5. A more useful and common application of
interpolation in computer graphics is for finding points along a path.

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

420

617xCH10.qxd 4/17/07 1:34 PM Page 420

lerpColor() uses the same approach as lerp(), but applies it to blending colors. It also
requires three arguments: two colors and an interpolation value. Here’s a lerpColor()
example (see Figure 10-15):

// lerpColor()
size(400, 400);
noStroke();
color c1 = color(255, 255, 0);
color c2 = color(150, 0, 150);

// change these values to alter gradient
float stepsH = 16;
float stepsW = 16;

/* ratio to remap any number of
cells into 0 - 1.0 range for
lerpColor interpolation argument */
float remapFactor = 100.0/(stepsH*stepsW);

float cellW = width/stepsW;
float cellH = height/stepsH;
int cellCounter = 0;

for (int i=0; i<stepsH; i++){
for (int j=0; j<stepsW; j++){
fill(lerpColor(c1, c2, (remapFactor*cellCounter)*.01));
rect(j*cellW, i*cellH, cellW, cellH);
cellCounter++;

}
}

Figure 10-15. lerpColor() sketch

COLOR AND IMAGING

421

10

617xCH10.qxd 4/17/07 1:34 PM Page 421

I used a changing interpolation value in the last example to create a gradient blend
between the two color arguments through the display window. Try changing the starting
color values as well as the variables stepsH and stepsW (which can be different from one
another) to alter the color gradient.

In addition to blendColor() and lerpColor(), Processing includes seven other handy
functions for accessing individual color component values. I’ve included six of these func-
tions within the next example, which outputs the individual color components (R, G, and
B) as well as hue, saturation, and brightness values; I didn’t include alpha(), but it works
similarly to the other six (the sketch output can be seen in Figure 10-16):

// Color Component Functions
color c1 = color(123, 200, 52);
println("Default RGB, 255");
println("red = "+ red(c1));
println("green = "+ green(c1));
println("blue = "+ blue(c1));
println("hue = "+ hue(c1));
println("saturation = "+ saturation(c1));
println("brightness = "+ brightness(c1));

println("\nStandard HSB 360, 100, 100");
colorMode(HSB, 360, 100, 100);
println("red = "+ red(c1));
println("green = "+ green(c1));
println("blue = "+ blue(c1));
println("hue = "+ hue(c1));
println("saturation = "+ saturation(c1));
println("brightness = "+ brightness(c1));

println("\nAlternative RGB 1.0");
colorMode(RGB, 1.0);
println("red = "+ red(c1));
println("green = "+ green(c1));
println("blue = "+ blue(c1));
println("hue = "+ hue(c1));
println("saturation = "+ saturation(c1));
println("brightness = "+ brightness(c1));

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

422

617xCH10.qxd 4/17/07 1:34 PM Page 422

I want to mention two final points about using these functions. First, according to the
Processing API reference, these functions are somewhat slow—say, for extracting compo-
nent data from many colors at a time. The reference suggests using bitwise operations if
speed is an issue. I cover bitwise operations in detail in Appendix B, and I also look at some
examples that utilize them a little later in this chapter. Second, these seven functions
return a float value, regardless of whether you originally specified int values when you
created the color. So, for example, if you created a color using the default RGB mode (e.g.,
color c = color(200, 150, 74)) and you then called red(c), the value returned would
be 200.0, not 200. I know it’s just a 0 after the dot, but this could cause problems if you
tried to assign the returned value to a variable declared as type int. Try running the fol-
lowing three lines; you should get a compiler error:

//generates a compiler error
color c = color(200, 134, 119);
int r = red(c);

Imaging
Thus far in the book, I’ve been utilizing a vector graphics approach, in which images are
created and manipulated using mathematical expressions that plot a shape and apply ren-
dering attributes, such as stroke weight, fill color, corner joins, and so on. Processing has
the ability to work deeper, down at the pixel or raster level. In a sense, you’ve been getting
near the pixel level when you used 1 ✕ 1 pixel rectangles to create some gradients.
However, using rectangles to represent pixels is a very inefficient way to approach imaging.
In addition, most people connect photo manipulation with imaging, which you’d be hard-
pressed to do with a series of rect() calls.

Figure 10-16. Color Component Functions sketch

COLOR AND IMAGING

423

10

617xCH10.qxd 4/17/07 1:34 PM Page 423

Gradients

I’ll begin with some simple pixel gradients and then play with some images. This first
sketch, shown in Figure 10-17, creates a linear gradient and utilizes Processing’s set()
function. This function allows me to change the color of a pixel, as well as load an image
into the display window. For now, I’ll just show you how to change some pixels. The func-
tion expects three arguments: set(x, y, color).

// Simple Linear Gradient
// January 12, 2006
// x and y axis

// constants
int Y_AXIS = 1;
int X_AXIS = 2;

void setup(){
size(400, 400);

// create some gradients
// background
color b1 = color(190, 190, 190);
color b2 = color(20, 20, 20);
setGradient(0, 0, width, height, b1, b2, Y_AXIS);
//center squares
color c1 = color(255, 120, 0);
color c2 = color(10, 45, 255);
color c3 = color(10, 255, 15);
color c4 = color(125, 2, 140);
color c5 = color(255, 255, 0);
color c6 = color(25, 255, 200);
setGradient(50, 50, 150, 150, c1, c2, Y_AXIS);
setGradient(200, 50, 150, 150, c3, c4, X_AXIS);
setGradient(50, 200, 150, 150, c2, c5, X_AXIS);
setGradient(200, 200, 150, 150, c4, c6, Y_AXIS);

}

void setGradient(int x, int y, float w, float h, ➥

color c1, color c2, int axis){
// calculate differences between color components
float deltaR = red(c2)-red(c1);
float deltaG = green(c2)-green(c1);
float deltaB = blue(c2)-blue(c1);

// choose axis
if(axis == Y_AXIS){
/*nested for loops set pixels
in a basic table structure */

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

424

617xCH10.qxd 4/17/07 1:34 PM Page 424

// column
for (int i=x; i<=(x+w); i++){
// row
for (int j=y; j<=(y+h); j++){
color c = color(➥

(red(c1)+(j-y)*(deltaR/h)), ➥

(green(c1)+(j-y)*(deltaG/h)), ➥

(blue(c1)+(j-y)*(deltaB/h)));
set(i, j, c);

}
}

}
else if(axis == X_AXIS){
// column
for (int i=y; i<=(y+h); i++){
// row
for (int j=x; j<=(x+w); j++){
color c = color(➥

(red(c1)+(j-x)*(deltaR/h)), ➥

(green(c1)+(j-x)*(deltaG/h)), ➥

(blue(c1)+(j-x)*(deltaB/h)));
set(j, i, c);

}
}

}
}

Figure 10-17. Simple Linear Gradient sketch

COLOR AND IMAGING

425

10

617xCH10.qxd 4/17/07 1:34 PM Page 425

The Simple Linear Gradient example uses a custom setGradient() function that allows
you to specify the size, position, colors, and axis of the gradient within the display window.
The nested for loops in the function may look a little confusing. The math stuff is simpler
than it looks. Initially in the function, the three local variables deltaR, deltaG, and deltaB
are assigned the differences between the R, G, and B components, respectively, within the
two colors. The rest of the problem involves iterating each component from color c1 to
color c2 evenly in the for loops. By dividing the delta values by the axis dimension, I get
the ratio of the delta to the height, which I then multiply by the counter j. This way, even
though j is incremented by 1 in the loop, the ratio will translate to the appropriate value
for the color component, creating a smooth, continuous gradient. Also, the reason I sub-
tract the y and x from j in both loop options is to ensure that the beginning of the gradi-
ent begins with c1, not c1 plus the value of x or y. As always, play with this sketch and
change things. I also recommend calling some println() commands and checking on the
values of variables during the for loops. When I debug my programs (which takes up too
much of my time), I am constantly calling println() with a variable name as an argument
to see how the program is working.

Next, I’ll create the radial gradient shown in Figure 10-18. (Please be patient—this sketch
can take some time to render.)

// Simple Radial Gradient
// January 12, 2006
void setup(){
size(400, 400);
background(0);
smooth();

// create a simple table of gradients
int columns = 4;
int radius = (width/columns)/2;
// create some gradients
for (int i=radius; i<width; i+=radius*2){
for (int j=radius; j<height; j+=radius*2){
createGradient(i, j, radius, ➥

color(int(random(255)), int(random(255)), int(random(255))), ➥

color(int(random(255)), int(random(255)), int(random(255))));
}

}
}

void createGradient (float x, float y, float radius, ➥

color c1, color c2){
float px = 0, py = 0, angle = 0;

// calculate differences between color components
float deltaR = red(c2)-red(c1);
float deltaG = green(c2)-green(c1);
float deltaB = blue(c2)-blue(c1);
// hack to ensure there are no holes in gradient

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

426

617xCH10.qxd 4/17/07 1:34 PM Page 426

// needs to be increased, as radius increases
float gapFiller = 8.0;

for (int i=0; i<radius; i++){
for (float j=0; j<360; j+=1.0/gapFiller){
px = x+cos(radians(angle))*i;
py = y+sin(radians(angle))*i;
angle+=1.0/gapFiller;
color c = color(➥

(red(c1)+(i)*(deltaR/radius)), ➥

(green(c1)+(i)*(deltaG/radius)), ➥

(blue(c1)+(i)*(deltaB/radius)));
set(int(px), int(py), c);

}
}
// adds smooth edge
// hack anti-aliasing
noFill();
strokeWeight(3);
ellipse(x, y, radius*2, radius*2);

}

Figure 10-18. Simple Radial Gradient sketch

COLOR AND IMAGING

427

10

617xCH10.qxd 4/17/07 1:34 PM Page 427

The radial gradient functions similarly to the linear one, except I used some trig func-
tions. The way it works is that the radius keeps increasing each iteration of the outer for
loop. The nested loop creates a circle of colored pixels at each radius length. A blend
occurs between color 1 and color 2, as it did in the linear example. I had to add some
minor “hacks,” however. Since the set() function only takes ints, not floats, I needed to
explicitly convert the px and py variables to ints with the calls int(px) and int(py). In
addition, as the pixels were drawn around each circle at the respective radii lengths, I
noticed some small (and annoying) gaps in the gradient. To compensate, I created the
gapFiller variable, which ensures that extra pixels are drawn to fill in the gaps. I look
forward to hearing from one of you on how to more elegantly solve this problem—full
bragging rights extended.

Before moving on to another approach to writing pixels, let’s look at one more less “regu-
lar” example. This example, shown in Figure 10-19, also takes some time to render.

/*
Wave Gradient
January 13, 2006
*/
size(600, 400);
background(200,200,200);
float angle = 0;
float px = 0, py = 0;
float amplitude = 30;
float frequency = 0;
float fillGap = 2.5;
color c;

for (int i=-50; i<height+50; i++){
// reset angle to 0, so waves stack properly
angle = 0;
// increasing frequency causes more gaps
frequency+=.003;
for (float j=0; j<width+50; j++){
py = i+sin(radians(angle))*amplitude;
angle+=frequency;
c = color(➥

abs(py-i)*255/amplitude, ➥

255-abs(py-i)*255/amplitude, ➥

j*(255.0/(width+50)));
// hack to fill gaps. Raise value of fillGap
// if you increase frequency
for (int filler=0; filler<fillGap; filler++){
set(int(j-filler), int(py)-filler, c);
set(int(j), int(py), c);
set(int(j+filler), int(py)+filler, c);

}
}

}

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

428

617xCH10.qxd 4/17/07 1:34 PM Page 428

Figure 10-19. Wave Gradient sketch

Hopefully this last sketch didn’t cook your computer. Between the two nested loops,
there’s a fair amount of processing. The gradient is determined by a simple sine wave with
increasing frequency; this is what gives the gradient its asymmetry. The color is deter-
mined, somewhat arbitrarily, by some simple expressions. The red component is generated
by the sine function, the green component is based on 255 (minus the value of the sine
function), and the blue component is determined by the counter j. In all three cases, the
component color values calculated by the expressions are remapped to a range of 0 to
255. Definitely mess around with some of the values, especially the color expressions and
the frequency. At the bottom of the function, the third for loop fills gaps in the gradient,
similarly to what was done in the radial gradient sketch. You can also try changing the
fillGap variable to see what happens. Using the set() function is relatively straightfor-
ward, but not the fastest way to change pixel data in Processing.

Faster pixel functions

There are three other language structures (two functions and an array) that can speed
things up. The three structures are loadPixels(), updatePixels(), and pixels[]. The
first structure, loadPixels(), creates an array of pixels (assigned to the built-in global vari-
able pixels[]) of the entire display window. The number of pixels in the display window
can be calculated by width * height. So, for example, a 400 ✕ 400 display would equal
160,000 pixels. Here’s some evidence:

size(400, 400);
loadPixels();
print(pixels.length);

COLOR AND IMAGING

429

10

617xCH10.qxd 4/17/07 1:34 PM Page 429

The pixels[] array stores each pixel as Processing’s color data type, structured in consec-
utive rows. For example, if the sketch size is 100 ✕ 100, then the 5,050th pixel
(pixels[5049]) will be close to the center point in the display window. Here’s an example
that directly changes the color of that pixel:

size(100, 100);
background(0);
loadPixels();
pixels[5050] = color(255);
updatePixels();

The Processing reference includes a very simple mathematical expression to help you tar-
get a pixel in the pixels[] array of the display window: pixels[y*width+x]. Based on this
expression, the last little sketch (shown in Figure 10-20) could be rewritten as follows:

size(100, 100);
background(0);
loadPixels();
pixels[height/2*width+width/2] = color(255);
updatePixels();

Figure 10-20. Pixels array (single white pixel) sketch

To change more than 1 pixel, a loop will help. The next example divides the display win-
dow in horizontal bands, assigning a different color to each band (see Figure 10-21):

// Color Banding with pixels[]
size(400, 400);
loadPixels();
int px = pixels.length;
int bands = 20; // should be a factor of px
color c;

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

430

617xCH10.qxd 4/17/07 1:34 PM Page 430

for (int i=0; i<bands; i++){
c = color(random(255), random(255), random(255));
for (int j=(px/bands)*i; j<px/bands*(i+1); j++){
pixels[j] = c;

}
}
updatePixels();

Figure 10-21. Color Banding with pixels[] sketch

You need to call loadPixels() prior to utilizing the pixels[] array. If you neglect to call
loadPixels(), you’ll get a null pointer error, which essentially means that you’re trying to
access something that hasn’t been created yet. After you make any changes to pixels[],
you’ll need to call updatePixels() to see your changes updated in the display window. If
you don’t call the function, you’ll neither get an error message nor see your updates.
These types of (annoying) errors are categorized as “failing silently,” which can be a royal
pain when debugging.

In the last sketch, I created the variable px to hold the length value of pixels[]. I did this
just for convenience, as px was shorter to write than pixels.length. Every array has a pub-
lic length property that is especially useful when setting the limit of a loop. For example, to
randomly assign a color to every pixel on the screen, I could do this (see Figure 10-22):

// Color Static
size(400, 400);
loadPixels();
int px = pixels.length;
color c;
for (int i=0; i<px; i++){
c = color(random(255), random(255), random(255));
pixels[i] = c;

}
updatePixels();

COLOR AND IMAGING

431

10

617xCH10.qxd 4/17/07 1:34 PM Page 431

Figure 10-22. Color Static sketch

Image manipulation

As you might suspect, the pixels[] array has better uses than creating static.
loadPixels() collects all the pixels in the window, regardless of whether the pixels make
up a single color background fill or a photographic image. The more interesting latter case
opens the door to all kinds of imaging possibilities. However, before looking at the next
sketch, let’s review how to load an image.

To work with images in Processing, you need to load them into a data directory that
resides within the current sketch directory. It’s a very simple process. Under Sketch in the
top menu bar, select the Add File command. This command opens a file browser, allowing
you to select an image to copy into the data directory. If there isn’t a data directory,
Processing will automatically create one for you. If you eventually make additional changes
to the image using a program like Photoshop, you’ll need to remember to add the altered
image to your data directory again (it’s not updated automatically). One cautionary note:
when you add an image into the data directory with the same name as an existing image,
the original image will be replaced by the image you add, without any warning. Processing
can work with GIF, JPG, TGA, and PNG images.

The following sketch (shown in Figure 10-23) loads an image (my dog Heidi) into the dis-
play window (obviously, you’ll need to change the name heidi.jpg to the image you’re
using):

// Load an Image
size(600, 400);
PImage img1;
img1 = loadImage("heidi.jpg");
image(img1, 0, 0);

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

432

617xCH10.qxd 4/17/07 1:34 PM Page 432

Figure 10-23. Load an Image sketch

Pretty painless, don’t you think? If you did run into a problem, remember that Processing
is case sensitive, so .JPG is different than .jpg. In addition, Processing can’t (easily) handle
huge files the way a program like Photoshop can, which can utilize virtual memory (mem-
ory borrowed from the hard drive). Also remember that image size and resolution are
interconnected, so just changing the size of the image’s dimensions won’t reduce its mem-
ory requirements; it will just increase the resolution of the smaller image.

If you’re working with a very large image and run into the java.lang.OutOfMemoryError,
you can try allocating more memory to Processing by selecting Preferences from the top
Processing menu. Make sure that the Set Maximum Available Memory box is selected, and
then try incrementally (and cautiously) raising the value. Processing’s default value is
512KB. To learn more about memory issues/errors in Processing, check out http://
processing.org/faq/bugs.html#memory.

Notice in the last example that I declared the variable img1 of type PImage. Similarly to
Processing’s color data type, PImage is a unique Processing data type, used to store image
data. The line img1 = loadImage("heidi.jpg"); in the example creates a PImage object.
This line didn’t actually draw the image to the screen, but constructed a PImage object
containing the relevant image data.

One of the challenges of loading images or other forms of external data is the latency, or
delay, between the input request and the data actually being loaded into the program. As
you can imagine, this delay can be substantial for large image files. Using pure Java, load-
ing images can be a bit involved, requiring structures for tracking the image data as it’s
loading—much lower-level than most of us would want to go. PImage, along with the
loadImage() function, encapsulates this entire loading process (thankfully).

COLOR AND IMAGING

433

10

617xCH10.qxd 4/17/07 1:34 PM Page 433

http://processing.org/faq/bugs.html#memory

In addition to loadImage(), you can use the image() function to actually draw the image
to the screen, as in the line image(img1, 0, 0);. The second and third arguments in the
call (0, 0) are for the x and y position of the image. Images are positioned from the top-
left corner of the image. In the last example, if I had wanted to center the image in the dis-
play window (assuming, of course, that the image was smaller than the window), I could
have used the following:

//load and center an image
size(700, 500);
PImage img1;
img1 = loadImage("heidi.jpg");
translate(width/2, height/2);
image(img1, -img1.width/2, -img1.height/2);

Since PImage is a data type (think class), it includes properties (also referred to as fields)
and methods. PImage objects have width and height properties, which I conveniently used
in calculating the image position (centered). More information about the PImage data type,
including its other fields/methods, can be found at http://processing.org/reference/
PImage.html.

In the last example, I called the image() function to display my image. set() can also be
called to load images—in this case, two copies of the same image—the same function
called earlier to change the color of a pixel (see Figure 10-24):

//Loading Images with set()
size(600, 400);
background(245);
PImage img2 = loadImage("kids.jpg");
set(50, 50, img2);
set(img2.width+100, 50, img2);

Figure 10-24. Loading Images with set() sketch

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

434

617xCH10.qxd 4/17/07 1:34 PM Page 434

http://processing.org/reference/

The image() function has an extra feature that I think makes it more useful than set() for
loading images: the ability to resize the image as you load it. The next example, shown in
Figure 10-25, tiles images in the display window using image(img, x, y, w, h). I recom-
mend using an image approximately 400 (width) ✕ 300 pixels to try the example.

//Image Tiling
size(650, 450);
PImage img2 = loadImage("heidi.jpg");
int cols = 8;
int rows = 8;
int w = width/cols;
int h = height/rows;
for (int i=0; i<height; i+=h){
for (int j=0; j<width; j+=w){
image(img2, j, i, w, h);

}
}

Figure 10-25. Image Tiling sketch

COLOR AND IMAGING

435

10

617xCH10.qxd 4/17/07 1:34 PM Page 435

Besides the set() function, it’s probably no surprise that there’s also a get() function.
get() can return the color of a single pixel, an entire PImage, or a section of a PImage. This
last case can be useful for creating a collage of image fragments (if that’s the sort of thing
you enjoy doing). Here’s an example, shown in Figure 10-26, that copies four pieces of the
image and pastes them in a stack on the right side of the display window. Please note that
your image needs to be 650 (width) ✕ 450 pixels for this example to render properly.

//Compositing
size(650, 450);
PImage img = loadImage("hong_kong.jpg");
image(img, 0, 0);
int w = width/5;
int h = height/5;
PImage[]frags = {
get(130, 140, w, h),
get(475, 220, w, h),
get(220, 300, w, h),
get(300, 205, w, h),
get(100, 250, w, h)
};

for (int i=0; i<5; i++){
image(frags[i], width-w, h*i);

}

Figure 10-26. Compositing sketch

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

436

617xCH10.qxd 4/17/07 1:34 PM Page 436

In the last example, I created an array of anonymous PImages using the get() command.
This syntax may look odd, as I’m relying on the returned values of the get() calls (which
are PImages) to populate the arrays. You’ll remember that arrays can be instantiated a few
different ways; one such way is to declare and populate the array at the same time, with
the values specified between curly braces, as illustrated in the example.

A more ambitious but interesting thing to do with get() could be to write your own
image-encrypting sketch. The simple encryption procedure will collect the image as
sequential fragments and then re-create the image, reordering the image. I’ll keep it really
simple and just reverse the order of the fragments. You need to use an image of 600
(width) ✕ 400 pixels to run the example (see Figure 10-27):

//Simple Image Encryption
int ENCRYPTION_LOW = 0;
int ENCRYPTION_MEDIUM = 1;
int ENCRYPTION_HIGH = 2;
int ENCRYPTION_VERY_HIGH = 3;

void setup(){
size(600, 400);
PImage img = loadImage("changsha.jpg");
image(img, 0, 0);

// call the fragment function
fragment(ENCRYPTION_HIGH);

}

void fragment(int encryptionLevel){
int fragW = 0;
int fragH = 0;
int frags = 0;
// set size of blocks
switch(encryptionLevel){

case 0:
fragW = width/2;
fragH = height/2;
frags = 4;
break;
case 1:
fragW = width/4;
fragH = height/4;
frags = 16;

break;
case 2:
fragW = width/8;
fragH = height/8;
frags = 64;

break;
case 3:

COLOR AND IMAGING

437

10

617xCH10.qxd 4/17/07 1:34 PM Page 437

fragW = width/10;
fragH = height/10;
frags = 100;

break;
}

// fill array with image blocks
PImage[]imgs = new PImage[frags];
int fragCounter = 0;
for (int i=0, ii=0; i<width; i+=fragW, ii++){
for (int j=0, jj=0; j<height; j+=fragH, jj++){
imgs[fragCounter++] = get(i, j, fragW, fragH);

}
}
// call encryption function
encrypt(imgs);

}

//encrypt
void encrypt(PImage[]imgs){
PImage[]imgs2 = new PImage[imgs.length];
for (int i=imgs.length-1; i>=0; i--){
// reverse fragment order
imgs2[abs(i-(imgs.length-1))] = imgs[i];

}
update(imgs2);

}

// repaint Display window
void update(PImage[]imgs){
//reset counter
int counter = 0;
//reassemble image
for (int i=0; i<width; i+=imgs[0].width){
for (int j=0; j<height; j+=imgs[0].height){
image(imgs[counter], i, j);
counter++;

}
}

}

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

438

617xCH10.qxd 4/17/07 1:34 PM Page 438

Figure 10-27. Simple Image Encryption sketch

This is actually a pretty dopey encryption, but hopefully it sparks some ideas. Also, the
encryption fragmentation is based on the 600 ✕ 400 format. If you change that, you’ll
likely get an “array out of bounds” error. The basic encryption works by cutting the image
into fragments that are used to create an array of PImages of all the fragments. At that
point, you could write any sorting algorithm you’d like to encrypt (reorder) the fragments.
I simply reversed the order with the following expression:

imgs2[abs(i-(imgs.length-1))] = imgs[i];

The function abs() always returns a positive value, allowing me to load the image frag-
ments in imgs[] in reverse order into imgs2[]. Upon reviewing the code, If you have
trouble seeing why this works, run the following line in the for loop within the encrypt
function:

println("i = "+i+", abs(i-(imgs.length-1)) = " + ➥

abs(i-(imgs.length-1)));

One minor caution—if you’re on an older computer (sorry), be careful running the
VERY_HIGH option, it might take a while.

If you’ve been looking through the imaging section of the Processing reference, you may
have found some commands with duplicate names. For example, if you click on the
PImage link, you’ll see that a number of the method names are the same as function
names grouped under the Pixels heading in the language reference. The commands are
actually different, although functionally they do some similar things. Here’s how to keep
this stuff all straight.

COLOR AND IMAGING

439

10

617xCH10.qxd 4/17/07 1:34 PM Page 439

Display window functions
The commands grouped under the Pixels heading of the language reference are functions
that affect the pixels in the display window, regardless of whether those pixels make up a
background color or an image. The pixels[] array specified under this heading is the
array that holds all the pixels making up the display window (again, regardless of what’s
in it).

PImage methods
The PImage data type also has a pixels[] array property that is assigned the pixels making
up the created PImage object. When invoking a method of the PImage class, you use a
PImage object reference attached to the property or method with dot syntax. For example,
to set a pixel of a PImage named img, you would write img.set(). In contrast, to set a pixel
in the display window, you would just use set(). The situation can seem even more con-
fusing once img (the PImage object) is drawn to the screen. At that point, the image data
becomes part of the display window, which gets collected in the window’s pixels[] array.
However, img still retains its original pixel data in memory (in its own img.pixels[] array).

The next sketch, shown in Figure 10-28, uses the PImage method get() to create a pixi-
lated image. The variable detail allows you to change the level of pixilation. The original
PImage is never drawn to the screen, but rather the internal image is used for picking color
values with the PImage get() method. The picked color values are then used to create a
matrix of colored rectangles approximating the image. If you bring the level of detail down
to (or near) 1, the colored rectangles will approximate a continuous tone image; you’ll also
want to uncomment the line //noStroke();. I recommend using an image the same size
as the display window.

//Pixilate
size(600, 400);
PImage img = loadImage("changsha.jpg");
//noStroke();
int detail = 10;
for (int i=0; i<width; i+=detail){
for (int j=0; j<height; j+=detail){
color c = img.get(i, j);
fill(c);
rect(i, j, detail, detail);

}
}

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

440

617xCH10.qxd 4/17/07 1:34 PM Page 440

Figure 10-28. Pixilate sketch

The next sketch loads two copies of an image into the display window and increases the
right image’s red saturation. Remember, the loadPixels() function call collects the dis-
play window pixel data, assigning it to the display window pixels[] array (not the
img.pixels[] array). After making some changes to the pixels[] array, I need to call
updatePixels() to have the changes actually updated within the display window. In the
example, I’m using a 400 ✕ 400 pixel image and an 800 ✕ 400 pixel display window (see
Figure 10-29):

//Red Saturation
size(800, 400);
PImage img = loadImage("hong_kong.jpg");
image(img, 0, 0);
image(img, width/2, 0);
int threshold = 125;
loadPixels();
for(int j=0; j<height; j++){
for(int i=(width/2+j*width); i<width+j*width; i++){
if (red(pixels[i])>threshold){
pixels[i] = color(255, green(pixels[i]), blue(pixels[i]));

}
}

}
updatePixels();

COLOR AND IMAGING

441

10

617xCH10.qxd 4/17/07 1:34 PM Page 441

Figure 10-29. Red Saturation sketch

An easier way to add a tint or color overlay to an image is to use Processing’s tint() func-
tion. The function requires a color argument, which can be specified five different ways:
gray, with or without alpha; RGB or RGBA color; or a single color value, using Processing’s
color data type. In the next example, shown in Figure 10-30, I used an image the same size
as the display window (600 ✕ 400 pixels):

// Tint()
size(600, 400);
PImage img = loadImage("highway.jpg");
image(img, 0, 0);
int tintAlpha = 255;

int[][]cols = {
{255, 0, 0, tintAlpha}, {255, 255, 0, tintAlpha},
{0, 0, 255, tintAlpha}, {0, 255, 0, tintAlpha},
{255, 0, 255, tintAlpha}, {255, 127, 0, tintAlpha}

};

int columns = 3;
int w = width/columns;
int h = cols.length;

for (int i=0; i<h; i++){
tintAlpha = 255;
for (int j=0; j<w; j++){
tint(color(cols[i][0], cols[i][1], cols[i][2], tintAlpha));
image(img, j*w, i*height/h, w, height/h);
tintAlpha-=(255/columns);

}
}

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

442

617xCH10.qxd 4/17/07 1:34 PM Page 442

Figure 10-30. Tint sketch

Speeding things up with bitwise operations

You might have noticed that this last sketch took some time to render (or maybe your
computer is faster than mine). There is a faster, albeit lower-level, way to manipulate the
individual color components packed inside the color data type. The color data type com-
bines the individual color components alpha, red, green, and blue into 32 bits of data. The
structure of the color data type looks like this: AAAAAAAARRRRRRRRGGGGGGGG-
BBBBBBBB. Of course, the letters would be replaced by zeros and ones, depending on the
color specified. For example, run the following sketch to see the bit string for blue:

color c = color(0, 0, 255);
println(binary(c));

In the sketch output, the alpha and blue bits are all ones, since I specified maximum value
for blue (255), and alpha is 255 by default. Likewise, the red and green bits are all zeros,
per the original color value I set—color(0, 0, 255).

Bitwise operations allow you to directly manipulate the bits, shifting and even doing
simple mathematical operations on them. Bitwise operations are not for everyone, so
don’t fret if you can’t deal with this approach. However, it’s good to know that the possi-
bility exists, and they are quite speedy. I provide a detailed overview of bitwise operations
in Appendix B, so you might want to read that before trying these next few sketches. If,
however, you just want to use bitwise operations with a limited understanding of how they
actually work, here’s the highly abridged “recipe” version:

COLOR AND IMAGING

443

10

617xCH10.qxd 4/17/07 1:34 PM Page 443

To access the red, green, blue, and alpha components from a color c, use the following
syntax:

int a = c >> 24 & 0xFF;
int r = c >> 16 & 0xFF;
int g = c >> 8 & 0xFF;
int b = c & 0xFF;

To combine the individual color components back into a color, use:

// combine components back into a 32-bit integer
c = (a << 24) | (r << 16) | (g << 8) | b;

This next sketch combines the two steps, filling the top and bottom of the sketch window
with a color manipulated using bitwise operations:

// bitwise operations
size(200, 300);
noStroke();
color c = color(45, 120, 96);

// fill top of window
fill(c);
rect(0, 0, width, height/2);

// get color components
int r = c >> 16 & 0xFF;
int g = c >> 8 & 0xFF;
int b = c & 0xFF;
int a = c >> 24 & 0xFF;

// alter component values
r += 100;
g -= 50;
b += 100;

// combine components back into a 32-bit integer
c = (a << 24) | (r << 16) | (g << 8) | b;

// fill bottom of window
fill(c);
rect(0, height/2, width, height/2);

Here’s an example of tinting an image using bitwise operations (shown in Figure 10-31).
I used an image the same size as the display window (600 ✕ 400 pixels).

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

444

617xCH10.qxd 4/17/07 1:34 PM Page 444

/* Tint (using bitwise operations)
Created January 18, 2006
updated December 4, 2006 */
size(600, 400);
PImage img = loadImage("changsha2.jpg");
PImage img2 = createImage(img.width, img.height, RGB);
// copy pixels array from img to img2
arraycopy(img.pixels, img2.pixels);
int r, g, b, a;
int row = height/6;

for(int i=0; i<width*height; i++){
// get untinted component values
r = img2.pixels[i] >> 16 & 0xFF;
g = img2.pixels[i] >> 8 & 0xFF;
b = img2.pixels[i] & 0xFF;
a = img2.pixels[i] >> 24 & 0xFF;

// tint based on height in display window
if (i<width*row){
r =255;

} else if (i>width*row && i<width*row*2){
r = 255;
g = 255;

} else if (i>width*row*2 && i<width*row*3){
b = 255;

} else if (i>width*row*3 && i<width*row*4){
g = 255;

} else if (i>width*row*4 && i<width*row*5){
r = 255;
b = 255;

} else {
r = 255;
g = 127;

}

// combine components back into a 32-bit integer
img2.pixels[i] = (a << 24) | (r << 16) | (g << 8) | b;

}
// draw images
image(img, 0, 0);
image(img2, width/2, 0);

COLOR AND IMAGING

445

10

617xCH10.qxd 4/17/07 1:34 PM Page 445

Figure 10-31. Tint sketch (using bitwise operations)

Again, let me stress the fact that you do not need to use bitwise operations in Processing.
The Processing functions red(c), green(c), blue(c), and alpha(c) also return the indi-
vidual color component values. However, once you get past the strange bitwise syntax
(i.e., >> 16 & 0xFF), you’ll realize they are relatively easy to use, and again, fast.

The last sketch utilized two PImages; the first was created with the line

PImage img = loadImage("changsha2.jpg");

which is the syntax I looked at earlier to create a PImage based on a loaded image. The sec-
ond PImage was created with the following line:

PImage img2 = createImage(img.width, img.height, RGB);

This is the syntax to use when you want to create a PImage, but initially only specify its size
and color format. Notice that I specified the size of the second PImage using the width and
height properties of the first PImage, ensuring that both images were the same size.

As you may remember, every PImage includes a pixels[] array that contains all the color
values in the image. Once I created the second PImage, I copied the pixels[] array from
the first PImage into the second using Processing’s arrayCopy(src, dest) function.

This is a pretty handy function that you need to use to copy arrays. You can’t simply copy
an array using syntax like array1 = array2, which only works for primitive types, such as
int1 = int2. Arrays and objects are reference types. You may remember from earlier in

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

446

617xCH10.qxd 4/17/07 1:34 PM Page 446

the book that a primitive type is directly assigned a specific value (e.g., int i = 1;), but a
reference type is internally assigned an address in the computer’s memory where the
object is stored. Thus, the syntax array1 = array2 makes the two array variables point to
the same place in the computer’s memory (where the array is stored)—generally not what
you want to do. This is a fairly advanced topic, but something you do need to be aware of.
I cover variables in detail in Chapter 3.

There are a lot of other interesting things you can do using bitwise operations. Here’s a
sketch, shown in Figure 10-32, that changes the contrast of an image (I used a 400 ✕ 400
pixel image for the example).

/* Contrast (using bitwise operations)
created January 18, 2006
updated December 4, 2006 */

size(800, 400);
PImage img = loadImage("harbor.jpg");
PImage img2 = createImage(img.width, img.height, RGB);
arraycopy(img.pixels, img2.pixels);

float threshold = 127.5;
float contrast = .5; // pos or neg values
loadPixels();
for(int i=0; i<img.width * img.height; i++){
// separate out component color values
int r = img2.pixels[i] >> 16 & 0xFF;
int g = img2.pixels[i] >> 8 & 0xFF;
int b = img2.pixels[i] & 0xFF;
int a = img2.pixels[i] >> 24 & 0xFF;

// red
r = int(r*(1.0 + (contrast)*((r-threshold)*.01)));
r = constrain(r, 0, 255);

// green
g = int(g*(1.0 + (contrast)*((g-threshold)*.01)));
g = constrain(g, 0, 255);

// blue
b = int(b*(1.0 + (contrast)*((b-threshold))*.01));
b = constrain(b, 0, 255);

// combine components back into a 32-bit integer
img2.pixels[i] = (a << 24) | (r << 16) | (g << 8) | b;

}
//draw images
image(img, 0, 0);
image(img2, width/2, 0);

COLOR AND IMAGING

447

10

617xCH10.qxd 4/17/07 1:34 PM Page 447

Figure 10-32. Contrast sketch (using bitwise operations)

This is a fairly simple contrast implementation that calculates the difference between the
color component value and some threshold—in this case, the midpoint of the 255-value
color range (127.5). This value is multiplied by a contrast value and then added to 1;
the color component is then multiplied by this number. So, for example, if the threshold/
contrast expression value evaluates to 1.2, and the color component value is 150, it will
become 180. The reason I subtract the threshold from the component is to generate a
nice gradient of values so that the contrast shift will be smooth. For example, a color in the
mid-range (e.g., 129) would be affected very little (multiplied by 1.00225). However, colors
approaching 0 or 255 would be more intensely affected (e.g., an initial component value
of 240, using .15 as the value of the contrast variable, would become 280.5). The differ-
ence in values between the most minimal changes and the most severe would be across a
gradient proportional to the difference between the component’s original value and the
threshold.

In the example, I was also forced to convert the calculated contrast values from type float
to type int so that I could assign them back to the color component variables, declared as
type int. Finally, I used Processing’s constrain() function, which sets a minimum and
maximum for a value. Since my component values needed to stay within the range of 0 to
255, I clipped them if they exceeded these limits. With a starting value of 240 and a con-
trast value of .15, the calculated value 280.5 would get constrained to 255. You can try
commenting out the constrain() function calls to see what happens when the values do
go out of range; it can be visually interesting. I’ll finish up this section by looking some
more at Processing’s built-in imaging and filtering capabilities.

Imaging filters

Processing’s PImage class has a method called mask() that allows you to use either an
image or a pixel array to mask out part of an image. The mask image should be grayscale.
(You can use an RGB image, but only the blue channel of the image will be used as the
mask.) My suggestion is to convert your mask image to grayscale before using it.

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

448

617xCH10.qxd 4/17/07 1:34 PM Page 448

The mask works like an alpha channel. A value of 0 (black) will conceal the image pixel,
while a value of 255 (white) will fully reveal the image pixel. Values between 0 and 255 will
display the masked pixels in the image with varying degrees of translucency. In the next
sketch, I used one image to mask out the sky area of another image, allowing the display
window background color to show through (where the 0 values of the mask pixels are). I
made the sky-shaped mask image from the original image, which I was able to select and
convert using Photoshop. In the two example images, the first image uses a 100 percent
black sky mask, while the second uses a linear gradient from black (top of the sky) to white
(bottom of the sky). The two images I used were both 600 ✕ 480 pixels (see Figures 10-33
and 10-34):

// Mask the Sky
size(600, 480);
background(185, 185, 250);
PImage img = loadImage("harbor2.jpg");
PImage mask = loadImage("harbor2_mask.jpg");
img.mask(mask);
image(img, 0, 0, 600, 480);

Figure 10-33. Mask the Sky sketch

COLOR AND IMAGING

449

10

617xCH10.qxd 4/17/07 1:34 PM Page 449

Figure 10-34. Mask the Sky with Gradient sketch

When using a pixel array mask instead of an image, the pixel array size should be the same
length (number of pixels) as the image you’re masking, which means that if your image is
600 ✕ 400, your pixel array should have a length of 240,000 (image width ✕ image height).
Pixel array masks are a very cool feature in Processing that are a little hard to understand
at first. Besides providing the ability to create interesting collaged effects, they can also be
used to generate a dynamic mask at runtime. In the next example, shown in Figure 10-35,
I’ll create a pixel array mask composed of 2,000 random rectangles. The image you use
needs to be the same dimensions as the display window.

// Pixel Array Mask
size(600, 400);
// set background--the blue channel
// contributes to pixel mask
background(180, 90, 50);

//load but don't display image
PImage img = loadImage("changsha.jpg");

// create a mask composed of rectangles
fill(255);
for (int i=0; i<2000; i++){

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

450

617xCH10.qxd 4/17/07 1:34 PM Page 450

rect(random(width), random(height), 5+random(15), 5+random(15));
}
// build pixel array of the screen
loadPixels();

// set mask
img.mask(pixels);

//draw image
image(img, 0, 0, 600, 400);

Figure 10-35. Pixel Array Mask sketch

Since you can collect the pixels in the display window using loadPixels(), you can gener-
ate a mask with any of Processing’s drawing functions, which is exactly what I did in this
example. Using the rect() command, I created 600 rectangles with a fill of 255, and then
I called loadPixels(), which created a pixel array of the image. If you specify an RGB fill
value, the mask utilizes the value of the blue color component of the pixels. You can also
specify a grayscale value with a single argument when calling the fill or background func-
tion. 0 (black) will be opaque, while 255 (white) will be totally transparent. Values between
0 and 255 will have varying translucency. In the example, I set the blue component in the
background color to 50, giving the pixel mask some overall slight translucency, allowing
the image to show through the background color a little. I gave the rectangles a fill of 255,
fully revealing parts of the image through the little rectangle windows. If you’re still not
getting this, try changing some of the values and playing with the code—it’s the best way
to really understand what’s happening.

COLOR AND IMAGING

451

10

617xCH10.qxd 4/17/07 1:34 PM Page 451

blend() and filter()
There are two other powerful Photoshop-esque imaging functions in Processing’s toolbox:
blend() and filter(). These functions each do so much that they could easily have been
divided into a bunch of separate functions. They’re built upon some very low-level
coding—mostly using bitwise operations—and were developed as a group effort, with
considerable contributions by Karsten Schmidt (a.k.a. toxi) (www.toxi.co.uk/) and Mario
Klingemann (www.quasimondo.com/). If you’d like to take a look at the actual source
code implementation (to better appreciate toxi and Klingemann’s efforts), check out
Processing’s PImage class at http://dev.processing.org/source/index.cgi/trunk/
processing/core/src/processing/core/PImage.java?view=markup.

I do, however, have some (small) misgivings about these functions being included in
Processing, as they so deeply encapsulate very low-level processing, and—not unlike
Photoshop—can become easy targets for fast, uninformed effects. In this sense, I feel their
ease of use and power actually have the potential to limit creativity. For example, here’s a
sketch that uses the filter function to invert an image (see Figure 10-36). Please remember
to add an image into your data directory for all the examples prior to using loadImage(),
as in the previous examples.

// INVERT Filter
// image should be 600 x 400 pixels
size(600, 400);
background(255);
PImage img = loadImage("view.jpg");
image(img,0,0);
filter(INVERT);

Figure 10-36. INVERT Filter sketch

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

452

617xCH10.qxd 4/17/07 1:34 PM Page 452

http://dev.processing.org/source/index.cgi/trunk/

This last sketch couldn’t be simpler. The INVERT argument inverts the pixel color compo-
nent values. However, that’s all you can do with it. Now, let’s implement our own custom
invert filter. Inverting the color component value is as simple as subtracting 255 from each
component. However, doing that will also generate a negative value or 0. I want positive
color component values in the range of 0 to 255, so I need to remove the negative sign.
Two simple ways to do that would be to multiply each value by –1, or use Processing’s
abs() function, which returns the absolute value of the argument.

//custom invert--version 1
// image should be 600 x 400 pixels
size(600, 400);
background(255);
PImage img = loadImage("view.jpg");
image(img, 0, 0);
loadPixels();

for (int i=0; i<pixels.length; i++){
// separate out and invert component color values
int r = abs((pixels[i] >> 16 & 0xFF)-255);
int g = abs((pixels[i] >> 8 & 0xFF)-255);
int b = abs((pixels[i] & 0xFF)-255);
int a = pixels[i] >> 24 & 0xFF;

pixels[i] = (a << 24) | (r << 16) | (g << 8) | b;
}
updatePixels();

This sketch should mimic, in output, the earlier sketch that used Processing’s
filter(INVERT) function. I should also mention that the preceding sketch could be con-
densed by using a different bitwise operator, ^, which I believe is how it’s actually inter-
nally implemented in Processing. Here’s the condensed, albeit denser, version. I won’t
spend more time explaining the bitwise stuff here—but remember that I cover it in detail
in Appendix B if you want more info.

//custom invert--version 2
// condensed verison
// image should be 600 x 400 pixels
size(600, 400);
background(255);
PImage img = loadImage("view.jpg");
image(img, 0, 0);
loadPixels();
for (int i=0; i<pixels.length; i++){
pixels[i] ^= 0xFFFFFF;

}
updatePixels();

COLOR AND IMAGING

453

10

617xCH10.qxd 4/17/07 1:34 PM Page 453

And if you really can’t stand the bitwise stuff, you can also use the color component func-
tions, which although not as efficient, get the job done:

//custom invert--version 3
// image should be 600 x 400 pixels
size(600, 400);
background(255);
PImage img = loadImage("view.jpg");
image(img, 0, 0);
loadPixels();

for (int i=0; i<(width*height); i++){
// separate out and invert component color values
int r = abs(int(red(pixels[i]))-255);
int g = abs(int(green(pixels[i]))-255);
int b = abs(int(blue(pixels[i]))-255);
int a = int(alpha(pixels[i]));

pixels[i] = color(r, g, b, a);
}
updatePixels();

So you might ask at this point, “Why would anyone (in their right mind) want to do all this
customizing, when you can get the same bang for a whole lot less buck using the prebuilt
function?” Using Processing’s filter(INVERT) function, you will always get the same con-
sistent result. This is not necessarily a bad thing, as it’s convenient to be able to quickly and
reliably invert pixels. However, what if, in inverting the pixels, you begin to digressively
wonder (as artists tend to do), “What would happen if, rather than inverting the pixels, I
did something else to them?” A Photoshop user might then go back to the pull-down
menu and look for other cool pre-made effects. However, as a creative coder, I’m not
really looking for a quick answer. Rather, I’m engaged in a search process that hopefully
will to lead to discovering a yet untraveled aesthetic path. When you have a toolbox of
canned effects, no matter how good, it can be pretty hard to find untrodden territory. This
is not to imply you should avoid filters. I’m just suggesting taking the time to learn how
some of these effects work programmatically, under the hood. Starting with the custom
invert sketch, here’s a variation that creates a smooth gradient between a negative and
positive image. I used a 300 ✕ 400 pixel photo (of yours truly engaged in rocket science)
for this sketch (see Figure 10-37):

// From Neg to Pos
size(300, 400);
background(255);
PImage img = loadImage("research.jpg");
image(img, 0, 0);
loadPixels();

float invertFactor = 255.0;
for (int i=0; i<pixels.length; i++){

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

454

617xCH10.qxd 4/17/07 1:34 PM Page 454

// separate out and invert component color values
float r = abs(red(pixels[i])-invertFactor);
float g = abs(green(pixels[i])-invertFactor);
float b = abs(blue(pixels[i])-invertFactor);
// put pixel back together
pixels[i] = color(r, g, b);

// each row interval decrements invertFactor
if (i>0 && i% width==0){
invertFactor-=(255.0/height);

}
}
updatePixels();

Figure 10-37. From Neg to Pos sketch

Besides showcasing a custom invert filter, this last sketch demonstrated another example
of the usefulness of the modulus operator:

if (i>0 && i% width==0){

By dividing i by the display window width and checking for a 0 remainder, I ensured that
the variable invertFactor would only be decremented per each row of pixels, giving me
a smooth gradation down the image.

COLOR AND IMAGING

455

10

617xCH10.qxd 4/17/07 1:34 PM Page 455

I guess you’ve done enough under-the-hood gazing. Without further interruption, here are
the rest of Processing’s filters and blends, shown in Figures 10-38 through 10-42:

// THRESHOLD Filter
// filter(THRESHOLD, float threshold level)
// image should be 200 x 200 pixels

size(800, 200);
PImage img = loadImage("moonshadow.jpg");
float thresholdLevel = 1.0;
for (int i=0; i<4; i++){
image(img, 200*i, 0, 200, 200);
filter(THRESHOLD, thresholdLevel);
thresholdLevel-=.25;

}

Figure 10-38. THRESHOLD Filter sketch

The THRESHOLD argument converts the image pixels to black or white depending on
whether their value is below or above a threshold level. The threshold level is between 0.0
and 1.0. For example, if the level is .5, then pixels whose values are above 255/2 would be
turned white, and those below turned black. The second threshold level argument is
optional; if omitted, Processing uses .5 as the default value. One final subtle point is that
the value of the pixel is determined by the highest component value, not an average of the
component values. So the value of color(200, 90, 10) would evaluate to 200, not 100.

// GRAY Filter
// filter(GRAY)
// image should be 600 x 450 pixels
size(600, 450);
PImage img = loadImage("changsha2.jpg");
image(img, 0, 0);
filter(GRAY);

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

456

617xCH10.qxd 4/17/07 1:34 PM Page 456

Figure 10-39. GRAY Filter sketch

The GRAY filter argument should be pretty self-explanatory—colored images are converted
to grayscale. There are no additional optional arguments.

// POSTERIZE Filter
// filter(POSTERIZE, int colorLevels);

// image should be 200 x 200 pixels
size(1000, 200);
background(255);
PImage img = loadImage("moonshadow.jpg");
int cols = 5;
int w = width/cols;
int h = height;
int[]vals = {2, 4, 8, 16, 32};
for (int i=0; i<cols; i++){
image(img, i*w, 0, w, h);
filter(POSTERIZE, vals[i]);

}

COLOR AND IMAGING

457

10

617xCH10.qxd 4/17/07 1:34 PM Page 457

Figure 10-40. POSTERIZE Filter sketch

The POSTERIZE argument converts the number of colors per each of the RGB components
to a new level based on a required second-level argument. This argument must be in the
range 2 to 255. As of this writing, the POSTERIZE option is not fully stable. While testing the
function, I got numerous color values out of range, especially when I utilized a level argu-
ment that didn’t factor into 256. Hopefully this issue will be resolved by the time you’re
reading this.

// BLUR Filter
// filter(BLUR, int radius);

// image should be 200 x 200 pixels
size(1000, 200);
PImage img = loadImage("moonshadow.jpg");
int cols = 5;
int w = width/cols;
int h = height;

// cumulative blur
for (int i=0; i<cols; i++){
image(img, i*w, 0, w, h);
filter(BLUR);

}

Figure 10-41. BLUR Filter sketch

The BLUR argument generates a Gaussian blur based on the value of a second radius argu-
ment passed to filter(BLUR, int radius). If no second argument is included, Processing
uses a default value of 1 for the blur radius. In the sketch example, you’ll notice that the
image (of my cat Moonshadow) is blurred progressively more as you move from right to
left. Since no blur radius argument was used, a radius value of 1 was internally set for all
five calls within the loop. Since the effect happens to all the pixels in the display window
cumulatively, the older images (on the left) get blurred over and over again. When the blur

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

458

617xCH10.qxd 4/17/07 1:34 PM Page 458

radius is set high, the blurring can be severe. For example, here’s a very blurry image of my
dog Heidi (please note that this sketch can take some time to render—and of course, no
harm came to Heidi during the blurring process):

// Severe BLUR Filter
// image should be 600 x 400 pixels
size(600, 400);
background(255);
PImage img = loadImage("heidi.jpg");
image(img, 0, 0);
filter(BLUR, 10);

Figure 10-42. Severe BLUR Filter sketch

One final word of caution about the BLUR argument: it takes progressively more time to
render as you increase the radius argument, and no exception (compiler error) is thrown
for ridiculously large numbers, so be careful.

The final filter mode is OPAQUE, which I won’t bother covering as it simply ensures that the
alpha component of each of the pixels is at 100 percent.

blend()
Processing’s blend() function, similarly to filter(), is chock-full of features. One point of
potential confusion to beginning coders (as well as some more experienced folks, includ-
ing myself at one point) is that there are two blend() commands within Processing. One
lives as a PImage method and the other as a display window function; both also work
similarly.

COLOR AND IMAGING

459

10

617xCH10.qxd 4/17/07 1:34 PM Page 459

One way of keeping the two commands distinct is to consider the display window function
blend() as a blend involving a background image. Processing’s background() command
can take either a color value argument or a PImage argument. If you use an image argu-
ment, the image must be the same size as the display window.

Here’s a sketch that loads an image into the background:

/* image needs to be the same size as the display
window and reside in the sketch's data directory */

size(600, 400);
background(loadImage("heidi.jpg"));

The PImage blend() method is used to blend two different PImages together (or one into
itself). One other note, especially for users of early beta versions of Processing: to blend
two colors, use Processing’s blendColor() or lerpColor() commands, which are covered
earlier in this chapter. More information about these commands can also be found within
the language reference, in the Creating & Reading subsection under the Color heading.

The blend() commands (both the function and PImage method) come in two forms:

blend(srcImg, sx1, sy1, swidth, sheight, dx1, ➥

dy1, dwidth, dheight, mode);
blend(sx1, sy1, swidth, sheight, dx1, dy1, ➥

dwidth, dheight, mode);

The only difference between the two forms is that the first version includes a PImage
argument.

The arguments sx1, sy1, swidth, and sheight specify the coordinates of the source image
to be used in the blend. The source image can be a section of the image or the entire
image.

The next four arguments, dx1, dy1, dwidth, and dheight, specify the coordinates of the
final (or destination) image. These values can be the size of the entire display window or a
section of it.

In the next two sketch examples, I’ll create a simple blend, keeping both the source and
destination coordinate values the same as the display window size. The first example uses
the blend() function, and the second uses the PImage blend() method. Both sketches use
the version of the blend() call that includes a PImage argument, and also include the value
DARKEST as the final (mode) argument. I only include one screenshot (see Figure 10-43), as
the two sketches have identical output.

// blend() Function Example sketch
// background image and PImage should both be 300 x 400 pixels
size(300, 400);
background(loadImage("airport.jpg"));
PImage img = loadImage("towers.jpg");
blend(img, 0, 0, 300, 400, 0, 0, 300, 400, DARKEST);

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

460

617xCH10.qxd 4/17/07 1:34 PM Page 460

// blend() PImage Method sketch
// both PImages should be 300 x 400 pixels
size(300, 400);
PImage img1 = loadImage("airport.jpg");
PImage img2 = loadImage("towers.jpg");
img2.blend(img1, 0, 0, 300, 400, 0, 0, 300, 400, DARKEST);
image(img2, 0, 0);

Figure 10-43. Simple blend() sketch

Notice in the first sketch code (the function version of blend()), I didn’t need to explicitly
call image() to draw the blended image to the screen; while in the second example, which
uses the PImage method version of blend(), I did need to call image() to see the blended
image.

In the next two sketches, I’ll reuse the last blend() function example, changing the source
image coordinates in the first example and then the destination image coordinate values
in the second (see Figures 10-44 and 10-45):

COLOR AND IMAGING

461

10

617xCH10.qxd 4/17/07 1:34 PM Page 461

// blend() Function with Altered Source Image Coordinates
// background image and PImage should be 300 x 400 pixels
size(300, 400);
background(loadImage("airport.jpg"));
PImage img = loadImage("towers.jpg");
blend(img, 0, 300, 300, 10, 0, 0, 300, 400, DARKEST);

Figure 10-44. blend() Function with Altered Source Image Coordinates
sketch

// blend() Function with Altered Destination Image Coordinates
// background image and PImage should be 300 x 400 pixels
size(300, 400);
background(loadImage("airport.jpg"));
PImage img = loadImage("towers.jpg");
blend(img, 0, 0, 300, 400, 0, 200, 300, 200, DARKEST);

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

462

617xCH10.qxd 4/17/07 1:34 PM Page 462

Figure 10-45. blend() Function with Altered Destination
Image Coordinates sketch

In the blend() Function with Altered Source Image Coordinates example, I set the y coor-
dinate of the source image to 300 and the height of the source image to 10. You can think
of this as copying a segment (specified by these source coordinates) of the image and then
stretching this segment to fit the destination coordinates, which I set to the full size of the
display window.

In the second example, I made the source coordinates the size of the display window, but
made the destination coordinates only include the bottom half of the display window.

Besides the source and destination coordinates, the blend() method also requires a mode
argument. I specified DARKEST in the last examples, but there are a few others as well.

The blend() modes include BLEND, ADD, LIGHTEST, SUBTRACT, and DARKEST. The math
behind these modes involves, as you might suspect, bitwise operations. The Processing ref-
erence lists the blending expressions as follows:

BLEND: Linear interpolation of colors: C = A * factor + B

SUBTRACT: Subtractive blending with black clip: C = max(B – A * factor, 0)

ADD: Additive blending with white clip: C = min(A * factor + B, 255)

DARKEST: Only the darkest color succeeds: C = min(A * factor, B)

LIGHTEST: Only the lightest color succeeds: C = max(A * factor, B)

COLOR AND IMAGING

463

10

617xCH10.qxd 4/17/07 1:34 PM Page 463

C is the blended value, and A and B represent the two colors to blend. Processing’s min()
and max() functions return the lowest and highest argument values, respectively. These
functions are useful for clipping out-of-range values. For example, if one of the arguments
passed to the SUBTRACT mode is less than 0, the max() function will return the 0 argument.
All other in-range values will be returned. The “factor” specified in the preceding expres-
sions is based on the alpha component of the source pixel, which is represented by the
first 8 bits (from the left) of the 32-bit integer representing the pixel color. These leftmost
bits are also referred to as the highest byte. Fortunately, you don’t have to worry about the
internal implementation to use the blend() function.

Next are examples using SUBTRACT mode (shown in Figures 10-46, 10-47, and 10-48). I’ll
continue to use the same airport.jpg and towers.jpg images as in the preceding
DARKEST examples.

size(300, 400);
background(loadImage("airport.jpg"));
PImage img = loadImage("towers.jpg");
blend(img, 0, 0, 300, 400, 0, 0, 300, 400, SUBTRACT);

Figure 10-46. blend() Function Using SUBTRACT Argument sketch

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

464

617xCH10.qxd 4/17/07 1:34 PM Page 464

The next sketch utilizes some for loops to dynamically change the destination coordi-
nates, creating an interesting patterned abstraction:

size(300, 400);
background(loadImage("airport.jpg"));
PImage img = loadImage("towers.jpg");
int w = width/6;
int h = height/8;

for (int i=0; i<width; i+=w){
for (int j=0; j<height; j+=h){
blend(img, 0, 0, width, height, i, j, w, h, SUBTRACT);

}
}

Figure 10-47. blend() Function Using SUBTRACT Argument in
Loops sketch

COLOR AND IMAGING

465

10

617xCH10.qxd 4/17/07 1:34 PM Page 465

The next sketch builds upon the last, adding random source coordinates:

/* blend() Function Using SUBTRACT
with Random Source Coodinates */

size(300, 400);
background(loadImage("airport.jpg"));
PImage img = loadImage("towers.jpg");
int w = width/12;
int h = height/16;

for (int i=0; i<width; i+=w){
for (int j=0; j<height; j+=h){
// arguments need to be integers
int srcX = int(random(width-w));
int srcY = int(random(height-h));
int srcW = int(random(w));
int srcH = int(random(h));
blend(img, srcX, srcY, srcW, srcH, i, j, w, h, SUBTRACT);

}
}

Figure 10-48. blend() Function Using SUBTRACT with Random
Source Coordinates sketch

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

466

617xCH10.qxd 4/17/07 1:34 PM Page 466

In the last example, I used Processing’s random() function to vary the size of the source
segments. Notice that when the segments were very small they became highly pixilated
when blown up in the destination image.

The other blend modes work similarly to SUBTRACT; just substitute a different mode for
SUBTRACT in the blend() call in the last example to see the difference.

Saving a file

Here’s one last blend() example (shown in Figure 10-49) using the LIGHTEST mode. I
structured this sketch using the PImage blend() method form and reversed the order of
the two images. I also threw in Processing’s cool save() function.

/* PImage blend() Method LIGHTEST Mode
--Random Source Coodinates & save() */
size(300, 400);
PImage img1 = loadImage("towers.jpg");
PImage img2 = loadImage("airport.jpg");
int w = width/24;
int h = height/32;

for (int i=0; i<width; i+=w){
for (int j=0; j<height; j+=h){
// arguments need to be integers
int srcX = int(random(width-w));
int srcY = int(random(height-h));
int srcW = int(random(w));
int srcH = int(random(h));
img1.blend(img2, srcX, srcY, srcW, srcH, i, j, w, h, LIGHTEST);

}
}
image(img1, 0, 0);
save("tower_mosaic.tif");

The save() function saves an image of the display window to the current sketch folder.
You can access the current sketch folder by selecting Show sketch folder from the Sketch
menu. When naming the String argument in the save("myString.tif") call, you can
specify a TIF, TGA, JPG, or PNG file. If you don’t specify any extension, the image will be
saved as a TIF, with .tif appended to the end of the String argument. Processing also has
a variation of this function, called saveFrame(), that allows you to save multiple frames,
which I’ll look at next chapter. One note of caution: neither save() nor saveFrame() will
work in sketches running within the browser environment.

COLOR AND IMAGING

467

10

617xCH10.qxd 4/17/07 1:34 PM Page 467

Figure 10-49. PImage blend() Method LIGHTEST Mode—Random Source
Coodinates & save() sketch

An object-oriented approach

Before concluding the chapter, I’d like to apply an OOP approach to a color/imaging
example (shown in Figure 10-50) that extends some of the OOP concepts looked at in the
last two chapters. In Chapter 9, you used OOP to create a little neighborhood of houses
composed of a number of component classes. The classes shared certain characteristics
and had a number of redundant instance variables and methods. For example, the Door,
Window, Roof, and House classes all had x, y, width, and height properties, as well as their
own drawing methods. In programming, you usually try to avoid creating redundant ele-
ments. OOP includes some advanced concepts and language structures for minimizing
redundancy and creating efficient, modular, and hopefully reusable classes. One of these
key concepts is called inheritance, which I introduced in Chapter 8.

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

468

617xCH10.qxd 4/17/07 1:34 PM Page 468

Inheritance
In OOP, inheritance describes the ability of one class to inherit, or extend, the attributes
and capabilities of another class. For example, if I create a class called Box, I could give it
attributes such as height, width, depth, x, y, color, and so forth. It might also have meth-
ods to get and set these properties, and perhaps a create() method. I could then use this
Box class as the base for another class or even a set of classes. A house, a cage, and a suit-
case are all radically different objects, yet they each rely on a box structure. Instead of
each of these classes defining their own height, width, depth, x, y, and color properties,
they could inherit these from the Box class.

In Processing and Java, when a class inherits form another class, the term extends is used
to describe the relationship of one class inheriting from another. In addition, the term
superclass is used to describe the class being extended from, and subclass is used to
describe the class that extends the superclass. In the box example, Box would be the
superclass and House, Cage, and Suitcase would each be subclasses of Box; it is also said
that each of these subclasses extends the Box class. When a class extends a class, besides
having access to the properties and methods in the superclass, the subclass can add its
own additional properties and methods that would be unique to the class. For example,
the House class, besides having the general properties of a box, might also have a roof
property, a chimney property, and so on. There are some additional subtle and advanced
concepts involved in inheritance, which I’ll look at in the next few chapters. However, for
now, I’ve created a sketch that illustrates basic inheritance. The sketch reuses the linear
and radial gradient examples from earlier in the chapter, with some minor modifications.

Gradient class
The first class I designed for this example was a Gradient class. This class will be the base
class for a LinearGradient class and also a RadialGradient class. In other words, the
Gradient class will be the superclass, and the LinearGradient and RadialGradient sub-
classes will extend the Gradient class. In addition, in thinking about these class relation-
ships, I decided that I didn’t want people to be able to directly use the Gradient class (i.e.,
instantiate the class), but rather only use it as a superclass for building other types of cus-
tom gradients. Java has a keyword (abstract) that is used to enforce this condition (which
Processing has access to) that I have included in the Gradient class. Here’s the class
(please note that this class, as well as the individual subclasses I’ll look at shortly, are not
intended to be run independently):

abstract class Gradient {

// constants
// these can't be changed
final static int AXIS_VERTICAL = 0;
final static int AXIS_HORIZONTAL = 1;

// instance fields with default values
// these can be changed
color c1 = color(255);
color c2 = color(0);
Rectangle bounds = new Rectangle(0, 0, width, height);

COLOR AND IMAGING

469

10

617xCH10.qxd 4/17/07 1:34 PM Page 469

// abstract method, to be implmented by subclasses
abstract void create();

/* concrete methods*/
//getter/setters
void setColor1(color c1){
this.c1 = c1;

}
color getColor1(){
return c1;

}
void setColor2(color c2){
this.c2 = c2;

}
color getColor2(){
return c2;

}
void setBounds(Rectangle Bounds){
this.bounds = bounds;

}
Rectangle getBounds(){
return bounds;

}
}

Abstract class declaration
Notice that I began the class with the Java keyword abstract. By preceding a class decla-
ration with abstract, you enforce the rule that the class cannot be instantiated. Therefore,
the call new Gradient() will generate a compiler error. I designed the Gradient class to be
used exclusively as a base class to extend when building custom gradients. To read what
Sun has to say about abstract classes, check out http://java.sun.com/docs/books/
tutorial/java/javaOO/abstract.html.

Class constants
Next, I declared two constants:

final static int AXIS_VERTICAL = 0;
final static int AXIS_HORIZONTAL = 1;

Again, I borrowed some Java modifiers (final and static) to enforce good coding prac-
tice. Constants shouldn’t be changed, and the use of the final keyword ensures that the
compiler enforces this rule. Once a constant has an initial value, you’ll generate a compile
error if you try to assign another value to it. Typically, constants are assigned integer
values, as I did in the Gradient class.

Declaring properties with the static keyword makes their values directly accessible using
the class name, without the use of an object. For example, to access the value of

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

470

617xCH10.qxd 4/17/07 1:34 PM Page 470

http://java.sun.com/docs/books/

AXIS_VERTICAL from outside the Gradient class (or its subclasses), you’d write
Gradient.AXIS_VERTICAL; to access the value from within Gradient (or its subclass), you
can just use AXIS_VERTICAL. You can use/access static properties from within any class
without the need to instantiate an object of the class. Conversely, instance properties
require an object to be used. Another way to think about the distinction between static
and instance properties is that there is only ever a single value for any static property, but
each object has its own copy of any instance properties.

Instance properties
Below the constants, I declared some instance properties. As I just discussed, these prop-
erties can only be accessed by an object of the class (or in this case, objects of the sub-
classes). For example, if you create a RadialGradient class and then instantiate an object
using the syntax RadialGradient rg = new RadialGradient ();, you could access the
object’s c1 property with the syntax rg.c1 or rg.getColor1().

The instance property Rectangle r uses Java’s Rectangle class. This class is really handy
for holding the bounds of something. Instantiating an object of the Rectangle class takes
four arguments, defining x, y, width, and height. These public properties can then be
accessed directly, as in r.x, r.y, r.width, and r.height (assuming the Rectangle object is
named r).

Abstract method
Below the instance properties is a strange-looking method declaration:

abstract void create();

This is an abstract method, which doesn’t include any actual implementation of the
method; notice that curly braces aren’t even included. Abstract methods are used to
enforce a rule between the abstract superclass and any subclasses: a class that extends an
abstract class must implement any abstract methods within the superclass (or itself be
declared an abstract class). This means that any class that extends the Gradient class must
include a create() method—with the curly braces and preferably some gradient-creating
code between them. You are not required to include an abstract method in an abstract
class; you can just use standard implemented methods (also known as concrete methods)
like the getter/setter methods included below the abstract create() method. Subclasses
have no obligation to reimplement any concrete methods within the abstract superclass.

In the Gradient class, it made sense to make the create() method abstract, since the
code to create each gradient (linear or radial, in this case) will be radically different. In
addition, by forcing subclasses of the Gradient class to implement their own create()
method, you enforce a common interface—which is a good thing. Imagine if some com-
pany took your Gradient class and extended it to create a library of 1,000 specialized
Gradient subclasses (and paid you gobs of money, of course). Since your superclass
requires any subclasses to implement the create() method, a user of the subclasses would
have immediate insight into how to draw any of the 1,000 custom gradients. The compli-
cated plotting algorithms for each gradient would be encapsulated inside the custom
implemented create() methods in each subclass—all happily hidden from the user.

COLOR AND IMAGING

471

10

617xCH10.qxd 4/17/07 1:34 PM Page 471

getters/setters
Finishing the class are getter and setter methods for the instance properties. You’ll learn
more about the benefit of getters and setters in Chapter 14, when I show you how to work
in Java mode. For now, you can access instance properties directly, as in rg.c1 (assuming
rg is the name of the gradient object), or using the method rg.getColor1().

LinearGradient class
class LinearGradient extends Gradient {
int axis;

//default constructor
LinearGradient() {
axis = AXIS_VERTICAL;

}

//constructor
LinearGradient(color c1, color c2) {
this.c1 = c1;
this.c2 = c2;
axis = AXIS_VERTICAL;

}

//constructor
LinearGradient(color c1, color c2, Rectangle bounds) {
this.c1 = c1;
this.c2 = c2;
this.bounds = bounds;
axis = AXIS_VERTICAL;

}

//constructor
LinearGradient(color c1, color c2, Rectangle bounds, int axis) {
this.c1 = c1;
this.c2 = c2;
this.bounds = bounds;
this.axis = axis;

}

// required: implemented create method
void create(){
// calculate differences between color components
float deltaR = red(c2)-red(c1);
float deltaG = green(c2)-green(c1);
float deltaB = blue(c2)-blue(c1);

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

472

617xCH10.qxd 4/17/07 1:34 PM Page 472

// y axis
if(axis == AXIS_VERTICAL){
for (int i=bounds.x; i<=(bounds.x+bounds.width); i++){
for (int j=bounds.y; j<=(bounds.y+bounds.height); j++){
color c = color(➥

(red(c1)+(j-bounds.y)*(deltaR/bounds.height)), ➥

(green(c1)+(j-bounds.y)*(deltaG/bounds.height)), ➥

(blue(c1)+(j-bounds.y)*(deltaB/bounds.height)));
set(i, j, c);

}
}

}
// x axis
else {
for (int i=bounds.y; i<=(bounds.y+bounds.height); i++){
for (int j=bounds.x; j<=(bounds.x+bounds.width); j++){
color c = color(➥

(red(c1)+(j-bounds.x)*(deltaR/bounds.width)), ➥

(green(c1)+(j-bounds.x)*(deltaG/bounds.width)), ➥

(blue(c1)+(j-bounds.x)*(deltaB/bounds.width)));
set(j, i, c);

}
}

}
}

void setAxis(int axis){
this.axis = axis;

}

int getAxis(){
return axis;

}
}

Notice the extends keyword in the LinearGradient class declaration. As I’ve been dis-
cussing, when the Gradient class is extended, LinearGradient becomes a subclass of
Gradient and has access to its properties and methods. Remember that the relationship
between a superclass and a subclass is relative. If another class were to eventually extend
the LinearGradient class, then that class would become a subclass to LinearGradient.
LinearGradient would become its superclass, even though it’s still the subclass to
Gradient. Every class in Processing and Java begins life as a subclass, as there is an Object
class that is the über-superclass for all other classes. Here’s some info on Java’s Object
class: http://java.sun.com/j2se/1.4.2/docs/api/java/lang/Object.html.

I included four constructors in the LinearGradient class, giving users multiple ways to
instantiate linear gradients. Notice that three of the four constructors utilize the this key-
word in assigning the parameters to the instance properties of the same name. Notice that
these instance properties are declared in the Gradient superclass, not directly within the

COLOR AND IMAGING

473

10

617xCH10.qxd 4/17/07 1:34 PM Page 473

http://java.sun.com/j2se/1.4.2/docs/api/java/lang/Object.html

LinearGradient subclass. The subclass can utilize the (accessible) properties and methods
in the superclass, and they can be referred to directly, as if they were declared directly
within the subclass; any subclass of Gradient would have this capability. You can see how
building a class library using inheritance can create efficiencies and ultimately speed devel-
opment—not to mention create more consistency for the user.

The create() method is the abstract method inherited from Gradient that needs to be
implemented. Again, implementing in this case means creating the method’s code block
(the areas between and including the curly braces). The create() method is where the
custom gradients are actually created.

Finally, the LinearGradient class includes setAxis() and getAxis() methods for specify-
ing which axis to draw the gradient across. I could have placed these two methods within
the Gradient superclass, but it was more appropriate to put them in the LinearGradient
subclass, as some gradients don’t utilize a dominant axis (e.g., radial gradients)—which
illustrates that although subclasses share certain features (inherited from their common
superclass), they may (and usually do) contain their own unique properties and methods
as well.

RadialGradient class
class RadialGradient extends Gradient {

//default constructor
RadialGradient() {
super();

}

//constructor
RadialGradient(color c1, color c2) {
this.c1 = c1;
this.c2 = c2;

}

//constructor
RadialGradient(color c1, color c2, Rectangle bounds) {
this.c1 = c1;
this.c2 = c2;
this.bounds = bounds;

}

// required: implemented create method
void create(){
float px = 0, py = 0, angle = 0;
float radius1 = bounds.width/2;
float radius2 = bounds.height/2;
float centerX = bounds.x+radius1;
float centerY = bounds.y+radius2;
float radiusMax = max(radius1, radius2);

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

474

617xCH10.qxd 4/17/07 1:34 PM Page 474

// calculate differences between color components
float deltaR = red(c2)-red(c1);
float deltaG = green(c2)-green(c1);
float deltaB = blue(c2)-blue(c1);
// gapFiller ensures there are no holes in gradient
float gapFiller = 8.0;

for (int i=0; i<radiusMax; i++){
for (float j=0; j<360; j+=1.0/gapFiller){
if (radius1>radius2){
px = centerX+cos(radians(angle))*i;
py = centerY+sin(radians(angle))*(i-(radius1-radius2));

}
else {
px = centerX+cos(radians(angle))*(i-(radius2-radius1));
py = centerY+sin(radians(angle))*i;

}
angle+=1.0/gapFiller;
color c = color(➥

(red(c1)+(i)*(deltaR/radiusMax)), ➥

(green(c1)+(i)*(deltaG/radiusMax)), ➥

(blue(c1)+(i)*(deltaB/radiusMax)));
set(int(px), int(py), c);

}
}

}
}

This class follows the structure of the LinearGradient class very closely. However, the
RadialGradient class didn’t require any additional properties/methods of its own, which
made the constructor calls a bit simpler than LinearGradient’s. The create() function is
a bit more complex, though—but you’ve looked at code like this before; the gradient-
creation code pretty much follows the radial gradient example from earlier in the chapter.

One extra feature I added in this version of the code is the ability to create asymmetrical
elliptical gradients, with different values for width and height. I also used Processing’s
max(val1, val2) function, which returns the largest argument value. Since it’s now possi-
ble to create a very asymmetrical ellipse, I wanted to make the largest dimension of the
ellipse control the size of the gradient and for loop limits. You can try changing the max to
min, which returns the smaller of the two argument values, to see what happens. Finally,
here’s the calling PDE main code that generates some gradients using the three classes:

/*
Inheritance Example
linear and radial gradients
January 25, 2006
NOTE: This sketch takes some time to render.
REQUIRED: Gradient class, LinearGradient class and
RadialGradient class.
*/

COLOR AND IMAGING

475

10

617xCH10.qxd 4/17/07 1:34 PM Page 475

void setup(){
size(400, 400);

// fill display window with default black and white
// linear gradient background
LinearGradient lg = new LinearGradient();
lg.create();

//create 4 linear Gradients
color c1 = color(255, 0, 0);
color c2 = color(0, 255, 0);

color c3 = color(255, 255, 0);
color c4 = color(180, 0, 255);

color c5 = color(255, 127, 0);
color c6 = color(0, 0, 255);

color c7 = color(0, 255, 255);
color c8 = color(255, 180, 0);

Rectangle r1 = new Rectangle(50, 50, 150, 150);
Rectangle r2 = new Rectangle(200, 50, 150, 150);
Rectangle r3 = new Rectangle(50, 200, 150, 150);
Rectangle r4 = new Rectangle(200, 200, 150, 150);

LinearGradient lg1 = new LinearGradient(c1, c2, r1, ➥

Gradient.AXIS_HORIZONTAL);
lg1.create();
LinearGradient lg2 = new LinearGradient(c3, c4, r2);
lg2.create();
LinearGradient lg3 = new LinearGradient(c5, c6, r3);
lg3.create();
LinearGradient lg4 = new LinearGradient(c7, c8, r4, ➥

Gradient.AXIS_HORIZONTAL);
lg4.create();

//create 4 radial Gradients
c1 = color(0, 150, 200);
c2 = color(200, 200, 100);

c3 = color(190, 225, 290);
c4 = color(90, 45, 20);

c5 = color(195, 195, 90);
c6 = color(30, 10, 70);

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

476

617xCH10.qxd 4/17/07 1:34 PM Page 476

c7 = color(0);
c8 = color(255);

r1 = new Rectangle(60, 60, 130, 130);
r2 = new Rectangle(225, 60, 100, 130);
r3 = new Rectangle(60, 225, 130, 100);
r4 = new Rectangle(210, 210, 130, 130);

RadialGradient rg1 = new RadialGradient(c1, c2, r1);
rg1.create();
RadialGradient rg2 = new RadialGradient(c3, c4, r2);
rg2.create();
RadialGradient rg3 = new RadialGradient(c5, c6, r3);
rg3.create();
RadialGradient rg4 = new RadialGradient(c7, c8, r4);
rg4.create();

}

Figure 10-50. Inheritance Example (linear and radial gradients) sketch

COLOR AND IMAGING

477

10

617xCH10.qxd 4/17/07 1:34 PM Page 477

The calling PDE code should be old hat by now. I simply created a bunch of color and
Rectangle objects and passed them to the respective gradient constructors. Both the
LinearGradient and RadialGradient default constructors fill the entire screen with a
black-and-white linear or radial gradient, respectively. I used the former to create a back-
ground gradient. Notice the Gradient.AXIS_HORIZONTAL argument in two of the
LinearGradient instantiation calls. This is a standard use of a constant. I used the class
name to preface the constant name, as you’ll remember that the constant was declared as
a static property in the Gradient class.

In running this example, you have two options: you can type all the code (the three classes
and the main PDE code just shown) into Processing, or you can download the complete
code from www.friendsofed.com/downloads.

Organizing classes using multiple tabs

Once you’ve got all the code, there are two ways you can organize it in Processing. The
first and simplest way is to add all the code (including the classes) directly into the main
(leftmost) tab. This is the approach you’ve been using thus far in the book. A better and
more organized way is to enter only the PDE code in the main tab and then create new
tabs for each of the three classes. Assuming that you have all your code pasted in the main
tab, here are the steps to reorganize it across multiple tabs.

Select all the code of the Gradient class and cut it—you can either use the Copy com-
mand under the Edit menu or the common shortcut Cmd+C (on the Mac)/Ctrl+C
(on Windows). Then click the tabs arrow at the right side of the Processing window, and
select New tab. Give the file the same name of the class (Gradient). When the new tab
opens, paste the Gradient class code into the window. Repeat this process for the
LinearGradient and RadialGradient classes. When you have the classes safely pasted
into their own tabs, delete the class code in the main tab (the leftmost one), but make
sure you keep the remaining PDE code (including the setup() function). You should be
able to run the sketch now.

One final note on the tabs: when you name the individual tab documents, you don’t need
to include the .pde suffix, as Processing does it automatically. If you do include it, that’s
OK as well, as Processing is smart and will not append a second suffix. You can also create
separate tabs for functions, following the same procedure I just outlined.

Summary
This has been a big chapter with some challenging—but also hopefully interesting—
information and snippets. It began with a look at basic color theory, which you applied
using Processing’s built-in color capabilities, including selecting between color models and
working with Processing’s color data type. I discussed the Java graphics context and its
connection to how painting occurs in Processing and Java, and I briefly discussed
Processing’s sophisticated matrices functions and how to specifically push and pop trans-
lations, as well as reset a matrix with the identity matrix.

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

478

617xCH10.qxd 4/17/07 1:34 PM Page 478

In the “Imaging” section, you delved a little deeper, looking at Processing’s color compo-
nent functions, which I used to show how to generate a series of pixel-based gradients. I
discussed speed issues when processing hundreds of thousands of pixels, and I looked at a
lower-level approach to increasing performance, using bitwise operations. I also discussed
the problem or challenge of managing potential rounding errors when moving between
floats and ints, and how subtle changes such as these can have dramatic effects.
Using Processing’s loadPixels(), updatePixels(), and pixels[] functions, I discussed
approaches for writing and transforming pixel data. I compared the somewhat confusing
differences between using the display window functions, based on the pixesl[] array, and
using Processing’s PImage data type, with its own properties and methods, including
another pixels[] array property.

Processing’s blend and filter capabilities are extensive, and you looked in detail at each, at
times going below the hood and even re-creating your own imaging effects, using both
Processing functions and bitwise operations. Finally, I extended the discussion on OOP
with an inheritance example, generating a simple framework for creating gradients.

In the next chapter, you’ll be revisiting many of the topics covered in the book thus far, as
I introduce motion into the sketches. In addition, you’ll explore interesting and fun
approaches to simulating organic motion and physics. And you’ll also continue your explo-
ration of OOP.

COLOR AND IMAGING

479

10

617xCH10.qxd 4/17/07 1:34 PM Page 479

617xCH11.qxd 4/17/07 1:57 PM Page 480

11 MOTION

617xCH11.qxd 4/17/07 1:57 PM Page 481

Let the fun begin! I suspect many of you have been waiting patiently (or not so patiently)
for this chapter. It took a certain restraint on my part to not start flying pixels around the
screen back in Chapter 1. Animation and motion design is usually what gets my students
hooked on coding—and even to embrace trigonometry. This chapter, we’ll explore all
kinds of neat motion (including some trig), from deflecting to bouncing to easing to
springing. You’ll even create an asteroid shower and learn how to code all sorts of inter-
esting collisions.

Before we dive right into the code, though, I want to discuss very briefly how computer
animation works in general, and also some different strategies employed to implement it.

Animation basics
A computer monitor is an animation machine, continuously refreshing the pixels on the
screen at the monitor’s refresh rate. Obviously, this is not terribly engaging animation, but
the fact that animation can happen in front of your eyes and be wholly undetectable is sig-
nificant. Our brains are wired this way as well, as we perceive a persistent unflickering
visual field, in spite of the fact that our eyes are continuously receiving new data. In ani-
mation, we exploit this phenomenon by moving data in front of the viewer’s eyes at
certain rates, tricking the brain into seeing smooth, continuous motion. To move this data,
the computer needs to start a process that changes pixel color values over time. From a
computer animator’s standpoint, this could simply include dragging a shape to two differ-
ent places on the screen using some timeline interface, such as found in applications like
Flash, Director, Final Cut Pro, After Effects, and LightWave. Often, these high-end products
employ a keyframing model, where the user sets the beginning keyframe and ending
keyframe of a simple animation, and the computer generates the in-between frames. What
these cool, very high-level applications don’t reveal is how the actual time sequencing is
handled internally by the computer—usually you just hit a play button.

Computers with a single processor execute a single instruction at a time, but very quickly
(over a billion times per second). However, in a multitasking environment like we’re all
used to working in, we need to do more than one thing at a time. For example, I may be
running five programs at the same time, each with certain automated functions occurring
behind the scenes. I may also set a rendering in a 3D program and work on something else
while it’s completing in the background. Obviously, I wouldn’t want all these different
processes to be put in a line, or queue, and have to wait for each to be completed before
the next task begins. Instead, the operating system splits the executing commands up so
that the individual processes can be weaved together, sharing the available processing
time. Since the computer can do so many things in a second, we perceive simultaneous
processing.

We often refer to these individual processes as threads. Normally, we won’t need to worry
about low-level stuff like threads in Processing, as the application handles it behind the
scenes. However, it’s helpful to have a little understanding of how threads work, especially
since threads are critical for animation.

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

482

617xCH11.qxd 4/17/07 1:57 PM Page 482

Working in Java, creating even the simplest animation is a little complicated, as you need
to explicitly create a separate thread. In contrast, animation in Processing couldn’t be sim-
pler. To illustrate this difference, I’ve coded a simple animation using Java, followed by the
same animation using Processing’s draw() function (which encapsulates the thread cre-
ation process for us). The Java version is written to be run within Processing.

// Animation in Java using a thread
// This code should run ok in Processing
void setup(){
size(400, 400);
new SimpleAnimation();

}
class SimpleAnimation implements Runnable{
int x, xspd = 3;
//constructor
SimpleAnimation(){
Thread t = new Thread(this);
t.start();

}
void run() {
while (x<width-10) {
background(255);
rect(x, height/2, 10, 10);
x+=xspd;
repaint();
try {
Thread.sleep(30);

}
catch (InterruptedException e){
}

}
}

}

The following code shows the same animation using only Processing:

// Animation the Processing way
// using Processing's draw() structure
int x, xspd = 3;
void setup(){
size(400, 400);
frameRate(30);

}

void draw(){
background(255);
rect(x, height/2, 10, 10);
x+=xspd;

}

MOTION

483

11

617xCH11.qxd 4/17/07 1:57 PM Page 483

In the previous Java example, notice that I explicitly instantiate a Thread object:

Thread t = new Thread(this);

A few lines later, in the run() method, notice the following block:

try {
Thread.sleep(30);

}
catch (InterruptedException e){

}

The run() method continuously executes, which is where the drawing happens, and the
Thread.sleep(30) call adds a delay between each execution (or frame); the larger
the delay value, the slower the animation. Finally, I also needed to call the command
repaint(), which forces the screen to be updated each frame—allowing you to see the
animation. Whew! That’s a lot to deal with. Fortunately, you don’t need to worry about
most of this stuff in Processing.

In the Processing example, notice the draw() function. This Processing function encapsu-
lates most of the annoying stuff involved in creating animations with threads in the Java
example. Simply including the draw() function in your sketch causes a thread to begin
running (under the hood).

In the last two examples, the actual animation involved a rectangle moving across the
screen. If it wasn’t obvious, the variable x was incremented by xspd each frame, and then
the rectangle was drawn with the updated x value. In a sense, I simply redrew the rectan-
gle over and over again, at a different x position. The reason you don’t see all the previous
drawn rectangles is because of the call background(255); at the top of the draw() func-
tion. This call fills the screen with white between each frame, painting over the previous
rectangle. This repainting of the background between draw frames is what gives the
illusion that a single rectangle is moving across the screen. Try commenting out
background(255); in the last sketch and rerunning it (see Figure 11-1).

Figure 11-1. Sketch with background() commented out

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

484

617xCH11.qxd 4/17/07 1:57 PM Page 484

You can actually use this painting effect to generate an image over time. In the next exam-
ple, 100 rectangles move across the screen with varying positions, sizes, and colors (shown
in Figure 11-2):

// Painting Stripes
int x;
float speedX = 3.0;
int shapes = 100;
float[]y = new float[shapes];
float[]w = new float[shapes];
float[]h = new float[shapes];
color[]colors = new color[shapes];
void setup(){
size(400, 400);
frameRate(30);
noStroke();
// fill arrays will random values
for (int i=0; i<shapes; i++){
y[i]=random(height);
w[i]=random(15)+2;
h[i]=w[i];
colors[i]=color(random(255), random(255), random(255));

}
}

void draw(){
for (int i=0; i<shapes; i++){
fill(colors[i]);
rect(x, y[i], w[i], h[i]);

}
x+=speedX;

}

Figure 11-2. Painting Stripes sketch

MOTION

485

11

617xCH11.qxd 4/17/07 1:57 PM Page 485

One of the nice things about waiting until Chapter 11 to cover motion is that I’ve had time
to properly introduce and reinforce basic coding principles and structures, allowing you to
focus on more creative applications using these structures. Thus, I’m going to assume you
understand the code in the last example. If, however, the array structures still seem con-
fusing, I recommend a quick review of the section on arrays, in Chapter 3. I can improve
this last sketch by alternating the y position of the rectangles over time and using variable
speed (shown in Figure 11-3):

// Painting Stripes II
int shapes = 200;
float[]speedX = new float[shapes];
float[]speedY = new float[shapes];
float[]x = new float[shapes];
float[]y = new float[shapes];
float[]w = new float[shapes];
float[]h = new float[shapes];
color[]colors = new color[shapes];
void setup(){
size(400, 400);
frameRate(30);
noStroke();
// fill arrays will random values
for (int i=0; i<shapes; i++){
x[i]=0;
y[i]=random(height);
w[i]=random(2, 10);
h[i]=w[i];
colors[i]=color(random(255), random(255), random(255));
speedX[i] = random(5, 10);
speedY[i] = random(-2, 2);

}
}

void draw(){
for (int i=0; i<shapes; i++){
fill(colors[i]);
rect(x[i], y[i], w[i], h[i]);
x[i]+=speedX[i];
y[i]+=speedY[i];

}
}

This sketch may look a little complicated because of all the arrays, but it works similarly to
the previous example. One issue that often confuses my students is how and when for
loops render. This is also a frequent question on the Processing discussion board. Screen
redraws do not update as the for loop is churning. Rather, the screen update occurs after
the for loop completes all its cycles. In the last example, the entire draw() function exe-
cutes approximately 30 times per second. This rate is also commonly referred to as frames
per second. Each frame, the entire for loop runs. When the for loop exits, the screen
updates.

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

486

617xCH11.qxd 4/17/07 1:57 PM Page 486

Figure 11-3. Painting Stripes II sketch

Simple collision detection
In the last example, when the rectangles pass the edge of the display window, they don’t
stop. To improve the sketch, I could add simple boundary collision detection and also a
timeout function. Before I add collision detection for all the rectangles in the last example,
though, let’s first look at collision detection with a single moving rectangle:

// Single rect with boundary collision detection
float speedX, speedY;
float x, y, w, h;

void setup(){
size(400, 400);
x=width/2;
y=height/2;
w=70;
h=w;
speedX = 2;
speedY = 1;

}

void draw(){
background(255);
rect(x, y, w, h);

MOTION

487

11

617xCH11.qxd 4/17/07 1:57 PM Page 487

x+=speedX;
y+=speedY;

// Check display window edge collisions
if (x > width-w){
x = width-w;
speedX*=-1;

}
else if (x < 0){
x = 0;
speedX*=-1;

}
else if (y > height-h){
y = height-h;
speedY*=-1;

}
else if (y < 0){
y = 0;
speedY*=-1;

}
}

If you run the sketch, you should see a single rectangle bouncing off the four boundaries
of the display window. If it isn’t obvious, the key block of code that makes the rectangle
bounce off the walls is the following:

// Check display window edge collisions
if (x > width-w){
x = width-w;
speedX*=-1;

}
else if (x < 0){
x = 0;
speedX*=-1;

}
else if (y > height-h){
y = height-h;
speedY*=-1;

}
else if (y < 0){
y = 0;
speedY*=-1;

}

Each of the four if statements controls detection on one of the display window bound-
aries (right, left, bottom, and top). Notice that the conditionals check if the rectangle is
either greater than (>) or less than (<) the boundary, but not equal to (==) the boundary—
in other words, they check whether the rectangle has actually pushed through the bound-
ary. This is necessary because the rate at which the computer checks for the collision and

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

488

617xCH11.qxd 4/17/07 1:57 PM Page 488

the distance the rectangle moves are not perfectly synchronized; the rectangle may very
well be past the boundary when the collision check occurs. By checking for collision past
the boundary, we’re ensured of (eventually) catching it. However, this solution is not with-
out some problems.

Aesthetically, the rectangle may appear to go through the wall before bouncing off it. A
worse problem is that if the rectangle goes too far past the edge of the window, the detec-
tion can actually catch it more than one time—causing it to get stuck (and sometimes
appear to shake) on the boundary. The quick fix for these problems is to immediately
place the rectangle against the display window wall after the detection, as I did in the
example code. Technically, this fix is not precisely accurate, but generally good enough for
“creative” coding purposes. For the more ambitious (or precise) reader, there is a more
complex (and accurate) way of fixing this overlap problem, by analyzing an object’s path
over time and finding precisely when it makes initial contact with the boundary.
Implementing such an approach is beyond this book, but most (computer science–
oriented) computer graphics texts will cover this approach.

Finally, after the collision has been detected and the rectangle has been put neatly back
against the display window edge, I simply reverse the sign of the speed variable by multi-
plying it by –1. If it’s been a while since math class, remember that a negative multiplied by
another negative becomes a positive (and of course a negative times a positive equals a
negative).

Next, I’ll just add the collision detection and a timeout feature to the previous multi-
rectangle example. I’ll also add a background(255) call so that we can see the discrete rec-
tangles bouncing around (shown in Figure 11-4):

// Collision Detection and Timeout
int shapes = 200;
float[]speedX = new float[shapes];
float[]speedY = new float[shapes];
float[]x = new float[shapes];
float[]y = new float[shapes];
float[]w = new float[shapes];
float[]h = new float[shapes];
color[]colors = new color[shapes];
int timeLimit = 15;

void setup(){
size(400, 400);
frameRate(30);
noStroke();
// fill arrays will random values
for (int i=0; i<shapes; i++){
x[i]=width/2;
y[i]=height/2;
w[i]=random(2, 12);
h[i]=w[i];
colors[i]=color(random(255), random(255), random(255));

MOTION

489

11

617xCH11.qxd 4/17/07 1:57 PM Page 489

speedX[i] = random(-5, 5);
speedY[i] = random(-2, 2);

}
}

void draw(){
background(255);
for (int i=0; i<shapes; i++){
fill(colors[i]);
rect(x[i], y[i], w[i], h[i]);
x[i]+=speedX[i];
y[i]+=speedY[i];

// check display window edge collisions
if (x[i] > width-w[i]){
x[i] = width-w[i];
speedX[i]*=-1;

}
else if (x[i] < 0){
x[i] = 0;
speedX[i]*=-1;

}
else if (y[i] > height-h[i]){
y[i] = height-h[i];
speedY[i]*=-1;

}
else if (y[i] < 0){
y[i] = 0;
speedY[i]*=-1;

}
}

// stop draw when timelimit reached
if (millis() >= timeLimit*1000){
noLoop();

}
}

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

490

617xCH11.qxd 4/17/07 1:57 PM Page 490

Figure 11-4. Collision Detection and Timeout sketch

Accessing time
The last sketch combined stuff you’ve looked at before. The collision detection block
worked identically to the previous single-object example, only of course using arrays and a
for loop. I did throw in two new function calls: millis() and noLoop().

millis() returns the number of milliseconds that have elapsed since the sketch began
running. In addition to returning milliseconds, Processing can also communicate with your
computer’s internal clock, accessing the current time with the six functions second(),
minute(), hour(), day(), month(), and year().

Processing’s noLoop() function immediately stops the draw() structure from looping.
There is also a companion loop() call that begins the draw() loop again. In the example, I
compared the total elapsed milliseconds with a user-defined variable, timeLimit, allowing
the draw() function to eventually stop after a certain amount of time had elapsed.

Adding some simple fading

The final modification I’ll make to the multirectangle sketch is the addition of a fade to the
white background, creating the illusion of some blur trails for the rectangles (shown in
Figure 11-5). The code should remain the same as in the last sketch, with the exception of
the replacement of the first line in the draw() function:

background(255);

MOTION

491

11

617xCH11.qxd 4/17/07 1:57 PM Page 491

with the following two lines:

fill(255, 40);
rect(0, 0, width, height);

Figure 11-5. Simple Fading sketch

The new rect() call does the same thing as background() (repainting the display win-
dow), only using an alpha setting (below 255) specified for the background color. To
increase the persistence of the trails, try decreasing the alpha value.

Fun with physics
Simulating physics is fun! I realize that this is a pretty nerdy thing to say. But there is some-
thing captivating about seeing a bunch of polygons moving in a naturalistic way. Think
about the moving grass and flora in Shrek, the ocean in The Perfect Storm, or the fur in
Monsters, Inc.—and of course don’t forget Gollum in The Lord of the Rings. Regrettably,
we won’t begin our exploration of physics simulating reactive fur, tidal waves, or a
demented self-loathing creature. Instead, we’ll add some gravity to our single bouncing
rectangle example (shown in Figure 11-6):

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

492

617xCH11.qxd 4/17/07 1:57 PM Page 492

// Acceleration with Gravity
float speedX, speedY;
float x, y, w, h;
// acceleration force
float gravity;

void setup(){
size(400, 400);
x=width/2;
w=20;
h=w;
fill(0);
speedX = 4;
// set acceleration force
gravity = .5;

}

void draw(){
fill(255, 60);
rect(0, 0, width, height);

fill(0);
rect(x, y, w, h);
x+=speedX;
speedY+=gravity;
y+=speedY;

// Check display window edge collisions
if (x > width-w){
x = width-w;
speedX*=-1;

}
else if (x < 0){
x = 0;
speedX*=-1;

}
else if (y > height-h){
y = height-h;
speedY*=-1;

}
else if (y < 0){
y = 0;
speedY*=-1;

}
}

MOTION

493

11

617xCH11.qxd 4/17/07 1:57 PM Page 493

Figure 11-6. Acceleration with Gravity sketch

I reused the fade technique from the last example to help visualize the rectangle’s curved
motion. This sketch is structured pretty similarly to the earlier ones we looked at, with the
addition of accelerated motion on the y-axis. x continues to be incremented by xSpeed
(providing a constant rate of change), but I’ve added an extra gravity variable for the y
motion. Prior to incrementing y by ySpeed, I incremented ySpeed by gravity. This extra
assignment created accelerated motion, as the rate of change of y was no longer constant.

To illustrate why this double incrementation works, run the following sketch. The output,
shown in Figure 11-7, shows the actual values for x and y over five iterations:

// Acceleration Calculations
float x = 0, x2 = 0, y = 0, y2 = 0;
float xSpeed = 3.0, ySpeed = .0;
float gravity = .5;

void setup(){
for (int i=0; i<5; i++){
ySpeed += gravity;
y += ySpeed;
println("y = " + y + " increase = " + (y-y2));
y2 = y;

}
println("");
for (int i=0; i<5; i++){

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

494

617xCH11.qxd 4/17/07 1:57 PM Page 494

x+=xSpeed;
println("x = " + x + " increase = " + (x-x2));
x2 = x;

}
}

The output shows the increase in y is changing while the increase in x remains constant at
3, which causes the curved motion in the example.

In the previous accelerated bouncing rectangle example, the rectangle collided with the
ground and bounced, and then the process repeated itself while the sketch continued run-
ning. In the real world, if we dropped a bouncy box, when the box collided with the
ground, there would be a transfer of some of its bouncing energy (into heat, sound, etc.),
causing the box to eventually come to a rest on the ground. You may remember Newton’s
law of conservation of energy, which states that energy in a closed system remains con-
stant—it can be transferred but not created or destroyed. So, in technical terms, we could
say that when the rectangle collides with the ground, there is a transfer of its kinetic
energy into thermal (heat) and mechanical (sound) energy. Rather than deal with the real
physics of this type of energy transfer, I’ll simply create a damping variable (a fractional
value) and multiply ySpeed by it each time the rectangle hits the ground.

The damping variable will eventually stop the rectangle’s motion along the y-axis, but I also
need to stop the rectangle’s movement along the x-axis—if I don’t, the rectangle will con-
tinue to slide back and forth along the bottom of the display window. To fix this, I’ll create
a friction variable, which will gradually slow the rectangle’s sideways motion using the
same approach as with the damping variable. Each time the rectangle collides with the bot-
tom of the display window, xSpeed is multiplied by the friction variable (also a fractional
value). In the real world, friction would also slow the rectangle as it moved through the air
and made contact with the side walls—but we’ll ignore this for now (although you could
easily add in these calculations as well).

// Simple Motion Physics I
float speedX, speedY;
float x, y, w, h;
// acceleration force
float gravity;

Figure 11-7.
Output of Acceleration Calculations sketch

MOTION

495

11

617xCH11.qxd 4/17/07 1:57 PM Page 495

// stops motion
float damping, friction;

void setup(){
size(400, 400);
x=width/2;
w=20;
h=w;
fill(0);
speedX = 4;
// set dynamics
gravity = .5;
damping = .8;
friction = .9;

}

void draw(){
fill(255, 60);
rect(0, 0, width, height);

fill(0);
rect(x, y, w, h);
x+=speedX;
speedY+=gravity;
y+=speedY;

// Check display window edge collisions
if (x > width-w){
x = width-w;
speedX*=-1;

}
else if (x < 0){
x = 0;
speedX*=-1;

}
else if (y > height-h){
y = height-h;
speedY*=-1;
speedY*=damping;
speedX*=friction;

}
else if (y < 0){
y = 0;
speedY*=-1;

}
}

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

496

617xCH11.qxd 4/17/07 1:57 PM Page 496

Before moving on, try experimenting with the values for xSpeed, gravity, damping, and
friction. You should easily be able to simulate different gravities (as you’d encounter on
different planets), as well as different materials for the rectangle and ground surface. For
example, to simulate a lead block being dropped on the moon and landing on a rough sur-
face, you could try the following settings:

speedX = 1;
gravity = .02;
damping = .85;
friction = .6;

To simulate a lacrosse ball landing on Jupiter on a super smooth, slick surface, try the
following:

speedX = 5;
gravity = .98;
damping = .75;
friction = .99;

Figure 11-8 shows these two scenarios side by side, without a background() call in draw().

Figure 11-8. Simple Motion Physics I sketch

Converting this sketch of a single bouncing rectangle with naturalesque physics to many
rectangles is as easy as creating arrays for each of the individual variables and adding for
loops within the setup() and draw() functions. That being said, all the array syntax can
look a little intimidating.

In addition to the arrays, I added three variables (shapeCount, birthRate, and sprayWidth)
to control how the rectangles are born. Without controlling the birthrate, all the rectan-
gles would be born at the same time, creating a much less interesting effect than the spray
effect we get in the sketch. Also, by using the sprayWidth variable in setting the xSpeed[]
values, I can control the width of the spray. Output from the sketch is shown in Figure 11-9.

MOTION

497

11

617xCH11.qxd 4/17/07 1:57 PM Page 497

// Simple Motion Physics II
int shapes = 200;
float[]w = new float[shapes];
float[]h = new float[shapes];
float[]x = new float[shapes];
float[]y = new float[shapes];
float[]xSpeed = new float[shapes];
float[]ySpeed = new float[shapes];
float[]gravity = new float[shapes];
float[]damping = new float[shapes];
float[]friction = new float[shapes];
//controls rate rects are born
float shapeCount;
float birthRate = .25;
// control width of spray when rects are born
float sprayWidth = 5;

void setup(){
size(400, 400);
noStroke();
//initialize arrays with random values
for (int i=0; i<shapes; i++){
x[i] = width/2.0;
w[i] = random(2, 17);
h[i] = w[i];
xSpeed[i] = random(-sprayWidth, sprayWidth);
gravity[i] = .1;
damping[i] = random(.7, .98);
friction[i] = random(.65, .95);

}
}

void draw(){
//fade background
fill(255, 100);
rect(0, 0, width, height);
fill(0);

// shapeCount births rects over time
for (int i=0; i<shapeCount; i++){
rect(x[i], y[i], w[i], h[i]);
x[i]+=xSpeed[i];
ySpeed[i]+=gravity[i];
y[i]+=ySpeed[i];

//collision detection
if (y[i]>=height-h[i]){
y[i]=height-h[i];
// bounce

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

498

617xCH11.qxd 4/17/07 1:57 PM Page 498

ySpeed[i]*=-1.0;
// slow down vertical motion on ground collision
ySpeed[i]*= damping[i];
// slow down lateral motion on ground collision
xSpeed[i]*=friction[i];

}
if (x[i]>=width-w[i]){
x[i]=width-w[i];
xSpeed[i]*=-1.0;

}
if (x[i]<=0){
x[i]=0;
xSpeed[i]*=-1.0;

}
}
if (shapeCount<shapes){
shapeCount+=birthRate;

}
}

Figure 11-9. Simple Motion Physics II sketch

I strongly recommend you play around with this sketch a bit before moving on. See if you
can simulate some natural phenomenon, such as a spray of water, sparks, or an explosion.
Don’t be scared to add a few more variables to control where the rectangles are emitted
from, or how the rectangles scatter when they hit the ground. You can even add other
forces, such as wind, to the sketch.

MOTION

499

11

617xCH11.qxd 4/17/07 1:57 PM Page 499

Object interactions
The last sketch can be thought of as a very (very) simplified particle system. Particle
systems are used to render organic effects and phenomena usually without a discrete and
rigid form. For example, by generating a group of particles moving in certain wave pat-
terns, we can simulate things like waving grass, a sheet blowing in the wind, or even liquid.
Aside from the type of speed and acceleration variables we’ve been looking at, particle
systems might also include more complex calculations for inter-particle attraction/
repulsion, inertia, and so on.

We’ll begin by considering the interaction between just two particles and build from there.
One simple but interesting type of interaction is following behavior, as exhibited in a
simple predator/prey dynamic. In the next two sketches, I’ll make the mouse the prey and
a ravenous ellipse its predator. The first example simply has the ellipse follow the mouse
with a slight delay. Notice that I used Processing’s pmouseX and pmouseY variables, which
hold the coordinate values of the mouse one frame in the past.

// Ravenous ellipse I
float x, y;

void setup(){
size(400, 400);
x = width/2;
y = height/2;
smooth();

}

void draw(){
// repaint background
fill(255, 40);
rect(0, 0, width, height);

/* find distance for x and y
between prey and predator */
float deltaX = (pmouseX-x);
float deltaY = (pmouseY-y);

x += deltaX;
y += deltaY;
ellipse(x, y, 15, 15);

}

Easing

The core principle in this last (pretty dull) sketch is that we are calculating deltaX and
deltaY each frame in the draw() loop, with the following lines:

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

500

617xCH11.qxd 4/17/07 1:57 PM Page 500

/* find distance for x and y
between prey and predator */
float deltaX = (pmouseX-x);
float deltaY = (pmouseY-y);

Since the ellipse and mouse are moving closer (until deltaX and deltaY eventually reach
0), we can be sure that the predator will never overshoot the prey. We can improve this
sketch by varying the speed in which the predator chases the prey with an effect called
easing. Easing simply adds some deceleration or acceleration to an object’s motion.

In the next example, I’ll have the predator decelerate as it nears the prey; this is also
referred to as easing out. Easing in would be the opposite—the predator would accelerate
toward the prey. To accomplish the easing out, I’ll add an easing variable that will work
very similarly to the damping variable used a few sketches back (shown in Figure 11-10).

// Ravenous Ellipse II
float x, y;
float easing = .05;

void setup(){
size(400, 400);
x = width/2;
y = height/2;
smooth();

}

void draw(){
// repaint background
fill(255, 40);
rect(0, 0, width, height);

/* find distance for x and y
between prey and predator */
float deltaX = (pmouseX-x);
float deltaY = (pmouseY-y);

// cause the predator to decelerate
deltaX *= easing;
deltaY *= easing;

x += deltaX;
y += deltaY;
ellipse(x, y, 15, 15);

}

MOTION

501

11

617xCH11.qxd 4/17/07 1:57 PM Page 501

Figure 11-10. Ravenous Ellipse II sketch

Now the predatory motion is smoother and much more natural. And all I added were the
two easing statements (besides of course declaring the easing variable at the top of the
sketch):

// cause the predator to decelerate
deltaX *= easing;
deltaY *= easing;

Let’s replace the ravenous ellipse with an even more ravenous triangle (shown in
Figure 11-11). The triangle will not only follow the mouse, but remain oriented in a certain
direction so that it can attack with its mouth (you’ll have to take my word that this trian-
gle does indeed have a mouth). I’ll create the triangle and its orientation using some trig.

// Ravenous Triangle I
float predCntrX, predCntrY;
float predX[] = new float[3];
float predY[] = new float[3];
float predLen = 8.0;
float predAng, predRot;
float easing = .05;

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

502

617xCH11.qxd 4/17/07 1:57 PM Page 502

void setup(){
size(400, 400);
predCntrX = width/2;
predCntrY = height/2;
smooth();

}

void draw(){
// repaint background
fill(255, 40);
rect(0, 0, width, height);

/* find distance for x and y
between prey and predator */
float deltaX = (pmouseX-predCntrX);
float deltaY = (pmouseY-predCntrY);

// cause the predator to decelerate
deltaX *= easing;
deltaY *= easing;

predCntrX += deltaX;
predCntrY += deltaY;

// orient predator
predRot = atan2(deltaY, deltaX);

// draw predator
createPredatoryTriangle();

}

void createPredatoryTriangle(){
// draw predator with some trig
fill(0);
beginShape();
for (int i=0; i<3; i++){
predX[i] = predCntrX+cos(radians(predAng)+predRot)*predLen;
predY[i] = predCntrY+sin(radians(predAng)+predRot)*predLen;
vertex(predX[i], predY[i]);
predAng += 120;

}
endShape(CLOSE);

}

MOTION

503

11

617xCH11.qxd 4/17/07 1:57 PM Page 503

Figure 11-11. Ravenous Triangle I sketch

I used the basic unit circle relationships cos(theta) = x and sin(theta) = y to plot the trian-
gle in the createPredatoryTriangle() function. The variables predCntrX and predCntrY
give the center point of the triangle, and the variable predLen is the length of each of the
triangles’ three vertices from the center point. I’ve used these unit circle relationships to
plot polygons throughout the book, so hopefully this is a review.

To get the triangle to rotate and stay oriented, I used Processing’s atan2(y, x) function.
The Processing documentation says this about the function: “Calculates the angle (in radi-
ans) from a specified point to the coordinate origin as measured from the positive x-axis.”
(See http://processing.org/reference/atan2_.html.)

Don’t worry if this doesn’t help much. The “atan” part of the function name refers to arc-
tangent. Normally, using trigonometry (e.g., sine, cosine, and tangent), we begin with an
angle and we can calculate the ratio of two sides of a right triangle. The arc versions of the
trig functions are used when we know the ratio of two of the sides and we want to find
the angle between them. In the sketch, deltaY and deltaX (representing the change in y
and the change in x) provide the ratio of two sides of a right angle, which I plugged into
the atan2(deltaY, deltaX) function to get the angle I need, like so:

predRot = atan2(deltaY, deltaX);

I then added predRot (which is already in radians) directly into the two trig equations that
plotted the triangle:

predX[i] = predCntrX+cos(radians(predAng)+predRot)*predLen;
predY[i] = predCntrY+sin(radians(predAng)+predRot)*predLen;

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

504

617xCH11.qxd 4/17/07 1:57 PM Page 504

http://processing.org/reference/atan2_.html

A lot more can be done with this code, including creating an autonomous prey object and
using it instead of the mouse. A simple tank game could be created, with a computer-
controlled tank and a user-controlled one. The atan2() function will ensure that the tanks
(or the tanks’ gun turrets) stay oriented in the correct direction as they move.

Springing

Another fun effect to experiment with is springing. In the last few examples, the predator
followed the prey, but never overshot it. There are times, though, when you might want an
object to slingshot past another object and eventually come to rest. Think about a
small rubber ball on an elastic string, and how it bounces around before coming to rest.
Working with accurate spring equations is somewhat involved, and more than you need
for most aesthetics-based creations. We can very easily simulate spring behavior just by
tweaking the code used in the predator/prey scenario. In fact, the tweak we need is very
similar to the tweak used to add acceleration (with gravity) to the speed example earlier in
the chapter.

Here’s the Ravenous Triangle I sketch converted to use a springy (yet still ravenous)
triangle:

// Ravenous Triangle II
float predCntrX, predCntrY;
float predX[] = new float[3];
float predY[] = new float[3];
float predLen = 8.0;
float predAng, predRot;
// springing variables
float accelX, accelY;
float springing = .01, damping = .95;

void setup(){
size(400, 400);
predCntrX = width/2;
predCntrY = height/2;
smooth();

}

void draw(){
// repaint background
fill(255, 40);
rect(0, 0, width, height);

/* find distance for x and y
between prey and predator */
float deltaX = (pmouseX-predCntrX);
float deltaY = (pmouseY-predCntrY);

MOTION

505

11

617xCH11.qxd 4/17/07 1:57 PM Page 505

// create springing effect
deltaX *= springing;
deltaY *= springing;

// conditional keeps triangle from spinning endlessly
if (dist(pmouseX, pmouseY, predCntrX, predCntrY)>5){
accelX += deltaX;
accelY += deltaY;

}

// move predator's center
predCntrX += accelX;
predCntrY += accelY;

// slow down springing
accelX *= damping;
accelY *= damping;

// orient predator
predRot = atan2(accelY, accelX);

createRavenousSpringyTriangle();
}

void createRavenousSpringyTriangle(){
// create predator with some trig
fill(0);
beginShape();
for (int i=0; i<3; i++){
predX[i] = predCntrX+cos(radians(predAng)+predRot)*predLen;
predY[i] = predCntrY+sin(radians(predAng)+predRot)*predLen;
vertex(predX[i], predY[i]);
predAng += 120;

}
endShape(CLOSE);

}

To create the springing effect, I need to simultaneously decrease the values of deltaX and
deltaY, like so:

deltaX *= springing;
deltaY *= springing;

while incrementing accelX and accelY by deltaX and deltaY respectively, as follows:

// conditional keeps triangle from spinning endlessly
if (dist(pmouseX, pmouseY, predCntrX, predCntrY)>5){
accelX += deltaX;
accelY += deltaY;

}

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

506

617xCH11.qxd 4/17/07 1:57 PM Page 506

The last step is damping the accelX and accelY values, which occurs in the final two lines:

// slow down springing
accelX *= damping;
accelY *= damping;

As always, I suggest playing with these values. Although it is relatively easy to implement
the springing, it’s not easy to fully grasp how/why it’s working. Playing with the values will
help you to better understand the principle.

There is so much more that can be done with both the following/easing and springing
code. One really fun and interesting thing to try is to put a number of springy forms
together in a series. In this next example (shown in Figure 11-12), I’ll create a worm com-
posed of 60 overlapping springy ellipses that follow an invisible moving food source. The
springing for the initial ellipse will be calculated based on the position of the food source;
while the springing for each of the other 59 ellipses will be based on the position of the
preceding ellipse—forming a reactive chain.

/* Worm
demonstrates springs in a series */

// for worm
int segments = 60;
float[] x = new float[segments];
float[] y = new float[segments];
float[] accelX = new float[segments];
float[] accelY = new float[segments];
float[] springing = new float[segments];
float[] damping = new float[segments];

// for food
float fx, fy;
float fCntrX, fCntrY;
float fAngle, fSpeedX = .25, fSpeedY = .5;

void setup(){
size(400, 400);
smooth();
// initialize array values
for (int i=0; i<segments; i++){
/* need to decrease both springing and
damping values as segments increase */
springing[i] = .05*(.07*(i+1));
damping[i] = .95-(.02*i);

}

Note that the if statement around the two incrementation lines just keeps the
triangle from endlessly spinning when the mouse stops moving.

MOTION

507

11

617xCH11.qxd 4/17/07 1:57 PM Page 507

// food center
fCntrX = width/2;
fCntrY = height/2;

}

void draw(){
// repaint background
fill(0, 10);
noStroke();
rect(0, 0, width, height);

createFood();
createWorm();

}

void createFood(){
// food moves in random wave pattern
fx = fCntrX + cos(radians(fAngle))*random(25);
fy = fCntrY + sin(radians(fAngle))*random(25);

fCntrX+=fSpeedX;
fCntrY+=fSpeedY;

fAngle+=random(-6, 6);

// keep food within display window
if (fCntrX>width-15 || fCntrX<15){
fSpeedX*=-1;

}
if (fCntrY>height-15 || fCntrY<15){
fSpeedY*=-1;

}
}

void createWorm(){
float[] deltaX = new float[segments];
float[] deltaY = new float[segments];

for (int i=0; i<segments; i++){
// lead ellipse
if (i==0){

/* food position used to calculate the
initial ellipse of the worm */
deltaX[i] = (fx-x[i]);
deltaY[i] = (fy-y[i]);

}
else {
/* preceding ellipse used to calculate the

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

508

617xCH11.qxd 4/17/07 1:57 PM Page 508

next ellipse of the worm */
deltaX[i] = (x[i-1]-x[i]);
deltaY[i] = (y[i-1]-y[i]);

}

// create springing effect
deltaX[i] *= springing[i];
deltaY[i] *= springing[i];

accelX[i] += deltaX[i];
accelY[i] += deltaY[i];

// move worm
x[i] += accelX[i];
y[i] += accelY[i];

fill(0);
stroke(255);
// draw worm
if (i<segments/2){
ellipse(x[i], y[i], i, i);

}
else {
ellipse(x[i], y[i], segments-i, segments-i);

}
// slow down springing
accelX[i] *= damping[i];
accelY[i] *= damping[i];

}
}

Figure 11-12.
Worm sketch

MOTION

509

11

617xCH11.qxd 4/17/07 1:57 PM Page 509

Earlier in the chapter, when we converted a single bouncing rectangle to multiple bounc-
ing rectangles, the problem mostly boiled down to converting single variables to arrays
and using for loops in setup() and draw() to process them; this is pretty much the case
with this last example. The springing principle works similarly to the previous Ravenous
Triangle II example. There are, however, two aspects that probably need clarification.

The first challenge with the worm was keeping the springing values within a logical range
so that the worm moved properly (based on my own aesthetic sense). I actually have no
idea about real worm motility—other than I suspect it involves slithering.

First, notice the for loop:

for (int i=0; i<segments; i++){
/* need to decrease both springing and
damping values as segments increase */
springing[i] = .05*(.07*(i+1));
damping[i] = .95-(.02*i);

}

This is where I initialized the springing[] and damping[] array values. I settled on the two
scary-looking expressions after some trial and error. I suspect other values could yield
even nicer worm movement. Since the springing of the ellipses, other than the initial one,
are based on each preceding ellipse, the springing values increased rapidly, creating an
interesting expanding and whipping wave pattern, but not a solid slithering worm. By
reducing the values of both the springing and damping each iteration of the for loop, I
was able to find a workable worm solution. Again, I urge you to mess around with these
values, obliterating the worm in the process—it won’t feel a thing.

For the food source, I wanted to created a simple wandering (invisible) bot that would
replace mouseX and mouseY in calculating the deltaX and deltaY values. I needed the food
source (fx, fy) to only control the lead ellipse, and I needed the other ellipses to each be
controlled by the preceding ellipse. Here’s the block of code that handles this:

// lead ellipse
if (i==0){
/* food position used to calculate the
initial ellipse of the worm */
deltaX[i] = (fx-x[i]);
deltaY[i] = (fy-y[i]);

}
else {
/* preceding ellipse used to calculate the

next ellipse of the worm */
deltaX[i] = (x[i-1]-x[i]);
deltaY[i] = (y[i-1]-y[i]);

}

The food source itself wanders around the display window based on trig functions with
some random values. It also bounces off the display window boundaries, keeping the
worm on the screen.

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

510

617xCH11.qxd 4/17/07 1:57 PM Page 510

Finally, the following code, which draws the actual worm, might need a little explanation:

stroke(255);
// draw worm
if (i<segments/2){
ellipse(x[i], y[i], i, i);

}
else {
ellipse(x[i], y[i], segments-i, segments-i);

}

I wanted the worm to have both a narrow anterior and posterior and a wider midsection.
The if...else block ensures that the ellipses would form in this basic structure. Again, try
messing with these values to create some other strange organisms.

An alternative spring approach

There is another way of simulating springs that some people may find easier than the
approach we just looked at. Consider the motion of a spring—does it suggest any other
form? A spring undulates, usually symmetrically, in a regular wave pattern. Thus, any equa-
tion that generates a wave should be able to simulate wave behavior. We used the trig
functions in Chapter 7 (on curves) to create waves, and we can use them here as well to
simulate spring behavior.

The next example, shown in Figure 11-13, is of a fairly realistic weight on a spring that
stretches as the weight moves. Clicking the screen resets the spring.

// Weight on a Spring
float x, y;
int w = 150, h = 100;
float angle, frequency = 5.0;
float amplitude, damping = .987;
int springSegments = 32, springWidth = 15;

void setup(){
size(400, 400);
x = width/2.0-w/2.0;
smooth();
strokeWeight(5);
fill(0);
setSpring();

}

void draw(){
background(255);
createSpring();
startSpring();

}

MOTION

511

11

617xCH11.qxd 4/17/07 1:57 PM Page 511

void startSpring(){
// spring behavior
y += cos(radians(angle))*amplitude;
amplitude*=damping;
angle+=frequency;

if (mousePressed){
setSpring();

}
}

void setSpring(){
y = 100;
angle = 0;
amplitude = 26.0;

}

void createSpring(){
// weight
quad(x+20, y, x+w-20, y, x+w, y+h, x, y+h);
// spring
for (int i=0; i<springSegments; i++){
// end segment
if (i==springSegments-1){
line(x+w/2+springWidth, (y/springSegments)*i, ➥

x+w/2, (y/springSegments)*(i+1));
}
else {
// alternate spring bend left/right
if (i%2==0){
line(x+w/2-springWidth, (y/springSegments)*i, ➥

x+w/2+springWidth, (y/springSegments)*(i+1));
}
else {
line(x+w/2+springWidth, (y/springSegments)*i, ➥

x+w/2-springWidth, (y/springSegments)*(i+1));
}

}
}

}

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

512

617xCH11.qxd 4/17/07 1:57 PM Page 512

Figure 11-13. Weight on a Spring sketch

Notice the actual springing code in the setSpring() function:

// spring behavior
y += cos(radians(angle))*amplitude;
amplitude*=damping;
angle+=frequency;

This code is very similar to other trig expressions used throughout the book. Again, by
damping a simple sine or cosine wave over time, you can create pretty realistic spring
motion. Lastly, notice within the createSpring() function that I used the modulus opera-
tor (%) when drawing the spring. I needed a way of alternating the plotting of the spring
coil right and left. By using the if...else block with the condition (i%2==0)—only an
even number leaves a remainder of 0 when divided by 2—I was able to accomplish this
easily.

We can build upon this concept by simulating some values for mass and spring strength. In
the next sketch, shown in Figure 11-14, I create a series of springs that have varying sizes
(representing differences in mass) and spring strengths, illustrated by varying the stroke
weight when drawing the springs. Based on these variations, the sketch simulates how
these different configurations might move. For example, a heavy weight attached to a
spring with a small rod diameter would stretch further than the same weight on a spring
with a wider diameter. The damping effect of the spring is based on the stroke weight as
well. Each time you run the sketch or click the mouse in the display window, random
values are generated for mass and spring strengths.

// Weights on Springs
int weights = 5;
float[]x = new float[weights];
float[]y = new float[weights];
float[]w = new float[weights];
float[]h = new float[weights];
float[]angle = new float[weights];

MOTION

513

11

617xCH11.qxd 4/17/07 1:57 PM Page 513

float[]frequency = new float[weights];
float[]amplitude = new float[weights];
float[]strokeWt = new float[weights];
float[]damping = new float[weights];
int springSegments = 24, springWidth = 8;

void setup(){
size(600, 400);
frameRate(30);
smooth();
fill(0);
setSpring();

}

void draw(){
background(255);
for (int i=0; i<weights; i++){
createSpring(x[i], y[i], w[i], h[i], strokeWt[i]);
noStroke();
fill(0);
// draw weights
quad(x[i], y[i], x[i]+w[i], y[i], x[i]+w[i]+w[i]*.2, ➥

y[i]+h[i], x[i]-w[i]*.2, y[i]+h[i]);
// spring behavior
y[i] = y[i]+cos(radians(angle[i]))*amplitude[i];
angle[i]+=frequency[i];
amplitude[i]*=damping[i];

}
// press the mouse to reset
if (mousePressed){
setSpring();

}
}

void setSpring(){
for (int i=0; i<weights; i++){
// size approximates mass
w[i] = random(20, 70);
h[i] = w[i];
// stroke weight approximates
// spring strength (resistance)
strokeWt[i] = random(1, 4);
x[i] = ((width/(weights+1))*i)+width/(weights+1)-w[i]/2.0;
y[i] = (w[i]*3)/strokeWt[i];
angle[i] = 0;
// spring speed
frequency[i] = strokeWt[i]*4;
// amplitude based on mass/spring strength
amplitude[i] = (w[i]*1.5)/strokeWt[i];

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

514

617xCH11.qxd 4/17/07 1:57 PM Page 514

// calc. damping based on strokeWeight
// simulates resistance of spring thickness
switch(round(strokeWt[i])){
case 1:
damping[i] = .99;
break;

case 2:
damping[i] = .98;
break;

case 3:
damping[i] = .97;
break;

case 4:
damping[i] = .96;
break;

}
}

}

//plot spring
void createSpring(float x, float y, float w, float h, float strokeWt){
stroke(50);
strokeWeight(strokeWt);
for (int i=0; i<springSegments; i++){
// for spring end segment
if (i==springSegments-1){
line(x+w/2+springWidth, (y/springSegments)*i, ➥

x+w/2, (y/springSegments)*(i+1));
}
else {
// alternate spring bend left/right
if (i%2==0){
line(x+w/2-springWidth, (y/springSegments)*i, ➥

x+w/2+springWidth, (y/springSegments)*(i+1));
}
else {
line(x+w/2+springWidth, (y/springSegments)*i, ➥

x+w/2-springWidth, (y/springSegments)*(i+1));
}

}
}

}

MOTION

515

11

617xCH11.qxd 4/17/07 1:57 PM Page 515

Figure 11-14. Weights on Springs sketch

Even the simplest wavy/springy behavior can be evocative and even humorous. I’ve cre-
ated two final spring examples that illustrate this. The first sketch is of a simple undulating
sine wave that moves across the display window. When I showed the initial state of this
sketch to my six-year-old son, he immediately saw its connection to the way water moves,
so I added an additional playful element. This example, entitled Beach Ball, is a bit long, so
I’ve provided it as a download, which you can find in the Download section of the friends
of ED website (www.friendsofed.com/downloads.html).

Soft-body dynamics

The second example is of a springy polygon that combines both approaches to springing
we’ve looked at this chapter. This sketch is loosely inspired by the brilliant Java work
Sodaplay (www.sodaplay.com/constructor/index.htm), created by Ed Burton and team at
Soda Creative (http://soda.co.uk/). The example illustrates (very) simple soft-body
dynamics. In rigid-body dynamics, objects collide and interact, but the objects themselves
don’t deform; think of a block of wood falling down the stairs. In soft-body dynamics, the
objects actually deform; think of a water balloon falling down the stairs (but not explod-
ing). People are often fascinated by these types of simulations (I know I am), and in many
ways they represent the ultimate illusion. Since we are more or less squishy, soft-bodied
organisms ourselves, these types of soft-body physics simulations represent a logical
extension of earlier creative attempts at human depiction—from cave paintings, to terra
cotta figures, to self-portraiture, to Shrek’s bouncing belly. Following is the code for
Hybrid Springy Dude: A Polygon with Attitude (shown in Figure 11-15):

/* Hybrid Springy Dude:
A Polygon with Attitude */
// center point
float centerX = 0, centerY = 0;
float radius = 60, rotAngle = -90;
float accelX, accelY;
float springing = .0085, damping = .98;

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

516

617xCH11.qxd 4/17/07 1:57 PM Page 516

http://soda.co.uk/

//corner nodes
int nodes = 5;
float nodeStartX[] = new float[nodes];
float nodeStartY[] = new float[nodes];
float[]nodeX = new float[nodes];
float[]nodeY = new float[nodes];
float[]angle = new float[nodes];
float[]frequency = new float[nodes];
// soft-body dynamics
float organicConstant = 1;

void setup(){
size(400, 400);
//center shape in window
centerX = width/2;
centerY = height/2;
// initialize frequencies for corner nodes
for (int i=0; i<nodes; i++){
frequency[i] = random(5, 12);

}
noStroke();
frameRate(30);

}

void draw(){
//fade background
fill(255, 100);
rect(0,0,width, height);
drawShape();
moveShape();

}

void drawShape(){
// calculate node starting locations
for (int i=0; i<nodes; i++){
nodeStartX[i] = centerX+cos(radians(rotAngle))*radius;
nodeStartY[i] = centerY+sin(radians(rotAngle))*radius;
rotAngle += 360.0/nodes;

}

// draw polygon
curveTightness(organicConstant);
fill(175);
beginShape();
for (int i=0; i<nodes; i++){
curveVertex(nodeX[i], nodeY[i]);

}
for (int i=0; i<nodes-1; i++){
curveVertex(nodeX[i], nodeY[i]);

MOTION

517

11

617xCH11.qxd 4/17/07 1:57 PM Page 517

}
endShape();

}

void moveShape(){
//move center point
float deltaX = mouseX-centerX;
float deltaY = mouseY-centerY;

// create springing effect
deltaX *= springing;
deltaY *= springing;
accelX += deltaX;
accelY += deltaY;

// move polygon's center
centerX += accelX;
centerY += accelY;

// slow down springing
accelX *= damping;
accelY *= damping;

// change curve tightness
organicConstant = 1-((abs(accelX)+abs(accelY))*.1);

//move nodes
for (int i=0; i<nodes; i++){
nodeX[i] = nodeStartX[i]+sin(radians(angle[i]))*(accelX*2);
nodeY[i] = nodeStartY[i]+sin(radians(angle[i]))*(accelY*2);
angle[i]+=frequency[i];

}
}

Figure 11-15. Hybrid Springy Dude sketch

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

518

617xCH11.qxd 4/17/07 1:57 PM Page 518

Springy Dude is not an accurate physics simulation. Instead, I used some random values as
an approximation for the spring and deformation. When the mouse moves, the entire
polygon springs, based on the original springing code we looked at earlier in the chapter.
The block of code controlling this overall movement is the following:

// move center point
float deltaX = mouseX-centerX;
float deltaY = mouseY-centerY;

// create springing effect
deltaX *= springing;
deltaY *= springing;
accelX += deltaX;
accelY += deltaY;

// move polygon's center
centerX += accelX;
centerY += accelY;

// slow down springing
accelX *= damping;
accelY *= damping;

I utilized a parenting approach with regard to the relationship between the polygon’s five
perimeter points (which aren’t rendered) and the shape’s central point. If you haven’t
done much computer animation before, this may not initially mean much to you. The cen-
tral problem in a sketch like Hybrid Springy Dude is how to maintain the shape, while
allowing both the form to move as a whole and its individual parts to move independently.

In a program like Flash, there are MovieClip data structures that can explicitly have parent
and nested child clips. Most 3D animation applications employ similar constructs. In
Processing, we don’t have this built-in structure (though of course we could build one).
Instead, in the example I used the variables centerX and centerY to represent the overall
coordinating point of the entire shape, which in a sense becomes the parent (or control
node).

I used trig functions both to calculate the nodes’ starting positions (relative to the shape’s
center point) and to create the spring effect on the shape’s vertices. To enable the shape
to return to its original polygonal structure after the springing, I needed to capture the
original point locations of the shape (relative to the control node). Here’s the block of
code that does that:

// calculate node starting locations
for (int i=0; i<nodes; i++){
nodeStartX[i] = centerX+cos(radians(rotAngle))*radius;
nodeStartY[i] = centerY+sin(radians(rotAngle))*radius;
rotAngle += 360.0/nodes;

}

MOTION

519

11

617xCH11.qxd 4/17/07 1:57 PM Page 519

The nodes are then moved with two other trig expressions:

//move nodes
for (int i=0; i<nodes; i++){
nodeX[i] = nodeStartX[i]+sin(radians(angle[i]))*(accelX*2);
nodeY[i] = nodeStartY[i]+sin(radians(angle[i]))*(accelY*2);
angle[i]+=frequency[i];

}

The two blocks of code are very similar. Again, the first block captures the nodes’ original
positions, which keep changing as the overall shape is moving. The second code block
takes care of moving the individual points. The springing movement of both the overall
form and the individual points is controlled by the variables accelX and accelY, which are
calculated in the overall spring code shown earlier.

Finally, the curvy deformation—from a rigid polygonal structure to an organic blob—is
based on the following line:

// change curve tightness
organicConstant = 1-((abs(accelX)+abs(accelY))*.1);

This line calculates a curve tightness value, which is fed into Processing’s curveTightness()
function when the shape is plotted, using a series of curveVertex() calls:

// draw polygon
curveTightness(organicConstant);
fill(175);
beginShape();
for (int i=0; i<nodes; i++){
curveVertex(nodeX[i], nodeY[i]);

}
for (int i=0; i<nodes-1; i++){
curveVertex(nodeX[i], nodeY[i]);

}
endShape();

You may remember from Chapter 7 (“Curves”) that the curveTightness() function con-
trols how the curve interpolation is handled between the curve vertices. I took advantage
of this really handy and simple-to-use function to create all the squishy, soft-body magic.

Advanced motion and object collisions
Earlier in the chapter we looked at a simple strategy for handling the collision of objects
with the display window. The steps included placing the object flush with the edge in case
the detection happened after the object had already passed through the edge, and then
reversing the speed value controlling the object’s motion—this was done for both axes.
Here’s another simple example of this basic collision approach:

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

520

617xCH11.qxd 4/17/07 1:57 PM Page 520

float x, y, r = 20;
float speedX = 2, speedY = 2.5;
void setup(){
size(400, 400);
x = width/2;
y = height/2;
noStroke();
smooth();

}
void draw(){
background(0);
x+=speedX;
y+=speedY;
ellipse(x, y, r*2, r*2);
// check wall collisions
if (x > width-r){
x = width-r;
speedX*=-1;

}
else if (x < r){
x = r;
speedX*=-1;

}
else if (y > height-r){
y = height-r;
speedY*=-1;

}
else if (y < r){
y = r;
speedY *=-1;

}
}

This strategy will work fine for orthogonal collisions, when the object bounces off a hori-
zontal or vertical surface. However, it won’t work for an object hitting an angular or curved
surface, including objects colliding with each other. The next section will show you how to
deal with these cases.

Vectors

To begin to think about these more advanced types of collisions, you need to consider
how an object’s path is controlled by the speed values you increment it by. In the last
example, I incremented x by 2 and y by 2.5. Obviously, since y is being increased more
each frame than is x, the object moves on more of a vertical path than a horizontal one.
Since neither speed value was 0, you could also predict that the object would move in
some type of diagonal path. If speedX had been 0, the object would have only moved ver-
tically. And of course the situation would have been reversed if speedY had been 0.

MOTION

521

11

617xCH11.qxd 4/17/07 1:57 PM Page 521

Returning to the original speed settings, speedX = 2, speedY = 2.5, what could you do if
you wanted to double the speed of the object, but not alter its direction? You could mul-
tiply both values by 2. This would cause the object to move faster, but still along the same
path. So what happened? I know this may seem pathetically simple, but the underlying
concepts are very important for what we’ll be doing (and not as simple as they may initially
seem).

When you double the speed settings, the object’s speed obviously increases, but the ratio
of the two speeds remains the same, keeping the object moving in the same direction. This
ratio relates to the slope of the line defining the movement of the object. You may recall
that slope is calculated as the change in y (∆y) over the change in x (∆x)—or the rise over
the run.

Thus, speed and direction can be thought of as two separate quantities; you can alter an
object’s speed while still maintaining its current direction. (It would be pretty hard to drive
a car safely if we couldn’t do this.) Mathematically, there is a convenient way of expressing
all this, namely in a structure called a vector.

I’ve mentioned vectors earlier in the book, and we’ll delve deeper into them in the final
chapters (on 3D) as well. A vector, for our current purposes, is a quantity that describes
both speed and direction, more commonly known as velocity.

In the next example, the two parts of the vector (direction and speed) are coded as sepa-
rate variables, to help illustrate their relationship. The sketch moves five rectangles in the
same direction, but at differing speeds.

float directionX = .56, directionY = .83;
float[] speeds = {.75, 1.3, 2.2, .92, 1.5};
float[] x = new float[5], y = new float[5];

void setup(){
size(400, 400);
noStroke();
fill(128);
smooth();

}
void draw(){
background(255);
for (int i=0; i<5; i++){
x[i] += directionX*speeds[i];
y[i] += directionY*speeds[i];
rect(x[i], y[i], 6, 6);

}
}

The variables directionX and directionY represent the direction the rectangles all travel.
The specific values .56 and .83 can be thought of as the base ratio of change along x and
y, respectively. In other words, even if we multiply both of these values by some very large
common constant, we increase the overall speed value, but we don’t affect the ratio
between these two values (which again controls the direction the rectangles are moving).

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

522

617xCH11.qxd 4/17/07 1:57 PM Page 522

Normalizing a vector

When working with vectors, it is common practice to find this base ratio of a vector, which
is referred to as normalizing a vector. Normalizing simply means reducing the magnitude
(length) of a vector to 1, which is done by dividing each component of a vector by its over-
all length. For example if you have vector v, you can find its length like this (expressed in
code):

length = sqrt(v.x*v.x + v.y*v.y);

Then to find the base ratio, you simply divide each of the vector’s components by its
length:

normalizedVector.x = v.x / length;
normalizedVector.y = v.y / length;

Again, this base ratio, or normalized vector, expresses the direction of the vector. For
example, if we have a line and we want to animate an ellipse at a certain speed along the
line, we can treat the line as a vector. Once we have the length of the line, we can nor-
malize it and use the normalized values as the direction for the ellipse to travel, which we
can then multiply by any speed we choose. Here’s a sketch that does precisely this (shown
in Figure 11-16):

// Moving Along a Vector
float lineX1, lineY1, lineX2, lineY2;
float vectX, vectY, vectMag, directionX, directionY;
float ellipseX, ellipseY;
float ellipseSpeed = 2;

void setup(){
size(400, 400);
fill(128);
smooth();
lineX1 = 100;
lineY1 = 75;
lineX2 = 300;
lineY2 = 325;

// express line as a vector
vectX = lineX2-lineX1;
vectY = lineY2-lineY1;

// find magnitude(length) of vector
vectMag = sqrt(vectX*vectX + vectY*vectY);

/* normalize vector to get
base direction ratio */
directionX = vectX/vectMag;
directionY = vectY/vectMag;

MOTION

523

11

617xCH11.qxd 4/17/07 1:57 PM Page 523

// start ellipse on line
ellipseX = lineX1;
ellipseY = lineY1;

}
void draw(){
background(255);
// draw line
line(lineX1, lineY1, lineX2, lineY2);

//draw ellipse
ellipse(ellipseX, ellipseY, 20, 20);

// move elipse
ellipseX += directionX * ellipseSpeed;
ellipseY += directionY * ellipseSpeed;

// keeps ellipse moving along line
if (ellipseX>lineX2 && ellipseY>lineY2 ||
ellipseX<lineX1 && ellipseY<lineY1) {
/* when ellipse reaches end of vector
reverse the vector's direction */
directionX *= -1;
directionY *= -1;

}
}

Figure 11-16. Moving Along a Vector sketch

In the sketch, I calculated the line as a vector by finding the difference between the com-
ponents (x and y) of each endpoint of the line (x2 – x1, y2 – y1). Since I subtracted the left-
most point of the line from the right, I found component values independent of the

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

524

617xCH11.qxd 4/17/07 1:57 PM Page 524

placement of the vector within the larger coordinate system. This is actually a feature of
vectors; it doesn’t matter where you put them—their direction and magnitude will remain
constant.

Once I got the vector’s components, I simply calculated the vector’s overall length and
then divided each component by this length, giving me the base direction ratio, which I
used in the calculation to move the ellipse, independent of the ellipse’s speed.

Applying vectors in collisions

Let’s now apply some of these vector principles to collisions. You already know how to
handle collisions against orthogonal surfaces, such as the display window boundaries.
However, the problem is quite a bit more complex when the collision surface is not orthog-
onal. The reason for this added complexity essentially boils down to a rotated coordinate
system problem. For example, in Figure 11-17, the collision depicted on the left takes place
against an orthogonal surface. The collision on the right, against a non-orthogonal surface,
can also be thought of as an orthogonal collision in a rotated coordinate system. As you
might guess, one solution to solving a non-orthogonal collision problem is to factor in this
coordinate rotation. I’ll discuss this solution shortly. First, however, I want to look at
another approach, borrowing a principle from physics: the law of reflection.

Figure 11-17. Orthogonal vs. non-orthonal collisions

The law of reflection

Figure 11-18 illustrates the law of reflection, which simply states that when light strikes a
surface, the angle of reflection is equal to the angle of incidence, relative to the surface
normal. The angle of incidence is the angle of the incoming ray striking the surface. A nor-
mal line is any line perpendicular to a surface. (It actually doesn’t matter where on the sur-
face this line is, since all perpendicular lines off a flat surface will be parallel.) Please also
note that the terms surface normal and normalizing a vector are unrelated. Remember
that normalizing involves dividing a vector’s components by the length of the vector. In
fact, in the next example, I’ll actually be normalizing the surface normal. Although this law
of reflection relates to how light reflects off of a surface, it works the same way for an
object bouncing off a surface.

MOTION

525

11

617xCH11.qxd 4/17/07 1:57 PM Page 525

Figure 11-18. Law of reflection

There is a very handy equation you can use to apply this principle: R = 2N(N • L) – L, where
R is the reflection vector, N is the surface normal (also a vector quantity), and L is the inci-
dent vector. Both the normal vector and the incident vector need to be normalized as well.
The expression (N • L) represents the dot product of the surface normal and the incident
vector. Since N and L are both vector quantities, you can’t simply multiply them together
the way you do two individual values (e.g., 5 ✕ 4). Instead, you have two options for mul-
tiplying vectors; one approach returns a single non-vector value (the dot product) and the
other approach returns another vector (the cross-product). For this example, you only
need to use the dot product calculation. When you get to Chapter 14, you’ll use the cross-
product along with the dot product.

The beauty of using this equation is that you don’t have to worry about rotating coordi-
nates. In the next example (shown in Figure 11-19), I created a non-orthogonal base plane
for the ellipse to deflect off of. To handle the actual collision detection, I treated the top
of the base as an array of point coordinates and checked the distance between the ellipse
and each of the individual points. Each time the ellipse hits the top of the display window,
the base top is recalculated.

/***
* Non-orthogonal Reflection:
* Based on the equation R = 2N(N•L)-L
* R = reflection vector
* N = normal
* L = incidence vector

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

526

617xCH11.qxd 4/17/07 1:57 PM Page 526

Ira Greenberg, 2/12/07
**/
float baseX1, baseY1, baseX2, baseY2;
float baseLength;
float[] xCoords, yCoords;
float ellipseX, ellipseY, ellipseRadius = 8;
float directionX, directionY;
float ellipseSpeed = 3.5;
float velocityX, velocityY;

void setup(){
size(400, 400);
fill(128);
smooth();
baseX1 = 0;
baseY1 = height-150;
baseX2 = width;
baseY2 = height;

// start ellipse at middle top of screen
ellipseX = width/2;

// calculate initial random direction
directionX = random(.1, .99);
directionY = random(.1, .99);

// normalize direction vector
float directionVectLength = sqrt(directionX*directionX + ➥

directionY*directionY);
directionX /= directionVectLength;
directionY /= directionVectLength;

}

void draw(){
// draw background
fill(0, 6);
noStroke();
rect(0, 0, width, height);

// calculate length of base top
baseLength = dist(baseX1, baseY1, baseX2, baseY2);
xCoords = new float[ceil(baseLength)];
yCoords = new float[ceil(baseLength)];

// fill base top coordinate array
for (int i=0; i<xCoords.length; i++){
xCoords[i] = baseX1 + ((baseX2-baseX1)/baseLength)*i;
yCoords[i] = baseY1 + ((baseY2-baseY1)/baseLength)*i;

}

MOTION

527

11

617xCH11.qxd 4/17/07 1:57 PM Page 527

// draw base
fill(200);
quad(baseX1, baseY1, baseX2, baseY2, baseX2, height, 0, height);

// calculate base top normal
float baseDeltaX = (baseX2-baseX1)/baseLength;
float baseDeltaY = (baseY2-baseY1)/baseLength;
float normalX = -baseDeltaY;
float normalY = baseDeltaX;

// draw ellipse
noFill();
stroke(200);
ellipse(ellipseX, ellipseY, ellipseRadius*2, ellipseRadius*2);

// calculate ellipse velocity
velocityX = directionX * ellipseSpeed;
velocityY = directionY * ellipseSpeed;

// move elipse
ellipseX += velocityX;
ellipseY += velocityY;

// normalized incidence vector
float incidenceVectorX = -directionX;
float incidenceVectorY = -directionY;

// detect and handle collision
for (int i=0; i<xCoords.length; i++){
// check distance between ellipse and base top coordinates
if (dist(ellipseX, ellipseY, xCoords[i], ➥

yCoords[i]) < ellipseRadius){

// calculate dot product of incident vector and base top normal
float dot = incidenceVectorX*normalX + ➥

incidenceVectorY*normalY;

// calculate reflection vector
float reflectionVectorX = 2*normalX*dot - incidenceVectorX;
float reflectionVectorY = 2*normalY*dot - incidenceVectorY;

// assign reflection vector to direction vector
directionX = reflectionVectorX;
directionY = reflectionVectorY;

// draw base top normal at collision point
stroke(255, 128, 0);
line(ellipseX, ellipseY, ellipseX-normalX*100, ➥

ellipseY-normalY*100);

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

528

617xCH11.qxd 4/17/07 1:57 PM Page 528

}
}

// detect boundary collision
// right
if (ellipseX > width-ellipseRadius){
ellipseX = width-ellipseRadius;
directionX *= -1;

}
// left
if (ellipseX < ellipseRadius){
ellipseX = ellipseRadius;
directionX *= -1;

}
// top
if (ellipseY < ellipseRadius){
ellipseY = ellipseRadius;
directionY *= -1;
// randomize base top
baseY1 = random(height-300, height);
baseY2 = random(height-300, height);

}
}

Figure 11-19. Non-orthogonal Reflection sketch

MOTION

529

11

617xCH11.qxd 4/17/07 1:57 PM Page 529

This is not a simple example, so I expect some of you may be scratching your heads a bit
reviewing the code. Notice at the top of the sketch, where I declared global variables, that
I created separate variables for directionX, directionY, and ellipseSpeed. Similarly, as in
the last example, I conceptualized the ellipse’s movement as a vector quantity, keeping
direction and speed as separate quantities. I also declared initial arbitrary values for
directionX and directionY. These two variables represent the direction of the incident
(incoming) vector. This vector must be normalized to be useful in the larger reflection cal-
culation (R = 2N(N • L) – L). I normalized the vector at the bottom of the setup() func-
tion, with the following lines:

// normalize direction vector
float directionVectLength = sqrt(directionX*directionX + ➥

directionY*directionY);
directionX /= directionVectLength;
directionY /= directionVectLength;

You’ll remember that to normalize a vector, you need to divide each of the vector’s com-
ponents by the overall length of the vector, which I did in the previous code snippet. Since
the variables directionX and directionY are randomly assigned values, I couldn’t assume
that they formed a vector with a length of 1 (the length of a normalized vector).

Within the draw() function, I used the following lines to calculate the coordinate values of
the top of the base, which were used in the collision detection:

// calculate length of base top
baseLength = dist(baseX1, baseY1, baseX2, baseY2);
xCoords = new float[ceil(baseLength)];
yCoords = new float[ceil(baseLength)];

// fill base top coordinate array
for (int i=0; i<xCoords.length; i++){
xCoords[i] = baseX1 + ((baseX2-baseX1)/baseLength)*i;
yCoords[i] = baseY1 + ((baseY2-baseY1)/baseLength)*i;

}

I used the length of the base top edge to instantiate two float arrays of the same length.
Since the baseLength calculation resulted in a float value, I was forced to convert the
float value to an int value to be able to use this value to initialize the lengths of the two
arrays. Next, using the for loop, I filled the two arrays with the coordinate values forming
the base top edge. I’ll assume you can make sense of the code that draws and moves the
ellipse, as we’ve looked at code like this before, including in the last example.

To calculate the base top edge’s normal, I needed to first generate the vector forming the
top edge of the base. I also normalized this vector. Both of these steps were taken care of
in the first two lines (following the comment) of the following code:

// calculate base top normal
float baseDeltaX = (baseX2-baseX1)/baseLength;
float baseDeltaY = (baseY2-baseY1)/baseLength;
float normalX = -baseDeltaY;
float normalY = baseDeltaX;

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

530

617xCH11.qxd 4/17/07 1:57 PM Page 530

In two dimensions, the surface normal of a vector is really just a line perpendicular to the
vector. In three dimensions, the situation is a bit more complicated and requires the use of
the cross-product calculation mentioned previously. We’ll look at the cross-product in the
book’s final chapter. Calculating the perpendicular line to a vector is very simple. To get
the x component of the normal, you simply reverse the sign of the vector’s y component,
and to get the y component of the normal, you take the vector’s x component, as illus-
trated in the last two lines of the previous snippet of code. Be aware, though, that every
vector actually has two perpendicular lines, facing opposite directions (once you know
one, just reverse its sign to find the other).

The block of code that handles most of the real heavy lifting in the draw() function is the
following:

// normalized incidence vector
float incidenceVectorX = -directionX;
float incidenceVectorY = -directionY;

// detect and handle collision
for (int i=0; i<xCoords.length; i++){
// check distance between ellipse and base top coordinates
if (dist(ellipseX, ellipseY, xCoords[i], ➥

yCoords[i]) < ellipseRadius){

// calculate dot product of incident vector and base top normal
float dot = incidenceVectorX*normalX + ➥

incidenceVectorY*normalY;

// calculate reflection vector
float reflectionVectorX = 2*normalX*dot - incidenceVectorX;
float reflectionVectorY = 2*normalY*dot - incidenceVectorY;

// assign reflection vector to direction vector
directionX = reflectionVectorX;
directionY = reflectionVectorY;

// draw base top normal at collision point
stroke(255, 128, 0);
line(ellipseX, ellipseY, ellipseX-normalX*100, ➥

ellipseY-normalY*100);
}

}

The directionX and directionY variables were normalized earlier in the sketch, so all I
needed to do was reverse their signs to generate the normalized incidence vector
(incidenceVectorX and incidenceVectorY). The for loop iterates though all the coordi-
nates forming the base’s top edge, and the conditional statement checks if the ellipse’s
distance relative to the base’s top edge is less than the ellipse’s radius—in which case a
collision is detected. Once detected, the dot product is calculated by multiplying the inci-
dence vector and normal vector’s x and then y components, respectively, and adding these
values together. This calculation works the same way for three dimensions—by simply

MOTION

531

11

617xCH11.qxd 4/17/07 1:57 PM Page 531

adding the z component into the mix. I’m not going to go into the theory behind the dot
product here, but I will discuss it when I cover 3D in Chapter 14. If you just can’t wait,
though, Wikipedia has some good stuff to say about it at http://en.wikipedia.org/
wiki/Dot_product.

Following the dot product calculation, I calculate the reflection vector, plugging in the val-
ues I’ve previously calculated. Finally, I assign the reflection vector to the original direction
vector and display the normal at the point of collision. If the code is working, you should
see that the angle formed between the base edge normal and the incoming incidence vec-
tor is equal to the angle between the outgoing reflection vector and the normal. The
remainder of the code handles display window boundary detection and also resets the
base’s top edge whenever the ellipse makes contact with the top of the display window.

A better way to handle non-orthogonal collisions

Although the last example successfully handled angled collisions, there are some chal-
lenges in trying to extend this solution to handle object-object collisions as well trying to
add simple physics, like gravity and drag. There is another collision solution that
ActionScript guru Keith Peters writes about in his excellent book Foundation ActionScript
Animation: Making Things Move! Although Keith’s book deals with ActionScript, not
Processing, I highly recommend it as a general graphics coding guide.

The solution Keith writes about deals with considering angled collisions as a rotated coor-
dinate system problem, instead of focusing on trying to calculate the actual reflection
angle. It works like this: if you take any 2D collision, you can always rotate the local coor-
dinates so that the collision happens orthogonally (shown in Figure 11-20). For example,
suppose a ball strikes a surface at a 40-degree angle. Rather than trying to calculate the
angle of reflection, taking into account both the ball’s incidence vector and the angle of
the collision surface, you can rotate the surface and velocity vector (in this case –40
degrees) so that the collision surface is orthogonal (perfectly horizontal or vertical). Once
rotated, you can handle the reflection the same way you do with collisions against the
edges of the display window—simply reverse the sign of the appropriate velocity vector
coordinate; finally, the last step is rotating everything back to where it was prior to the
rotation.

Figure 11-20. Handling non-orthogonal collisions by rotating coordinates

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

532

617xCH11.qxd 4/17/07 1:57 PM Page 532

http://en.wikipedia.org/

We’ll look at this process in steps. The first step is handling the rotation of the collision
surface and velocity vector. Remember your trusted rotation expressions:

x = cos(theta)*radius
y = sin(theta)*radius

These expressions hopefully look very familiar by now. They allow you to plot any point
based on theta (the angle of rotation expressed in radians) and a radius. These equations
are immensely handy in code art. However, there is another somewhat more complicated
form of the expressions that makes them even handier (and absolutely essential for calcu-
lating 3D rotations). The two expressions just mentioned are actually derived from their
more powerful trig brethren:

new x = cos(theta)*x - sin(theta)*y
new y = cos(theta)*y + sin(theta)*x

Whoa! Now don’t freak out yet. The main difference between the two forms of the expres-
sions is that the familiar shorter ones are used when the angle of rotation begins at 0. The
longer forms of the expressions are used when the rotation represents a change of rota-
tion (not necessarily beginning at 0 on the unit circle) and is also based on a specific point
location (x and y). In the next example, I’ll use these expressions to rotate a simple line
around the center point of the display window (press the mouse to make the line rotate
from its current position):

/* Trig Rotation Expressions
-mouse press to rotate
Special thanks to kirupa.com*/

float[] x = new float[2];
float[] y = new float[2];
float[] newX = new float[2];
float[] newY = new float[2];
float theta;

void setup(){
size(400, 400);
float t = random(TWO_PI);
/* I used the simple trig rotation form
to generate the original line coords */
x[0] = cos(t)*-50;
y[0] = sin(t)*-50;
x[1] = cos(t)*50;
y[1] = sin(t)*50;

}

void draw(){
background(255);
translate(width/2, height/2);
/* I used the longer trig rotation form to
rotate based on the existing rotation */

MOTION

533

11

617xCH11.qxd 4/17/07 1:57 PM Page 533

newX[0] = cos(theta)*x[0] - sin(theta)*y[0];
newY[0] = cos(theta)*y[0] + sin(theta)*x[0];
newX[1] = cos(theta)*x[1] - sin(theta)*y[1];
newY[1] = cos(theta)*y[1] + sin(theta)*x[1];
line(newX[0], newY[0], newX[1], newY[1]);
// to rotate
if (mousePressed){
theta += radians(1);

}
}

Notice in the last example that I used the short form of the trig expressions in the setup()
function to calculate the initial coordinate values for the line, which was rotated with a
random angle between 0 and 2pi. I then used the longer form of the expressions in the
draw() function to further rotate the line based on the line’s current coordinate locations;
using the longer form allowed for a smooth transition between the rotations. One final
note about these expressions: By changing the value of the signs in the expression, you can
reverse the direction of the rotation. Thus, the expressions

new x = cos(theta)*x - sin(theta)*y
new y = cos(theta)*y + sin(theta)*x

rotate clockwise, but the expressions

new x = cos(theta)*x + sin(theta)*y
new y = cos(theta)*y - sin(theta)*x

rotate counterclockwise.

If you’re curious how the two forms of the trig expressions relate, I’ll clue you
in. Starting with the long form of the expressions

new x = cos(theta)*x - sin(theta)*y
new y = cos(theta)*y + sin(theta)*x

assume the angle of rotation starts at 0, which will make x equal to the radius
(on the unit circle) and y equal to 0. Next, plug these values for x and y into the
longer form, giving you the following:

new x = cos(theta)*radius - sin(theta)*0
new y = cos(theta)*0 + sin(theta)*radius

If you then factor out the 0 values, you’re left with the familiar short form:

new x = cos(theta)*radius
new y = sin(theta)*radius

To learn more, check out Kirupa Chinnathambi’s fabulous site at www.kirupa.
com/developer/actionscript/trig_multiple_axis.htm.

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

534

617xCH11.qxd 4/17/07 1:57 PM Page 534

Asteroid shower in three stages
Now we’ll apply these expressions to our non-orthogonal collision problem, for which
we’ll slowly develop an asteroid shower animation. In my kinder, gentler version, asteroids
pummeling Earth don’t cause cataclysmic destruction, but harmlessly bounce off the
planet’s surface.

In the first stage of the asteroid shower animation, I’ll create a single orb that bounces off
a non-orthogonal surface.

Stage 1: Single orb

The sketch will be developed using six tabs, including the main sketch tab. Three of the
tabs you’ll create will hold classes and the other two will hold functions. The first new tab
I’ll create is for a Ground class. Create a new tab and name it Ground. Enter the following
code into the tab:

class Ground {
float x1, y1, x2, y2;
float x, y, len, rot;

// default constructor
Ground(){
}

// constructor
Ground(float x1, float y1, float x2, float y2) {
this.x1 = x1;
this.y1 = y1;
this.x2 = x2;
this.y2 = y2;
x = (x1+x2)/2;
y = (y1+y2)/2;
len = dist(x1, y1, x2, y2);
rot = atan2((y2-y1), (x2-x1));

}
}

This is a relatively simple class. Objects of the class are instantiated using four arguments,
specifying the left and right coordinates of the top surface of the ground plane. In addi-
tion, within the constructor, a center point (x, y) of the surface is calculated, as is the
ground surface length and the angle of rotation of the surface. Notice how I found the
angle of rotation using the following expression:

rot = atan2((y2-y1), (x2-x1));

You looked at the atan2() function earlier in the chapter. Remember that you can use the
standard trig functions sin(), cos(), and tan() to translate a rotation in the polar coordi-
nate system to a specific coordinate value in the Cartesian system; and you can use the

MOTION

535

11

617xCH11.qxd 4/17/07 1:57 PM Page 535

inverse of these functions (referred to as the arc functions) to go in the other direction
(find the angle of rotation beginning with some Cartesian coordinates).

Next I’ll add an Orb class, which is very simple and self-explanatory. Add the following code
to a new tab named Orb:

class Orb{
float x, y, r;

// default constructor
Orb() {
}

Orb(float x, float y, float r) {
this.x = x;
this.y = y;
this.r = r;

}
}

I created a really simple 2D vector class for the orb’s velocity. Create a tab named Vect2D
and enter the following code:

class Vect2D{
float vx, vy;

// default constructor
Vect2D() {
}

Vect2D(float vx, float vy) {
this.vx = vx;
this.vy = vy;

}
}

These are all the classes you’ll need. To handle the collision detection between the orb and
the non-orthogonal surface, as well as the display window edges, you’ll use two functions.
First you’ll tackle the easier, orthogonal (display window edge) collision. Create a new tab
called checkWallCollision and enter the following code:

void checkWallCollision(){
if (orb.x > width-orb.r){
orb.x = width-orb.r;
velocity.vx *= -1;
velocity.vx *= damping;

}
else if (orb.x < orb.r){
orb.x = orb.r;
velocity.vx *= -1;

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

536

617xCH11.qxd 4/17/07 1:57 PM Page 536

velocity.vx *= damping;
}

}

There’s nothing new here. You’ve dealt with these types of orthogonal collisions a number
of times before. The steps to handle the wall collision, as a refresher, are as follows:

1. Keep the orb from moving too far through the wall by assigning the precise value
of the point of collision to the orb’s x property (orb.x = width-orb.r;).

2. Reverse the orb’s velocity (along the x-axis).

3. Optionally dampen the velocity along the x-axis upon collision.

Finally, the ground collision function is where you’ll rotate the coordinate space to tem-
porarily convert the challenging non-orthogonal collision problem to a much simpler
orthogonal one. Create a tab named checkGroundCollision and enter the following code:

void checkGroundCollision() {

// get difference between orb and ground
float deltaX = orb.x - ground.x;
float deltaY = orb.y - ground.y;

// precalculate trig values
float cosine = cos(ground.rot);
float sine = sin(ground.rot);

/* rotate ground and velocity to allow
orthogonal collision calculations */
float groundXTemp = cosine * deltaX + sine * deltaY;
float groundYTemp = cosine * deltaY - sine * deltaX;
float velocityXTemp = cosine * velocity.vx + sine * velocity.vy;
float velocityYTemp = cosine * velocity.vy - sine * velocity.vx;

// ground collision
if (groundYTemp > -orb.r){
// keep orb from going into ground
groundYTemp = -orb.r;
// bounce and slow down orb
velocityYTemp *= -1.0;
velocityYTemp *= damping;

}

// reset ground, velocity and orb
deltaX = cosine * groundXTemp - sine * groundYTemp;
deltaY = cosine * groundYTemp + sine * groundXTemp;
velocity.vx = cosine * velocityXTemp - sine * velocityYTemp;
velocity.vy = cosine * velocityYTemp + sine * velocityXTemp;
orb.x = ground.x + deltaX;
orb.y = ground.y + deltaY;

}

MOTION

537

11

617xCH11.qxd 4/17/07 1:57 PM Page 537

I suspect this function needs some going over. The initial lines in the function

// get difference between orb and ground
float deltaX = orb.x - ground.x;
float deltaY = orb.y - ground.y;

calculate the difference between the orb and the center point of the line defining the
ground plane. These values, assigned to deltaX and deltaY, will be fed into the long form
of the trig expressions I discussed earlier. Remember, the long form trig expressions rotate
existing coordinates (represented by deltaX and deltaY) by adding to their current rota-
tion. The current rotation we’re interested in is calculated in the Ground class’s construc-
tor, which defines the amount that the ground edge is rotated from being perfectly
horizontal (orthogonal).

Next in the function, the values for cosine and sine are calculated using the current rota-
tion value (accessible through the property ground.rot):

float cosine = cos(ground.rot);
float sine = sin(ground.rot);

These two lines may look odd and even unnecessary. In truth, they are unnecessary, as you
could call the individual trig functions in all the rotation expressions following in the code.
However, there is a processing cost every time a trig function is called; and more impor-
tantly, each frame, all the trig-based expressions (eight in total) will use the same trig
values. (Remember, by default, Processing runs your sketches at 60 frames per second.) As
such, precalculated trig values make the program more efficient.

Now the fun begins. The following lines perform the rotation of the ground and the orb’s
velocity:

/* rotate ground and velocity to allow
orthogonal collision calculations */
float groundXTemp = cosine * deltaX + sine * deltaY;
float groundYTemp = cosine * deltaY - sine * deltaX;
float velocityXTemp = cosine * velocity.vx + sine * velocity.vy;
float velocityYTemp = cosine * velocity.vy - sine * velocity.vx;

These expressions hopefully look familiar. The ground and orb’s velocity are rotated the
same amount, so that the ground surface is perfectly horizontal. This is only a temporary
calculation, allowing you to perform a simpler reflection calculation (following shortly).
The ground and velocity are not actually rotated. In fact, notice that the values returned
from the four expressions are returned to four temporary variables: groundXTemp,
groundYTemp, velocityXTemp, and velocityYTemp. Remember also that the signs in
the four trig expressions relate to the direction of rotation. When I eventually rotate the
ground and velocity back, I’ll use the same long form trig expressions with the signs
reversed.

Now that you have some values based on an orthogonal collision, you can handle the col-
lision nearly the same way you did for the walls:

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

538

617xCH11.qxd 4/17/07 1:57 PM Page 538

// ground collision
if(groundYTemp > -orb.r){
// keep orb from going into ground
groundYTemp = -orb.r;
// bounce and slow down orb
velocityYTemp *= -1.0;
velocityYTemp *= damping;

}

Up until now, when handling orthogonal collisions, I’ve been checking if the object’s x or y
property was past its respective x or y boundary. However, in the ground collision condi-
tional block, I’m checking if the difference (along the y-axis) between the orb and the
ground is greater than the negative of the orb’s radius; this reads like one of those annoy-
ing logic problems on a standardized test (sorry). You’ll remember that, a few paragraphs
back, the variable deltaY was assigned the difference between the orb’s y position and the
ground’s y position; that value was then rotated and assigned to the variable groundYTemp.
As the orb nears the ground, the difference between their y values will decrease, until the
orb passes through the ground, at which time this value will begin increasing. Before the
orb actually hits the ground, though, as the difference between the orb and ground’s y
value continues to decrease, there will be a point when the orb’s center point is the same
distance from the ground as the orb’s radius—which would make the expression orb.
y-ground.y equal to -orb.r. When the orb then moves one more pixel toward the
ground, the difference between orb.y and ground.y, though still negative, will be greater
than -orb.r, and the conditional will evaluate to true. You may have to read that a few
times to get it; or just embrace the temporary confusion—I do it all the time. Once the
conditional evaluates to true, the steps to reflect the orb should be old hat and self-
explanatory.

Now that the ground and velocity have been rotated, allowing you to successfully detect
and reflect the orb, all that’s left to do is reset the ground and velocity back to their initial
non-orthogonal rotations and update the position of the orb:

// reset ground, velocity and orb
deltaX = cosine * groundXTemp - sine * groundYTemp;
deltaY = cosine * groundYTemp + sine * groundXTemp;
velocity.vx = cosine * velocityXTemp - sine * velocityYTemp;
velocity.vy = cosine * velocityYTemp + sine * velocityXTemp;
orb.x = ground.x + deltaX;
orb.y = ground.y + deltaY;

The first four lines of code use the same long form trig functions we looked at earlier, but
the signs in the expressions are reversed, and the ground and velocity temp values are now
used as the current coordinates. Remember, reversing the signs in the expression will have
the effect of causing the rotation to go in the opposite direction—putting the ground and
velocity back in their original non-orthogonal positions. Of course, as I mentioned earlier,
the ground and velocity were not actually affected, rather the four temp variables
(groundXTemp, groundYTemp, velocityXTemp, and velocityYTemp) were assigned the
rotated values. Now, however, the orb’s velocity is updated by the trig expressions, as is
the orb’s position, based on the ground coordinates and the updated deltaX and deltaY
variables.

MOTION

539

11

617xCH11.qxd 4/17/07 1:57 PM Page 539

To run the completed sketch (shown in Figure 11-21), you’ll need the Orb, Ground, and
Vect2D classes, the checkWallCollision() and checkGround() functions, and the follow-
ing code, which should be entered in the leftmost main tab:

/**
Non-orthogonal Collision
Based on Rotated Coordinates

* Based on Keith Peters's Solution in
* Foundation ActionScript Animation:
* Making Things Move!
* http://www.friendsofed.com/book.html?➥

* isbn=1590597915
***/

Orb orb;
Vect2D velocity;
float gravity = .05, damping = 0.6;
Ground ground;

void setup(){
size(400, 400);
smooth();
orb = new Orb(50, 50, 3);
velocity = new Vect2D(.5, 0);
// random ground slope
ground = new Ground(0, random(250, 390), ➥

width, random(250, 390));
}

void draw(){
// background
noStroke();
fill(0, 15);
rect(0, 0, width, height);

// move orb
orb.x += velocity.vx;
velocity.vy += gravity;
orb.y += velocity.vy;

// draw ground
fill(127);
beginShape();
vertex(ground.x1, ground.y1);
vertex(ground.x2, ground.y2);
vertex(ground.x2, height);
vertex(ground.x1, height);
endShape(CLOSE);

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

540

617xCH11.qxd 4/17/07 1:57 PM Page 540

http://www.friendsofed.com/book.html?�

// draw orb
noStroke();
fill(200);
ellipse(orb.x, orb.y, orb.r*2, orb.r*2);

// collision detection
checkWallCollision();
checkGroundCollision();

}

Figure 11-21. Non-orthogonal Collision Based on Rotated Coordinates
sketch

Each time you run the sketch, a randomly sloped ground plane is created. I didn’t bother
to actually draw the ground plane normal as I did in the earlier example, but notice how
the angle of incidence of the orb and the angle of reflection are symmetrical based on
where the normal would be perpendicular to the ground.

Stage 2: Segmented ground plane

In the next stage of the sketch, shown in Figure 11-22, I’ll add a segmented ground plane,
allowing the orb to bounce more erratically from numerous collisions on different angled
surfaces. The three classes and the checkWallCollision() function will remain
unchanged. Some minor modifications will need to be made to the main tab and the
checkGroundCollision() function. The changes to the existing code are in bold. Here’s
the code for the main sketch tab:

MOTION

541

11

617xCH11.qxd 4/17/07 1:57 PM Page 541

/***
* Non-orthogonal Collision with
* Multiple Ground Segments

* Based on Keith Peters's Solution in
* Foundation ActionScript Animation:
* Making Things Move!
* http://www.friendsofed.com/book.html? ➥

* isbn=1590597915
***/

Orb orb;
Vect2D velocity;
float gravity = .05, damping = 0.8;
int segments = 40;
Ground[] ground = new Ground[segments];
float[] peakHeights = new float[segments+1];

void setup(){
size(400, 400);
smooth();
orb = new Orb(50, 50, 3);
velocity = new Vect2D(.5, 0);

// calculate ground peak heights
for (int i=0; i<peakHeights.length; i++){
peakHeights[i] = random(height-100, height-90);

}

/* float value required for segment width (segs)
calculations so the ground spans the entire
display window, regardless of segment number. */
float segs = segments;
for (int i=0; i<segments; i++){
ground[i] = new Ground(width/segs*i, peakHeights[i], ➥

width/segs*(i+1), peakHeights[i+1]);
}

}

void draw(){
// background
noStroke();
fill(0, 15);
rect(0, 0, width, height);

// move orb
orb.x += velocity.vx;
velocity.vy += gravity;
orb.y += velocity.vy;

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

542

617xCH11.qxd 4/17/07 1:57 PM Page 542

http://www.friendsofed.com/book.html?

// draw ground
fill(127);
beginShape();
for (int i=0; i<segments; i++){
vertex(ground[i].x1, ground[i].y1);
vertex(ground[i].x2, ground[i].y2);

}
vertex(ground[segments-1].x2, height);
vertex(ground[0].x1, height);
endShape(CLOSE);

// draw orb
noStroke();
fill(200);
ellipse(orb.x, orb.y, orb.r*2, orb.r*2);

// collision detection
checkWallCollision();
for (int i=0; i<segments; i++){
checkGroundCollision(ground[i]);

}
}

The changes to the code in the main tab all relate to dividing the ground plane into mul-
tiple segments; all the other code remains the same in this tab. The new segments variable
controls how many segments the ground is divided up into. I calculated the segment coor-
dinates in the ground[] array so that each segment would connect to the segments on
either side of itself, creating one continuous undulating surface. The height of the undula-
tion is calculated randomly, with the y-coordinates of the line stored in the peakHeights[]
array. Finally, since each segment now needs to be rotated to handle a potential orb colli-
sion with its surface, I used a for loop to call checkGroundCollison(ground[i]), passing
in each segment one at a time. This approach also allowed me to keep the implementation
of this function almost identical to the original, by simply adding a parameter to the func-
tion signature. The following code block shows this function (changes to the original
checkGroundCollison() function are displayed in bold):

void checkGroundCollision(Ground groundSegment) {

// get difference between orb and ground
float deltaX = orb.x - groundSegment.x;
float deltaY = orb.y - groundSegment.y;

// precalculate trig values
float cosine = cos(groundSegment.rot);
float sine = sin(groundSegment.rot);

/* rotate ground and velocity to allow
orthogonal collision calculations */
float groundXTemp = cosine * deltaX + sine * deltaY;

MOTION

543

11

617xCH11.qxd 4/17/07 1:57 PM Page 543

float groundYTemp = cosine * deltaY - sine * deltaX;
float velocityXTemp = cosine * velocity.vx + sine * velocity.vy;
float velocityYTemp = cosine * velocity.vy - sine * velocity.vx;

/* ground collision - check for surface
collision and also that orb is within
left/rights bounds of ground segment */
if (groundYTemp > -orb.r &&
orb.x > groundSegment.x1 &&
orb.x < groundSegment.x2){
// keep orb from going into ground
groundYTemp = -orb.r;
// bounce and slow down orb
velocityYTemp *= -1.0;
velocityYTemp *= damping;

}

// reset ground, velocity and orb
deltaX = cosine * groundXTemp - sine * groundYTemp;
deltaY = cosine * groundYTemp + sine * groundXTemp;
velocity.vx = cosine * velocityXTemp - sine * velocityYTemp;
velocity.vy = cosine * velocityYTemp + sine * velocityXTemp;
orb.x = groundSegment.x + deltaX;
orb.y = groundSegment.y + deltaY;

}

The parameter groundSegment obviously needed to replace the variable ground in the
original function. Other than that, the only additional change was in the conditional block
that checks for the actual collision. In the original version of the function, I didn’t need to
check if the orb was too far left or right, since there was only one collision surface span-
ning the entire display window. However, once I divided the ground into segments, I
needed a way to limit the collision detection to the width of each respective segment. I
accomplished this by simply adding a left and right boundary check in the conditional test
(shown following):

if (groundYTemp > -orb.r &&
orb.x > groundSegment.x1 &&
orb.x < groundSegment.x2)

...

Make sure you try running this sketch and experimenting with (at least) the segments
value and the peak heights random value range (displayed in bold in the following code).
You can also of course mess with gravity, damping, orb, and velocity instantiation values.

// calculate ground peak heights
for (int i=0; i<peakHeights.length; i++){
peakHeights[i] = random(height-100, height-90);

}

Please note that if you push the peak heights random value range really far (e.g., height-300,
height-10) you might get some strange results—which I of course recommend trying.

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

544

617xCH11.qxd 4/17/07 1:57 PM Page 544

Figure 11-22. Non-orthogonal Collision with Multiple Ground Segments
sketch

Stage 3: Asteroid shower

In the final stage of the sketch, shown in Figure 11-23, I’ll add multiple orbs to the seg-
mented ground plane. In addition, in the hope of creating something a little more visually
interesting, I’ll convert the flat, undulating ground plane to a curved, undulating planet,
and I’ll attach an image map to the geometry. I’ll also add inspirational twinkling stars and
some fiery colors to the asteroid shower.

As with stage 2, the Ground, Orb, and Vect2D classes remain unchanged. You just need to
edit the code in the main tab and add some parameters to the checkGroundCollision()
and checkWallCollision() functions. Following is the main tab code (note that, since the
majority of the following code is different from the last sketch, I didn’t put the changes in
bold):

/***
* Asteroid Shower
* Non-orthogonal Collision with
* Multiple Ground Segments and
* Multiple Orbs

* Based on Keith Peters's Solution in
* Foundation ActionScript Animation:

MOTION

545

11

617xCH11.qxd 4/17/07 1:57 PM Page 545

* Making Things Move!
* http://www.friendsofed.com/book.html? ➥

* isbn=1590597915
***/

// orbCount minimum is 2
int orbCount = 140;
Orb[] orb = new Orb[orbCount];
Vect2D[] velocity = new Vect2D[orbCount];
color[] cols = new color[orbCount];
float[] damping = new float[orbCount];
float gravity = .03;
float sprayRadius = .3;
float birthRate = .4;
float emitter = 0;
float dampingMin = .5, dampingMax = .85;

// min of 6 segments required
int segments = 200;

Ground[] ground = new Ground[segments];
float[] peakHeights = new float[segments+1];

// controls ground undulation
float groundTexture = 3.5;

// earth image map
PImage p;

// stars
int starCount = 500;
Point[] stars = new Point[starCount];

void setup(){
size(400, 400, P3D);

// load image map
p = loadImage("earth.png");

// stars
for (int i=0; i<starCount; i++){
stars[i] = new Point(int(random(width)), int(random(height)));

}

// set array values
for (int i=0; i<orbCount; i++){
orb[i] = new Orb(random(5, 10), 0, random(.5, 2));
velocity[i] = new Vect2D(1 + random(-sprayRadius, ➥

sprayRadius), 0);

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

546

617xCH11.qxd 4/17/07 1:57 PM Page 546

http://www.friendsofed.com/book.html?

damping[i] = random(dampingMin, dampingMax);
cols[i] = color(random(200, 255), random(255), ➥

random(100), random(20, 255));
}

// calculate ground peakHeights
for (int i=0; i<peakHeights.length; i++){
peakHeights[i] = random(-groundTexture, groundTexture);

}

// calculate points for planet surface, along arc.
float ang = 200.0;
float[] px = new float[segments+1];
float[] py = new float[segments+1];
for (int i=0; i<segments; i++){
px[i] = width-50 + cos(radians(ang))*(width*1.3+peakHeights[i]);
py[i] = height*1.75 + sin(radians(ang))*(height+peakHeights[i]);
ang+=90.0/segments;

}

// instantiate Ground objects
for (int i=0; i<segments; i++){
ground[i] = new Ground(px[i], py[i], px[i+1], py[i+1]);

}
}

void draw(){
// background
noStroke();
fill(0, 15);
rect(0, 0, width, height);

// draw stars
for (int i=0; i<starCount; i++){
stroke(random(100, 255), random(255));
point(stars[i].x, stars[i].y);

}

// draw earth
noStroke();
// bring alpha back to 100%
fill(0, 255);
beginShape();
texture(p);
float imageShiftX = 20;
float imageShiftY = -240;
for (int i=0; i<segments; i++){
vertex(ground[i].x1, ground[i].y1, ground[i].x1+imageShiftX, ➥

ground[i].y1+imageShiftY);

MOTION

547

11

617xCH11.qxd 4/17/07 1:57 PM Page 547

}
vertex(ground[segments-1].x1, ground[0].y1, ➥

ground[segments-1].x1+ imageShiftX, ➥

ground[0].y1+imageShiftY);
vertex(ground[0].x1, ground[0].y1, ground[0].x1+imageShiftX, ➥

ground[0].y1+imageShiftY);
endShape(CLOSE);

// draw and move orb
for (int i=0; i<emitter; i++){
orb[i].x += velocity[i].vx;
velocity[i].vy += gravity;
orb[i].y += velocity[i].vy;

fill(cols[i]);
ellipse(orb[i].x, orb[i].y, orb[i].r*2, orb[i].r*2);

// collision detection
checkWallCollision(orb[i], velocity[i], damping[i]);
for (int j=0; j<segments; j++){
checkGroundCollision(ground[j], orb[i], velocity[i], damping[i]);

}
}
if (emitter < orbCount-1){
emitter += birthRate;

}
}

Besides adding multiple orbs in this example, I added some convenient variables for
changing things like birthrate of the orbs, radius of the spray of orbs, and degree of
ground texture. In addition, as I mentioned earlier, I added an image of Earth, which I
mapped onto the ground surface, and twinkling stars in the background. These and some
other variables were declared at the top of the code (as usual), above the setup() func-
tion. Notice also that I used Java’s Point class to declare the stars array. I’ve used this class
in other places throughout the book. The Point class includes convenient public x and y
properties.

I instantiated and initialized stuff in the setup() function, as you’ve seen me do many
times before. What is new, though, is the third argument I added to the size(400, 400,
P3D) function call. P3D is the name of the Processing software 3D rendering engine. When
P3D is added as a third argument in size(), P3D becomes the current renderer, replacing
the default JAVA2D renderer. I needed the P3D renderer to be able to map the Earth
image onto the ground geometry.

I decided to use arrays for both damping and colors, allowing the orbs to bounce to dif-
ferent heights and also to be filled with their own colors. Since gravity should make all the
objects fall at the same rate, I thought varying the damping values would create a more
interesting waterfall effect once the orbs hit the planet. You can think of the damping
value as controlling the elastic property of each orb.

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

548

617xCH11.qxd 4/17/07 1:57 PM Page 548

Rather than deal with another flat, undulating surface, I used some trig functions to calcu-
late the planet surface as an arc. The two expressions that create the arc

px[i] = width-50 + cos(radians(ang))*(width*1.3+peakHeights[i]);
py[i] = height*1.75 + sin(radians(ang))*(height+peakHeights[i]);

are pretty ugly and (dare I say) use magic numbers. I spent way too much time on this
chapter, so I kind of took the easy way out (sorry). Feel free to mess with these values to
change the planet’s shape, or better yet, try to improve the expressions by losing the
magic numbers.

In the draw() function, after drawing the fading background and stars, I created the Earth
(yeah, I’m pretty powerful). Notice after the beginShape() function call, the following line:

texture(p);

This call, in a sense, turns on texture mode, allowing images to be mapped to geometry in
Processing, using beginShape(), endShape(), and vertex() calls. The texture() call needs
to be called between beginShape() and endShape(), and before any vertex() calls. The
argument p should be the image you want to map to the geometry. This image should be
loaded earlier in your sketch (after it has been added to the sketch’s data directory), as I
did in the setup() function.

Image mapping in Processing follows a common approach, used in other 3D environ-
ments, utilizing uv coordinates. u and v represent the coordinate space in which to put an
image. Unlike x, y, and z, which each map to a specific axis, u and v represent a more sym-
bolic type of space that relates to the object’s vertices. For example, I can specify a point
in xyz space that also has uv components. This structure allows 3D geometry to be plotted
along the x-, y-, and z-axes, while also enabling an image to be attached to the geometry,
with some flexibility; the image can be mapped different ways to the actual vertex geom-
etry it’s connected to. Once an image is mapped to the geometry using uv coordinates, it
can be deformed along with the geometry, allowing for very realistic morphing effects. For
now, I’ll be focusing on simply mapping the image onto the 2D ground geometry. Later, in
the 3D chapters, we’ll map an image to a 3D object.

After the texture(p) call is made, the vertex calls now require two extra arguments, spec-
ifying how the image should be mapped to the vertices created between beginShape()
and endShape(). By default, the mapping is based on the image’s actual size. However,
Processing comes with a function called textureMode(), allowing you to change the map-
ping from IMAGE mode (the default) to NORMALIZED mode. NORMALIZED mode allows
you to specify argument values between 0 and 1.0, instead of the actual image sizes. To learn
more about this option, please refer to the Processing reference at http://processing.
org/reference/textureMode_.html.

The default image mapping is relatively simple to use on rectilinear geometry. For exam-
ple, to map a 200 by 200 pixel image onto the same sized geometry, you would do the
following (please note: the following code won’t run as written—you need to specify P3D
in size(), add and then load an image, and finally replace PimageObjectNameGoesHere
with the actual name of your PImage):

MOTION

549

11

617xCH11.qxd 4/17/07 1:57 PM Page 549

http://processing

translate(width/2, height/2);
beginShape();
texture(PimageObjectNameGoesHere)
vertex(-100, -100, 0, 0);
vertex(100, -100, 200, 0);
vertex(100, 100, 200, 200);
vertex(-100, 100, 0, 200);
endShape(CLOSE);

To map the image larger on the same geometry, you’d decrease the uv coordinates values
(only values greater than 0 will have any effect). Increasing uv values beyond the actual
size of the image will have no effect.

Returning to the Asteroid Shower sketch, it wasn’t easy to map the Earth image onto the
irregular ground shape. I created the two variables, as follows:

float imageShiftX = 20;
float imageShiftY = -240;

to help ensure that the image would map properly. I recommend messing with these val-
ues to see what happens.

Next in the draw() function is the drawing and moving of the orbs, which is pretty
straightforward. What might be less obvious, though, is how to handle the collisions
between the multiple ground segments and the multiple orbs. The crux of this problem is
remembering to check the collision between each orb against every ground segment.
When you come up against a programming problem with two sets of objects that need to
interact like this, the solution is often a nested loop—which is precisely what I used to
solve the collision problem. Thus, each orb gets born within the outer for loop and then
gets passed to the checkGroundCollision() function, which is called within another
nested for loop that executes the number of times there are ground segments. Each time
the inner loop is called, the current orb, velocity, and damping values (controlled by
the outer loop), and the ground segment (specified by the inner loop) are passed to the
checkGroundCollision() function. Again, this inner loop will run the number of times
there are segments and then control will return to the outer loop to begin the process
over again.

The last conditional in the draw() function

if (emitter < orbCount-1){
emitter += birthRate;

}

simply ensures that the emitter used to control the birthrate of orbs doesn’t exceed the
total orb count specified earlier in the sketch. We’re almost done.

To keep your workload down some, I edited the checkGroundCollision() and
checkWallCollision() functions in such a way that all you need to do is add some param-
eters to the two functions. Thus, between stage 2 and stage 3, you just need to replace

void checkGroundCollision(Ground groundSegment) {

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

550

617xCH11.qxd 4/17/07 1:57 PM Page 550

with

void checkGroundCollision(Ground groundSegment, Orb orb, ➥

Vect2D velocity, float damping) {

and

void checkWallCollision() {

with

void checkWallCollision(Orb orb, Vect2D velocity, float damping) {

That’s really all you need to do (you can thank me later). The way I got this to work was by
naming the parameters in the heads of the checkGroundCollision() and
checkWallCollision() functions the same names as the global variables declared in the
main tab. Remember, local variables, which include parameters, take precedence over the
same named global variables. Although this was an expedient solution, it can also lead to
nasty, hard-to-track-down errors. I personally often use this approach, but it’s not for
everybody, so enjoy and use it with caution.

Figure 11-23. Asteroid Shower sketch

There is one final thing I’d like to cover before retiring this chapter. However, before I do,
I suggest playing with the Asteroid Shower sketch a bit first—doomsday scenario visualiza-
tions can be surprisingly cathartic.

MOTION

551

11

617xCH11.qxd 4/17/07 1:57 PM Page 551

Inter-object collision
In the ActionScript book I mentioned earlier, Foundation ActionScript Animation: Making
Things Move! Keith Peters goes into glorious detail on the joys of billiard ball physics, or
what happens when objects collide, taking into account not only their velocity vectors but
their respective masses. This gets into a discussion on Newtonian physics, which is really
good stuff (stop making faces). However, as Keith has beat me to the punch (not to men-
tion that his elucidation on the subject rocks), and of course since we share the same pub-
lisher, in this chapter I’ll include only some simple (and brief) examples dealing with the
subject. However, I strongly recommend that you check out Keith’s book to learn more.

Simple 1D collision

The simplest way to begin to understand these types of collisions is to move two balls
along a single axis in opposite directions, not taking into account any rotation, mass, drag,
wind, and so forth. In fact, we’ll begin with both balls moving at the same speed as well.
I’ve divided the sketch (shown in Figure 11-24) into five tabs: the main tab, the Ball class,
the Vect2D class, the checkBoundaryCollision() function, and the checkObjectCollision()
function. Of course, you can just put all the classes and functions in the main tab, below
the draw() function, instead. Here’s all the code, divided by tab:

// main sketch tab:
// 1D Collision with Swapping Velocities
Ball[] balls = {
new Ball(100, 200, 30), new Ball(300, 200, 30) };

Vect2D[] vels = {
new Vect2D(1.3, 0), new Vect2D(-1.3, 0) };

void setup(){
size(400, 400);
smooth();
noStroke();

}

void draw(){
background(255);
fill(150);
for (int i=0; i<2; i++){
balls[i].x += vels[i].vx;
ellipse(balls[i].x, balls[i].y, balls[i].r*2, balls[i].r*2);
checkBoundaryCollision(balls[i], vels[i]);

}
checkObjectCollision(balls, vels);

}

// Ball class:
// class Ball{
float x, y, r;

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

552

617xCH11.qxd 4/17/07 1:57 PM Page 552

// default constructor
Ball() {
}

Ball(float x, float y, float r) {
this.x = x;
this.y = y;
this.r = r;

}
}

// Vect2D class:
class Vect2D{
float vx, vy;

// default constructor
Vect2D() {
}

Vect2D(float vx, float vy) {
this.vx = vx;
this.vy = vy;

}
}

// checkBoundaryCollision() function:
void checkBoundaryCollision(Ball ball, Vect2D vel){
if (ball.x > width-ball.r){
ball.x = width-ball.r;
vel.vx *= -1;

}
else if (ball.x < ball.r){
ball.x = ball.r;
vel.vx *= -1;

}
else if (ball.y > height-ball.r){
ball.y = height-ball.r;
vel.vy *= -1;

}
else if (ball.y < ball.r){
ball.y = ball.r;
vel.vy *= -1;

}
}

// checkObjectCollision() function:
void checkObjectCollision(Ball[] b, Vect2D[] v){
float d = dist(b[0].x, b[0].y, b[1].x, b[1].y);
if (d < b[0].r + b[1].r){

MOTION

553

11

617xCH11.qxd 4/17/07 1:57 PM Page 553

Vect2D vTemp = new Vect2D();
vTemp.vx = v[0].vx;
v[0].vx = v[1].vx;
v[1].vx = vTemp.vx;

}
}

Figure 11-24. 1D Collision with Swapping Velocities sketch

Nearly all of this is straightforward. In fact, the only lines that may need some clarification
are in the checkObjectcollision() function—specifically the following lines:

Vect2D vTemp = new Vect2D();
vTemp.vx = v[0].vx;
v[0].vx = v[1].vx;
v[1].vx = vTemp.vx;

I needed to create the Vect3D object (vTemp) to help me switch the velocities. Looking at
the assignment operations, it should be apparent how the velocity switcheroo works. Try
running the previous sketch as it’s written, and then change the line

Vect2D[] vels = {
new Vect2D(1.3, 0), new Vect2D(-1.3, 0) };

to

Vect2D[] vels = {
new Vect2D(6.3, 0), new Vect2D(-1.3, 0) };

Try running the sketch again. Starting with different initial velocities makes it easier to see
the transfer of motion.

In a moment, I’m going to present you with some pretty scary-looking equations (insert
evil laugh here) to allow you to more accurately calculate the ball-ball collision. The basic
principle I’ll be using is as follows: a moving object carries a certain amount of momentum
related to both its velocity and its mass. When two objects collide, all that combined

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

554

617xCH11.qxd 4/17/07 1:57 PM Page 554

momentum at impact has to go somewhere. In the real world, the force of this impact
turns into heat, sound, cool explosions, and new motion. In a virtual world, we can control
how the force is transferred. For example, when two objects collide, if we force all the
momentum upon impact to go back into only new motion, then somehow the motion
after the impact alone needs to be equal to the total momentum of the two objects at the
point of impact. The easiest way to pull this off in code, as I did in the last example, is sim-
ply to have the two objects exchange their velocities upon impact.

Less simple 1D collision

This last example, although relatively simple, didn’t take into account the mass of the
objects. I used the term “transfer of motion” to describe how the balls simply switched
their velocities. But what if you want to account for balls of different mass? Introducing
mass requires those scary equations I mentioned earlier. Again, here’s the first:

MOTION

555

11

obj 1 final velocity = (obj 1 mass – obj 2 mass) * obj 1 velocity + 2 * obj 2 mass * obj 2 velocity

--

obj 1 mass + obj 2 mass

And here’s the second:

obj 2 final velocity = (obj 2 mass – obj 1 mass) * obj 2 velocity + 2 * obj 1 mass * obj 1 velocity

--

obj 1 mass + obj 2 mass

I know the equations are long, but converting them to code is not a big deal, as you’ll see
shortly. The hard part of course would be attempting to derive the equations, which I
won’t bother doing. Keith Peters’s book goes into some detail about where the equations
come from. If you’re really interested in the math, here’s a link you might enjoy as well:
www.euclideanspace.com/physics/dynamics/collision/oned/index.htm.

The two equations are based on the law of conservation of momentum, which I’ve sort of
already discussed. For our purposes, the law states that in a closed system (such as the
type we’re coding), the total momentum of objects before a collision is equal to the total
momentum after the collision. By using these equations, you’ll be able to now account for
mass in your ball-ball collisions.

The next example, shown in Figure 11-25, requires only some minor tweaks to the previ-
ous sketch. The sketch can be divided into five tabs like the last, with the main tab code,
Vect2D class, and checkBoundaryCollision() function all remaining exactly as they were
in the previous sketch, so I won’t bother repeating that code. All you need to do is update
the Ball class and checkObjectCollision() function. Here’s the revised Ball class, with
the new changes displayed in bold:

617xCH11.qxd 4/17/07 1:57 PM Page 555

class Ball{
float x, y, r, m;

// default constructor
Ball() {
}

Ball(float x, float y, float r) {
this.x = x;
this.y = y;
this.r = r;
m = r*.1;

}
}

If it isn’t obvious, all I added was a mass property to the class and based its value on the
radius. Of course, the mass could also be coded as a completely separate value from
the radius, as, for example, a large cork ball would certainly weigh less than a much
smaller steel ball bearing. That being said, tying the mass to the radius was easiest.

The checkObjectCollision() function is where the majority of changes are, and of course
it’s where the scary conservation of momentum expressions are coded:

void checkObjectCollision(Ball[] b, Vect2D[] v){
float d = dist(b[0].x, b[0].y, b[1].x, b[1].y);
if (d < b[0].r + b[1].r){

/* calculate final velocities based on
Law of Conservation of Momentum */

float finalVel0 = ((b[0].m - b[1].m) * v[0].vx + 2 *➥

b[1].m * v[1].vx) / (b[0].m + b[1].m);
float finalVel1 = ((b[1].m - b[0].m) * v[1].vx + 2 *➥

b[0].m * v[0].vx) / (b[0].m + b[1].m);

v[0].vx = finalVel0;
v[1].vx = finalVel1;

}
}

Hopefully, you didn’t find the long expressions too frightening; they’re long but pretty
straightforward, and of course there’s no obligation to really understand why they work
(but then I’m not your Physics teacher). Following the new expressions, I simply assign the
final velocities to the original velocity variables.

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

556

617xCH11.qxd 4/17/07 1:57 PM Page 556

Figure 11-25. 1D Collision Using Conservation of
Momentum sketch

Try running the sketch a few times and changing the radius of one of the balls. The greater
the difference between the two radii, the more obvious the effect of the conservation of
momentum will be.

2D collisions

Now that we got most of the easy stuff over with (I’m winking, don’t worry), we’ll tackle
the holy grail of collisions: non-orthogonal 2D collisions. In actuality, you already know
how to do this (well, sort of). I’ll be using the same coordinate rotation approach I used for
the Asteroid Shower sketch. The main difference is that there are now two objects collid-
ing (shown in Figure 11-26).

The main sketch tab reuses much of the existing code from the previous example, with the
changes shown in bold, as follows:

// Main Sketch Tab
// 2D Collision Using Conservation of Momentum
Ball[] balls = {
new Ball(100, 400, 10), new Ball(700, 400, 40) };

Vect2D[] vels = {
new Vect2D(4.3, -2.7), new Vect2D(-3.3, .95) };

void setup(){
size(400, 400);
smooth();
noStroke();

}

void draw(){
background(255);
fill(150);
for (int i=0; i<2; i++){
balls[i].x += vels[i].vx;
balls[i].y += vels[i].vy;

MOTION

557

11

617xCH11.qxd 4/17/07 1:57 PM Page 557

ellipse(balls[i].x, balls[i].y, balls[i].r*2, balls[i].r*2);
checkBoundaryCollision(balls[i], vels[i]);

}
checkObjectCollision(balls, vels);

}

The checkObjectCollision() function needs a few more changes than that; here it is
(brace yourself):

void checkObjectCollision(Ball[] b, Vect2D[] v){

// get distances between the balls' components
Vect2D bVect = new Vect2D();
bVect.vx = b[1].x - b[0].x;
bVect.vy = b[1].y - b[0].y;

// calculate magnitude of the vector separating the balls
float bVectMag = sqrt(bVect.vx * bVect.vx + bVect.vy * bVect.vy);
if (bVectMag < b[0].r + b[1].r){
// get angle of bVect
float theta = atan2(bVect.vy, bVect.vx);
// precalculate trig values
float sine = sin(theta);
float cosine = cos(theta);

/* bTemp will hold rotated ball positions. You
just need to worry about bTemp[1] position*/

Ball[] bTemp = { new Ball(), new Ball() };
/* b[1]'s position is relative to b[0]'s
so you can use the vector between them (bVect) as the
reference point in the rotation expressions.
bTemp[0].x and bTemp[0].y will initialize
automatically to 0.0, which is what you want
since b[1] will rotate around b[0] */
bTemp[1].x = cosine * bVect.vx + sine * bVect.vy;
bTemp[1].y = cosine * bVect.vy - sine * bVect.vx;

// rotate Temporary velocities
Vect2D[] vTemp = { new Vect2D(), new Vect2D() };
vTemp[0].vx = cosine * v[0].vx + sine * v[0].vy;
vTemp[0].vy = cosine * v[0].vy - sine * v[0].vx;
vTemp[1].vx = cosine * v[1].vx + sine * v[1].vy;
vTemp[1].vy = cosine * v[1].vy - sine * v[1].vx;

/* Now that velocities are rotated, you can use 1D
conservation of momentum equations to calculate
the final velocity along the x-axis. */
Vect2D[] vFinal = { new Vect2D(), new Vect2D() };
// final rotated velocity for b[0]

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

558

617xCH11.qxd 4/17/07 1:57 PM Page 558

vFinal[0].vx = ((b[0].m - b[1].m) * vTemp[0].vx + 2 * b[1].m *
vTemp[1].vx) / (b[0].m + b[1].m);

vFinal[0].vy = vTemp[0].vy;
// final rotated velocity for b[0]
vFinal[1].vx = ((b[1].m - b[0].m) * vTemp[1].vx + 2 * b[0].m *
vTemp[0].vx) / (b[0].m + b[1].m);

vFinal[1].vy = vTemp[1].vy;

// hack to avoid clumping
bTemp[0].x += vFinal[0].vx;
bTemp[1].x += vFinal[1].vx;

/* Rotate ball positions and velocities back
Reverse signs in trig expressions to rotate
in the opposite direction */
// rotate balls
Ball[] bFinal = { new Ball(), new Ball() };
bFinal[0].x = cosine * bTemp[0].x - sine * bTemp[0].y;
bFinal[0].y = cosine * bTemp[0].y + sine * bTemp[0].x;
bFinal[1].x = cosine * bTemp[1].x - sine * bTemp[1].y;
bFinal[1].y = cosine * bTemp[1].y + sine * bTemp[1].x;

// update balls to screen position
b[1].x = b[0].x + bFinal[1].x;
b[1].y = b[0].y + bFinal[1].y;
b[0].x = b[0].x + bFinal[0].x;
b[0].y = b[0].y + bFinal[0].y;

// update velocities
v[0].vx = cosine * vFinal[0].vx - sine * vFinal[0].vy;
v[0].vy = cosine * vFinal[0].vy + sine * vFinal[0].vx;
v[1].vx = cosine * vFinal[1].vx - sine * vFinal[1].vy;
v[1].vy = cosine * vFinal[1].vy + sine * vFinal[1].vx;

}
}

Figure 11-26. 2D Collision Using Conservation of
Momentum sketch

MOTION

559

11

617xCH11.qxd 4/17/07 1:57 PM Page 559

OK, hopefully we’re still on speaking terms. Part of the reason this function is so long, with
a slew of temporary object arrays, is that I wanted to make all the processes as explicit as
possible. There are many ways of optimizing this code and reducing the number of lines;
however, that economy comes with a cost of potential confusion. (Again, Keith Peters’s
book discusses a bunch of these optimizations, so I encourage you to take a look at it for
a deeper discussion on this topic.)

I added a lot of comments directly within the code to help you decipher it. In addition, I’ll
provide a brief overview.

The code in the function combines a number of concepts we’ve looked at throughout this
chapter, including vectors, coordinate rotation, and of course the law of conservation of
momentum. I began the function by assigning the vector described by the distance between
the two balls to bVect. I used this vector to determine the angle of rotation between the
balls, as well as to define the reference point for rotation. Vectors, you’ll remember, tell us
about both direction and magnitude. I calculated the magnitude of bVect (assigned to
bVectMag) and used it to determine when the balls were colliding, since the vector
between the balls is also conveniently the distance between the balls.

By plugging the components of bVect into the atan2() function, I was able to find the
angle (in radians) of the vector’s rotation, which is precisely the value you need to rotate
the ball and velocity coordinates, allowing you to treat the 2D collision between the balls
as a 1D (orthogonal) collision.

When rotating the ball and velocity coordinates, you don’t want to rotate in reference to
the screen origin, but rather locally around the point of collision. I accomplished this by
using bVect (the vector describing the distance between the balls) as the reference point
of rotation. The two lines I’m referring to are the following (please note that I created a
bunch of temporary Ball and Vect2D arrays (including bTemp) in the function to try to
help clarify the different steps in the collision process):

bTemp[1].x = cosine * bVect.vx + sine * bVect.vy;
bTemp[1].y = cosine * bVect.vy - sine * bVect.vx;

b[1] will rotate around b[0], setting the vector between them perfectly horizontal. Thus,
b[0] will act, in a sense, as the origin for the rotation, so I don’t need to assign any value
to bTemp[0].x and bTemp[0].y, which were both automatically assigned 0.0 when
bTemp[0] was instantiated (since float values—which the x and y properties are—default
to 0.0 when declared).

Next, I rotated the velocities, which should be self-explanatory, using the good old long
form trig expressions.

The rotated velocities were assigned to the vTemp objects. Next, the ugly conservation of
momentum expressions come into play. Notice that I only used them to find the final
rotated velocities along the x-axis. The velocities along the y-axis were calculated previ-
ously, so I simply assigned vTemp.vy to vFinal.vy (for both objects).

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

560

617xCH11.qxd 4/17/07 1:57 PM Page 560

To avoid unintentional clumping of the balls at collision, I borrowed a nice hack from
Keith’s example, which essentially moves the balls a little away from each other upon col-
lision detection so that clumping is avoided. It’s not a perfect fix, but it sure is nice and
simple.

We’re almost home now. The last steps left are to rotate the rotated ball position values
and velocities back to the original rotation at collision and to update the balls’ positions to
the screen (remember that I treated the rotation locally with regard to the vector between
the balls, rotating b[1] around b[0]). Updating the balls’ screen positions just entails
adding the final ball positions (bFinal) to b[0].

That’s it! Definitely take some time playing with this sketch, plugging in different values for
the balls’ radii (which, again, control mass) and the initial velocities, both defined in the
sketch’s main tab.

There is so much more that could be done with this sketch, and collisions in general,
including the addition of more balls. Likewise, orb-orb collisions could also be introduced
to the Asteroid Shower example. That being said, I think this chapter’s gone on long
enough.

Summary
This chapter began with a brief overview of some of the technical issues involved in com-
puter-based animation, including the concept of threads and the use of timeline-based
keyframe models commonly found in high-end animation applications. Comparing Java
and Processing animation code side by side, I showed how Processing’s draw() structure
encapsulates much of the low-level (and annoying) aspects of programmatic animation.
Beginning with a simple moving ball and eventually adding simple physics, you explored
easing, springing, and the concept of soft-body dynamics. Coding collisions, with some
help from code guru Keith Peters, I introduced different approaches for handling both
orthogonal and non-orthogonal 1D collisions, including ways to work with multiple sur-
faces and objects. Finally, I introduced an advanced 2D collision example that included
conservation of momentum calculations.

In the next chapter, we’ll add interactivity into the mix, allowing the user to interact with
your sketches. We’ll also discuss the possibilities of generating applications and graphical
user interfaces (GUIs) in Processing.

MOTION

561

11

617xCH11.qxd 4/17/07 1:57 PM Page 561

617xCH12.qxd 4/20/07 2:22 PM Page 562

12 INTERACTIVITY

617xCH12.qxd 4/20/07 2:22 PM Page 563

One of the most compelling aspects of digital/code art is interactivity. Interactive art is not
in itself a completely new concept—for example, we’ve all become quite accustomed to
“please touch” type children’s museums. However, what is unique in code art is the fact
that users can not only interact with a work of art, but in some cases they can actually
redefine it, or even use the piece of art to create their own original works of art. Mark
Napier’s piece net.flag (www.guggenheim.org/internetart/welcome.html) is an excellent
example of this. Viewers use Napier’s web-based piece to design a flag, which (conceptu-
ally) becomes the flag of the entire Internet. Their creation remains the current flag of the
Net until another viewer changes it. Each of the flags created also gets put into a perma-
nent viewable database. Napier’s piece—and others like it—represents a radical break
with the established view of a work of art as contemplative object/space. Instead, in the
case of net.flag, the work of art almost disappears, becoming a dynamic tool that others
can use to express themselves.

In this chapter, you’ll learn how to both detect and handle events. By events, I mean inputs
to the system, such as mouse clicks or key presses. Of course, there are events that occur
at a lower-level than the graphical user interface (GUI), as well—such as an internal timer
or other system process that communicates with a running application. For example, my
mail program periodically checks for incoming mail without my having to request it. It’s
also possible to detect other less standard high-level events, such as input from a video
camera, microphone, or motion sensor. Processing has the capacity to interface with all
these types of events. While in this chapter I’ll only be covering mouse and key events, the
principles discussed apply to most input devices.

Interactivity simplified
As you’ve probably come to expect by now, Processing simplifies the process of
interactivity by encapsulating a bunch of the code you’d be required to include using pure
Java. For an example of this, take a look at the following three sketches, each of which
functions identically. The first two are written in Java and the third in Processing, but all
three can be run in Processing. When run, the sketches print to the text area in the
Processing application when the mouse is pressed within the Processing display window.

// 2 different Java approaches
// Java approach 1 implements the Java MouseListener interface:
void setup(){
new MouseEventDemo();

}
class MouseEventDemo implements MouseListener {
//constructor
MouseEventDemo(){
addMouseListener(this);

}
// we're required to implement all MouseListener methods
public void mousePressed(MouseEvent e) {
println("Java MouseListener interface example"+ ➥

"mouse press detected");

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

564

617xCH12.qxd 4/20/07 2:22 PM Page 564

}
public void mouseClicked(MouseEvent e){}
public void mouseEntered(MouseEvent e){}
public void mouseExited(MouseEvent e){}
public void mouseReleased(MouseEvent e){}

}

// Java approach 2 extends the Java MouseAdapter class
void setup(){
new MouseEventDemo();

}
class MouseEventDemo extends MouseAdapter {
//constructor
MouseEventDemo(){
addMouseListener(this);

}
public void mousePressed(MouseEvent e) {
println("Java MouseAdapter class example: mouse press detected");

}
}

// Processing "easy" approach
void draw(){} // we're required to include draw() function
void mousePressed() {
println("Processing example: mouse press detected");

}

The two Java approaches are both more complex and require more code than the
Processing approach. Using Java’s MouseAdapter class simplifies things somewhat, as the
MouseAdapter class encapsulates the necessary implementation of all the required
MouseListener methods. The Processing approach takes this concept of encapsulation
one step further, making it unnecessary to explicitly implement or extend another mouse
event–related interface or class. In reality, the Processing approach I wrote is a little too
lean, as you’d almost always want to include Processing’s setup() function as well as
draw(). However, all that is technically required for the mouse event detection to work in
Processing is the inclusion of the draw() function.

Mouse events
Besides mouse press detection, Processing also includes event detection for mouse
releases, clicks, moves, and drags. Mouse release detection occurs whenever the mouse
button is released, regardless if the mouse position changes while the mouse is pressed. In
comparison, mouse click detection occurs only if the mouse is released at the same point
it was pressed. When the mouse is pressed and released at the same point, both release
and then click detection occur—always in this order. Mouse move detection occurs when
the mouse moves, without the mouse button being pressed, while mouse dragging detec-
tion occurs while the mouse moves with the button pressed. In addition, Processing can

INTERACTIVITY

565

12

617xCH12.qxd 4/20/07 2:22 PM Page 565

detect which mouse button is pressed (left, right, or center), using Processing’s
mouseButton system variable. With a little help from Java, it can also detect multiple but-
ton clicks, which I’ll illustrate in a sketch at the end of the chapter.

Following is a better mouse event example, in which a rectangle on the screen is moved to
the position of the mouse when the mouse button is pressed. The mouseX and mouseY
properties are used to get the respective x and y positions of the mouse.

// mousePressed function
// example 1

// declare x, y
float x, y;
// declare and initialize w, h
float w = 20.0, h = 20.0;

void setup(){
size(400, 400);
// initialize x, y
x = width/2.0;
y = height/2.0;
rectMode(CENTER);

}

void draw(){
background(255);
rect(x, y, w, h);

}

void mousePressed() {
x = mouseX;
y = mouseY;

}

This example utilizes a function called mousePressed(). Remember, the void in front of
the function identifier just means that the function doesn’t return a value. Processing also
provides an alternative mousePressed Boolean variable that detects whether the mouse is
pressed. The variable is equal to true if the mouse is pressed and false if it’s not. As the
following code shows, the previous sketch can be easily changed to use the mousePressed
variable instead of the mousePressed() function:

// mousePressed variable
// example 2

// declare x, y
float x, y;
// declare and initialize w, h
float w = 20.0, h = 20.0;

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

566

617xCH12.qxd 4/20/07 2:22 PM Page 566

void setup(){
size(400, 400);
// initialize x, y
x = width/2.0;
y = height/2.0;
rectMode(CENTER);

}

void draw(){
background(255);
rect(x, y, w, h);

if (mousePressed){
x = mouseX;
y = mouseY;

}
}

This may seem confusing if you’re a new coder—why have two ways of doing the same
thing? Well, if you run this last example, you’ll notice that the two sketches actually don’t
run quite the same way. This last example updates the rectangle’s x and y positions con-
tinuously while the mouse is pressed, allowing the rectangle to be dragged in the display
window. The earlier example only updated the rectangle when the mouse was pressed. As
you look at some more complex examples, it will become clearer how these two
approaches differ.

Notice also when I checked the condition (true or false) of the mousePressed Boolean
variable, I just included it between the parentheses: (mousePressed). I didn’t explicitly
check if it was true using (mousePressed == true). This shortcut is perfectly legal, since
the Boolean value will evaluate to either true or false, which is what the if statement
needs to know in determining whether it should execute the code between its curly
braces.

In addition to mouse press events, you can detect mouse release events. Here’s an
example:

// mouseReleased
// example 1

// declare x, y
float x, y;
// declare and initialize w, h
float w = 20.0, h = 20.0;
// rectangle fill color variable
color rectColor = color(255, 255, 255);

void setup(){
size(400, 400);
// initialize x, y
x = width/2.0;

INTERACTIVITY

567

12

617xCH12.qxd 4/20/07 2:22 PM Page 567

y = height/2.0;
rectMode(CENTER);

}

void draw(){
background(255);
fill(rectColor);
rect(x, y, w, h);

}

void mousePressed() {
x = mouseX;
y = mouseY;

}

// randomly change fill color upon mouse release
void mouseReleased() {
rectColor = color(random(255), random(255), random(255));

}

In this example, I included the original mousePressed() function and added a
mouseReleased() function. When you run the sketch, you’ll see that Processing can detect
both parts of the mouse click (the press and release) as separate events. The
mouseReleased() function creates a random color for the rectangle’s fill.

The mouseMoved() and mouseDragged() functions work similarly to mousePressed() and
mouseReleased(). Here’s a mouseDragged() example:

// mouseDragged Example
float x, y;
// declare and initialize radius
float r = 5.0;

void setup(){
size(400, 400);

If you’re a detail-oriented person (I’m really not), you may have noticed some incon-
sistency with Processing’s automatic syntax color highlighting in the text editor. In
general, Processing’s built-in functions turn orange, while built-in variables turn red.
However, the mousePressed() function turns red, and the mouseClicked() function
remains black. The other mouse event functions, mouseReleased(), mouseMoved(),
and mouseDragged(), turn orange. This is definitely confusing, and I’ve seen com-
ments on the Processing discussion board saying so as well. Perhaps at some point this
minor issue will be addressed; for now, just realize that it’s not something you’re doing
wrong, and that the color of your code in the text editor has no effect on the func-
tionality of the code. (It’s also possible that by the time you read this, the issue will
have been resolved.)

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

568

617xCH12.qxd 4/20/07 2:22 PM Page 568

// initialize x, y
x = width/2.0;
y = height/2.0;
frameRate(30);
smooth();
noStroke();

}

void draw(){
// fading background
fill(0, 5);
rect(0, 0, width, height);

fill(255);
ellipse(x, y, r*2, r*2);

}

void mouseDragged() {
x = mouseX;
y = mouseY;

}

This example works similarly to the earlier mousePressed Boolean variable example. When
you press the mouse in the display window and drag, the ellipse follows the mouse.

The next example adds a mouseMoved() function that controls a jitter and a scatter
variable, which are set as you move the mouse around the display window (without it
being pressed). The scatter variable controls the limit on a for loop, while the jitter
variable controls the radius on a ring of random ellipses created in the for loop. Upon
dragging the mouse (i.e., with the button pressed), the ring of ellipses will follow the cur-
sor using the last jitter and scatter settings set. This is because mouse dragging and
mouse moving, similarly to the press and release events, are processed as unique mouse
event states—you can’t press and release at the same time, nor can you move and drag at
the same time.

// mouseMoved Example
float x, y;
// declare and initialize radius
float r = 1.5;
float jitter = 5;
float scatter = 1;

void setup(){
size(400, 400);
// initialize x, y
x = width/2.0;
y = height/2.0;
frameRate(30);
smooth();
noStroke();

INTERACTIVITY

569

12

617xCH12.qxd 4/20/07 2:22 PM Page 569

}

void draw(){
// fading background
fill(0, 5);
rect(0, 0, width, height);

fill(255);
for (int i=0; i<scatter; i++){
float angle = random(TWO_PI);
float sctterDistX = x+cos(angle)*jitter;
float sctterDistY = y+sin(angle)*jitter;
ellipse(sctterDistX, sctterDistY, r*2, r*2);

}
}

void mouseDragged() {
x = mouseX;
y = mouseY;

}

// scatter/jitter ellipse
void mouseMoved() {
scatter = mouseX*.05;
jitter = mouseY*.05;

}

The next example, shown in Figure 12-1, combines mouse events with some of the motion
principles covered in Chapter 11. I think you’ll find this next sketch more aesthetically
interesting than the “learning” examples you’ve looked at thus far in this chapter—but
you’ve got to crawl some before you dance! This sketch allows you to plot points, or
nodes, that get connected with lines. After three or more nodes are plotted, you can click
back on the initial plotted node and close the shape. Once the shape is closed, some cool
stuff happens. Here’s the code:

// Shape Builder and Animator Example
float nodeRadius = 5.0;
// holds node coordinate values
float[]nodeXPos = new float[0];
float[]nodeYPos= new float[0];

color initialNode = color(0);
boolean isShapeClosed = false;

//dynamics variables (moves shape)
float gravity = .95;
float jitterRange = 5;
float elasticRangeMin = .75;
float elasticRangeMax = .95;

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

570

617xCH12.qxd 4/20/07 2:22 PM Page 570

float friction = .85;
float[]jitter = new float[0];
float[]xSpeed = new float[0];
float[]ySpeed = new float[0];
float[]elasticity = new float[0];

void setup(){
size(400, 600);
frameRate(30);
smooth();

}

void draw(){
// create simple shape trails
fill(255, 36);
rect(0, 0, width, height);

if (nodeXPos.length>1){
// draw line between nodes
drawEdge();
// check if mouse is over original node
checkOverInitialNode();
// animate shape
moveShape();

}
// draw node
drawNode();

}

// change node fill color when mouse is over initial node
void checkOverInitialNode(){
if (isInitialNode()){
initialNode = color(255, 127, 0);

}
else {
initialNode = color(0);

}
}

//function to draw lines between nodes
void drawEdge(){
stroke(100, 50, 20);
for (int i=0; i<nodeXPos.length; i++){
if (i>0){
line(nodeXPos[i], nodeYPos[i], nodeXPos[i-1], nodeYPos[i-1]);

}
// close shape, line between last node and initial node
if (isShapeClosed && i == nodeXPos.length-1){
line(nodeXPos[i], nodeYPos[i], nodeXPos[0], nodeYPos[0]);

INTERACTIVITY

571

12

617xCH12.qxd 4/20/07 2:22 PM Page 571

}
}

}

// function to draw nodes
void drawNode(){
// draw nodes at shape vertices
noStroke();
for (int i=0; i<nodeXPos.length; i++){
// initial node has own color variable
if (i==0){
fill(initialNode);

}
else{
fill(0);

}
ellipse(nodeXPos[i], nodeYPos[i], nodeRadius*2, nodeRadius*2);

}
}

// function returns true/false if mouse is over initial node
boolean isInitialNode(){
boolean isOnNode = false;
if (nodeXPos.length>2){
if (dist(mouseX, mouseY, nodeXPos[0], nodeYPos[0]) < nodeRadius){
isOnNode = true;

}
}
return isOnNode;

}

void mousePressed(){
if(isShapeClosed){
// after shape is closed empty arrays
nodeXPos = subset(nodeXPos, 0, 0);
nodeYPos = subset(nodeYPos, 0, 0);
xSpeed = subset(xSpeed, 0, 0);
ySpeed = subset(ySpeed, 0, 0);
jitter = subset(jitter, 0, 0);
elasticity = subset(elasticity, 0, 0);

//reset variable to false
isShapeClosed = false;

}

if(!isInitialNode()){
// if not on initial node plot at mouse position
// increase size of node coordinate arrays
nodeXPos = append(nodeXPos, mouseX);

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

572

617xCH12.qxd 4/20/07 2:22 PM Page 572

nodeYPos = append(nodeYPos, mouseY);

// increase size of dynamics arrays
xSpeed = append(xSpeed, 0);
jitter = append(jitter, random(-jitterRange, jitterRange));
elasticity = append(elasticity, random(elasticRangeMin, ➥

elasticRangeMax));
ySpeed = append(ySpeed, 0);

}
else {
// set to true to avoid additional nodes on shape
isShapeClosed = true;

}
}

//function to move shape
void moveShape(){
//animate after shape is closed
if (isShapeClosed){
for (int i=0; i<nodeXPos.length; i++){
nodeXPos[i]+=xSpeed[i];
ySpeed[i]+=gravity;
nodeYPos[i]+=ySpeed[i];

// set display window edge collision
// right display window edge
if (nodeXPos[i]>width-nodeRadius){
nodeXPos[i] = width-nodeRadius;
xSpeed[i]*=-1;

}
// left display window edge
if (nodeXPos[i]<nodeRadius){
nodeXPos[i] = nodeRadius;
xSpeed[i]*=-1;

}

// bottom display window edge
if (nodeYPos[i]>height-nodeRadius){
nodeYPos[i] = height-nodeRadius;
xSpeed[i]+=jitter[i];
xSpeed[i]*=friction;
jitter[i]*=friction;
ySpeed[i]*=-1;
ySpeed[i]*=elasticity[i];

}
}

}
}

INTERACTIVITY

573

12

617xCH12.qxd 4/20/07 2:22 PM Page 573

Figure 12-1. Shape Builder and Animator Example sketch

You should play with this sketch some to see what it can do. Besides running the sketch, I
also recommend messing with some of the variable values declared at the top of the
program.

To give you a better understanding, I’ll now go over the sketch a section at a time.

// Shape Builder and Animator Example
float nodeRadius = 5.0;
// holds node coordinate values
float[]nodeXPos = new float[0];
float[]nodeYPos= new float[0];

color initialNode = color(0);
boolean isShapeClosed = false;

//dynamics variables (moves shape)
float gravity = .95;
float jitterRange = 5;
float elasticRangeMin = .75;
float elasticRangeMax = .95;
float friction = .85;
float[]jitter = new float[0];
float[]xSpeed = new float[0];
float[]ySpeed = new float[0];
float[]elasticity = new float[0];

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

574

617xCH12.qxd 4/20/07 2:22 PM Page 574

As usual, I declare global variables at the top of the program, before the setup() function.
The nodeXPos[] and nodeYPos[] arrays hold the shape coordinate data as the shapes are
plotted. The initialNode color variable is used to dynamically set a color on the initial
plotted node when it is moused over—this functions like a rollover effect. (Later in the
chapter, I’ll look at more examples of custom interactive buttons in Processing.) The
Boolean variable isShapeClosed maintains the status of the closed state of the shape,
which is important, as animation only occurs when this variable is true. The dynamics vari-
ables (most of which were discussed in Chapter 11) handle the animation. Many of the
variables are arrays, since animation is applied to each individual node. Since it’s not
known how many nodes will be plotted for each shape, these arrays are initialized with
zero length. Later in the sketch, as the user plots a node, values (and length) are added to
the array using Processing’s append() function.

void setup(){
size(400, 600);
frameRate(30);
smooth();

}

The setup() function is nice and simple—hopefully, it doesn’t need any explanation.

void draw(){
// create simple shape trails
fill(255, 36);
rect(0, 0, width, height);

if (nodeXPos.length>1){
// draw line between nodes
drawEdge();
// check if mouse is over original node
checkOverInitialNode();
// animate shape
moveShape();

}
// draw node
drawNode();

}

The draw() function is relatively simple as well, considering the amount of stuff happening
in this sketch. By creating some custom functions, I was able to keep the draw()
function pretty lean. I wrapped the three custom function calls (drawEdge(),
checkOverInitialNode(), and moveShape()) in a conditional block to ensure that at least
two nodes are plotted prior to connecting the nodes with lines. drawEdge() calls a func-
tion that handles the drawing of the lines between the nodes. I called this function prior to
actually drawing the nodes so that the nodes appear on top of the connecting lines.
checkOverInitialNode() checks if the mouse is over the initial node, allowing the color
of the node to be changed. moveShape() animates the shape after it’s closed. Below the
conditional block, I called drawNode(), which, as you might suspect, draws the nodes.

INTERACTIVITY

575

12

617xCH12.qxd 4/20/07 2:22 PM Page 575

void checkOverInitialNode(){
if (isInitialNode()){
initialNode = color(255, 127, 0);

}
else {
initialNode = color(0);

}
}

The checkOverInitialNode() function sets the color variable initialNode to orange
when the mouse hovers over the initial node, and then resets it to black when the mouse
moves off the node.

void drawEdge(){
stroke(100, 50, 20);
for (int i=0; i<nodeXPos.length; i++){
if (i>0){
line(nodeXPos[i], nodeYPos[i], nodeXPos[i-1], nodeYPos[i-1]);

}
// close shape, line between last node and initial node
if (isShapeClosed && i == nodeXPos.length-1){
line(nodeXPos[i], nodeYPos[i], nodeXPos[0], nodeYPos[0]);

}
}

}

drawEdge() draws a line connecting the plotted nodes. The for loop is controlled by the
length of the nodeXPos[] array, which increases each time a new node is plotted. The con-
ditional blocks nested within the for loop ensure that lines are drawn only when there are
at least two nodes plotted, and that the final line connects the last plotted node with the
initial node, closing the shape.

void drawNode(){
// draw nodes at shape vertices
noStroke();
for (int i=0; i<nodeXPos.length; i++){
// initial node has own color variable
if (i==0){
fill(initialNode);

}
else{
fill(0);

}
ellipse(nodeXPos[i], nodeYPos[i], nodeRadius*2, nodeRadius*2);

}
}

drawNode() draws the nodes using Processing’s ellipse() function and the coordinate
values stored in the nodeXPos[] and nodeYPos[] arrays. The conditional if...else block
fills the initial node’s color using the intialNode color variable, while all the other nodes

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

576

617xCH12.qxd 4/20/07 2:22 PM Page 576

are filled with black. Using the intialNode variable allows the first plotted node’s color to
be changed when the mouse is over it, providing some interactive direction to the user.

// function returns true/false if mouse is over initial node
boolean isInitialNode(){
boolean isOnNode = false;
if (nodeXPos.length>2){
if (dist(mouseX, mouseY, nodeXPos[0], nodeYPos[0]) < nodeRadius){
isOnNode = true;

}
}
return isOnNode;

}

The isInitialNode() function returns true if there are more than two nodes plotted and
the mouse is over the initially plotted node. If neither of these conditions is true, the func-
tion returns false. Notice how I declared the function using the boolean keyword in front
of the function name; this enforces that the function must return a Boolean value. Note
also that the Boolean variable isOnNode, which I declared within the function, only exists
locally (has local scope) within the function.

void mousePressed(){
if(isShapeClosed){
// after shape is closed empty arrays
nodeXPos = subset(nodeXPos, 0, 0);
nodeYPos = subset(nodeYPos, 0, 0);
xSpeed = subset(xSpeed, 0, 0);
ySpeed = subset(ySpeed, 0, 0);
jitter = subset(jitter, 0, 0);
elasticity = subset(elasticity, 0, 0);

//reset variable to false
isShapeClosed = false;

}

if(!isInitialNode()){
// if not on initial node plot at mouse position
// increase size of node coordinate arrays
nodeXPos = append(nodeXPos, mouseX);
nodeYPos = append(nodeYPos, mouseY);

// increase size of dynamics arrays
xSpeed = append(xSpeed, 0);
jitter = append(jitter, random(-jitterRange, jitterRange));
elasticity = append(elasticity, random(elasticRangeMin, ➥

elasticRangeMax));
ySpeed = append(ySpeed, 0);

}
else {
// set to true to avoid additional nodes on shape

INTERACTIVITY

577

12

617xCH12.qxd 4/20/07 2:22 PM Page 577

isShapeClosed = true;
}

}

The mousePressed() function begins with a conditional block that initializes the sketch
arrays when the shape is closed; this allows new shapes to be plotted when the mouse is
pressed (only after the shape has been closed and has begun animating). I used
Processing’s subset() function to reset the primitive arrays. The function returns a subset
of an array. The first argument is the array to subset, the second argument is the place in
the array to begin the subset, and the third argument is the number of positions in the
array to include in the subset. Since I used 0, 0 for the starting point and number of posi-
tions in the subset, an empty array was returned. Notice that I assigned the empty array
back to the same array I used in the first argument; this may look odd, but it is perfectly
legal. At the end of the conditional block, I reset the variable isShapeClosed to false to
allow new nodes to be plotted.

The next conditional block, if(!isInitialNode()), uses the ! operator with the function
call isInitialNode(). The function call returns a Boolean value (true or false). Prefacing
the function call with the exclamation mark means that the conditional test will evaluate
to true when the function call returns false (i.e., when the user is not pressing on the ini-
tial node). This kind of logic can hurt your head. Instead of using !isInitialNode(), you
could also use isInitialNode() == false or isInitialNode() != true to handle the
test.

Within the conditional block, I used Processing’s append() function. This function
increases the length of arrays. The function takes two arguments: the first argument is the
array to append to, and the second is the value to add to the array. Like subset(),
the append() function returns the changed array, which I reassigned to the same array
variable. On each mouse press, all six of the arrays are appended to. Finally, if the user
clicks the initial node, the arrays are not expanded, but the Boolean variable
isShapeClosed is set to true.

void moveShape(){
//animate after shape is closed
if (isShapeClosed){
for (int i=0; i<nodeXPos.length; i++) {
nodeXPos[i]+=xSpeed[i];
ySpeed[i]+=gravity;
nodeYPos[i]+=ySpeed[i];

// set display window edge collision
// right display window edge
if (nodeXPos[i]>width-nodeRadius){
nodeXPos[i] = width-nodeRadius;
xSpeed[i]*=-1;

}
// left display window edge
if (nodeXPos[i]<nodeRadius){
nodeXPos[i] = nodeRadius;
xSpeed[i]*=-1;

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

578

617xCH12.qxd 4/20/07 2:22 PM Page 578

}

// bottom display window edge
if (nodeYPos[i]>height-nodeRadius){
nodeYPos[i] = height-nodeRadius;
xSpeed[i]+=jitter[i];
xSpeed[i]*=friction;
jitter[i]*=friction;
ySpeed[i]*=-1;
ySpeed[i]*=elasticity[i];

}
}

}
}

The final function in the sketch, moveShape(), controls the movement of the shape. I
nested all the motion code in the conditional block (isShapeClosed), which evaluates to
true only if the shape is closed. The actual motion code should look familiar, as similar
code was covered in Chapter 11. The for loop ensures that speed values are added to
each of the shape’s nodes (the lines connecting the nodes rely on the nodes’ coordinates
for their placement), and the collision code makes each node bounce off the sides and
bottom of the display window. The animation uses gravity and jitter, which simulate the
shape falling with acceleration and deflecting off an irregular ground surface. The array
variables elasticity[] and friction[] eventually bring the individual nodes to a stop at
the bottom of the display window.

Adding interface elements

Next, I’ll look at creating more elaborate interface elements, such as interactive buttons.
Processing doesn’t come with any native prebuilt buttons, but you can easily build them,
as I sort of did in the last example when I tested if the mouse was pressed on the initially
plotted node. The only difference between detecting a mouse event on a button and
detecting a mouse event on the entire display window is in the evaluation of the size of
the bounded hit area (the area that detects the event). Of course, when building a user
interface, you generally want to give the user more control than they get by simply click-
ing the screen.

When creating a button, you can use Processing’s drawing/text functions or import a
graphic—I’ll discuss both approaches in this chapter. This first sketch creates a single but-
ton that starts a simple animation of a rectangle moving across the screen:

// Start Button

// button
float btnX, btnY, btnW, btnH;

// moving rectangle
float x = 25;

INTERACTIVITY

579

12

617xCH12.qxd 4/20/07 2:22 PM Page 579

float y = 30;
float w = 10;
float h = w;
float xSpeed = 0;

void setup(){
size(600, 100);
btnX = width/2;
btnY = height-20;
btnW = 50;
btnH = 20;

}

void draw(){
background(200);
rectMode(CENTER);
fill(250);
stroke(150);
rect(btnX, btnY, btnW, btnH);

fill(0);
noStroke();
rect(x, y, w, h);
x+=xSpeed;

}

void mousePressed(){
if (mouseX>btnX-btnW/2 && mouseX< btnX+btnW/2 && ➥

mouseY>btnY-btnH/2 && mouseY< btnY+btnH/2){
xSpeed+=.2;

}
}

In this sketch, each time the mouse is pressed on the rectangle at the bottom of the
screen, the smaller square’s speed increases by .02. The mouse detection is now working
based on the bounds of the button. However, since no feedback is provided, the user
might not understand that the sketch is working (or even that the rectangle is supposed to
be a button). You could improve the sketch by giving the user some more visual cues, such
as changing the cursor icon during detected mouse events, adding different rendering
states to the button (up, over, and down), giving the button a label, and providing some
output based on the current speed of the moving square. The following sketch is a modi-
fied version of the last that handles these improvements in two steps. The new and altered
code is shown in bold.

// Interactive Button (step 1)

// button
float btnX, btnY, btnW, btnH;

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

580

617xCH12.qxd 4/20/07 2:22 PM Page 580

color btnUpState = color(200, 200, 200);
color btnOverState = color(200, 200, 50);
color btnDownState = color(255, 150, 20);

color btnBackground = btnUpState;

// moving square
float x = 25;
float y = 30;
float w = 10;
float h = w;
float xSpeed = 0;

void setup(){
size(600, 100);
btnX = width/2;
btnY = height-20;
btnW = 50;
btnH = 20;

}

void draw(){
background(150);
rectMode(CENTER);
fill(btnBackground);
stroke(100);
rect(btnX, btnY, btnW, btnH);

fill(0);
noStroke();
rect(x, y, w, h);
x+=xSpeed;

}

void mousePressed(){
if (mouseX>btnX-btnW/2 && mouseX< btnX+btnW/2 && ➥

mouseY>btnY-btnH/2 && mouseY< btnY+btnH/2){
xSpeed+=.2;
btnBackground = btnDownState;

}
}
void mouseReleased(){

btnBackground = btnOverState;
}

void mouseMoved(){
if (mouseX>btnX-btnW/2 && mouseX< btnX+btnW/2 && ➥

mouseY>btnY-btnH/2 && mouseY< btnY+btnH/2){
cursor(HAND);

INTERACTIVITY

581

12

617xCH12.qxd 4/20/07 2:22 PM Page 581

btnBackground = btnOverState;
} else {
cursor(ARROW);
btnBackground = btnUpState;

}
}

The sketch makes a little more sense visually now. Processing’s cursor(cursor icon)
function makes it really easy to change the cursor icon. The different built-in icons are
ARROW, CROSS, HAND, MOVE, TEXT, and WAIT. Please note that once you change the cursor
icon, the new icon will remain until you call the cursor(cursor icon) function again.

The final version of this sketch (shown in Figure 12-2) will make it even more user-friendly,
and will also add a few more interface elements, such as buttons with labels.
Unfortunately, making the sketch simpler for the user can mean more (potentially a lot
more) work for the coder. Creating ergonomically friendly interfaces requires a lot of
code, especially when the language (like Processing) doesn’t rely on a set of prebuilt widg-
ets (buttons, sliders, spinners, etc.).

// Final Interactive Button Example

// font used for button text
PFont myFont;
//buttons
float btn1X, btn1Y, btn1W, btn1H;
float btn2X, btn2Y, btn2W, btn2H;
float btn3X, btn3Y, btn3W, btn3H;

color btnUpState = color(200, 200, 200);
color btnOverState = color(200, 200, 50);
color btnDownState = color(255, 150, 20);

color btn1Background = btnUpState;
color btn2Background = btnUpState;

// moving square
float x = 25;
float w = 10;
float h = w;
// randomly place square y position on screen
float y = random(h/2, 70);

Please note that the following Final Interactive Button Example sketch requires that
the Processing font Verdana-10.vlw be installed in the sketch’s data directory. You
can create the font yourself by using Processing’s Create Font command, found under
the Tools menu, or you can download the font from the Download section on the
friends of ED web site (www.friendsofed.com/downloads.html).

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

582

617xCH12.qxd 4/20/07 2:22 PM Page 582

float xSpeed = 0;
color movingSquareBackground = color(random(255), ➥

random(255), random(255));

//controls mouse trails
boolean isTrailable = false;
// mouse trails check box
boolean isTrailsSelected = false;

void setup(){
size(600, 100);
// load font from within the sketch's data directory
myFont = loadFont("Verdana-10.vlw");
textFont(myFont, 10);

//buttons
//speed- button
btn1X = 250;
btn1Y = height-20;
btn1W = 50;
btn1H = 20;

//speed+ button
btn2X = width-250;
btn2Y = height-20;
btn2W = 50;
btn2H = 20;

// check box controls mouse trails
btn3X = width-60;
btn3Y = height-20;
btn3W = 10;
btn3H = 10;

}

void draw(){
rectMode(CENTER);

// mouse trails
if (isTrailable){
fill(150, 16);
rect(width/2, height/2, width, height);

}
else {
background(150);

}

stroke(100);
//btn 1 - decreases speed

INTERACTIVITY

583

12

617xCH12.qxd 4/20/07 2:22 PM Page 583

fill(btn1Background);
rect(btn1X, btn1Y, btn1W, btn1H);
fill(75);
text("speed -", btn1X-17, btn1Y+btn1H/4);

//btn2 - increases speed
fill(btn2Background);
rect(btn2X, btn2Y, btn2W, btn2H);
fill(75);
text("speed +", btn2X-17, btn2Y+btn2H/4);

//btn3 - check box controls mouse trails
fill(255);
rect(btn3X, btn3Y, btn3W, btn3H);
fill(75);
text("trails", btn3X+10, btn3Y+btn3H/4);
if (isTrailsSelected){
// draw x in box
line(btn3X-btn3W/2, btn3Y-btn3H/2, btn3X+btn3W/2, btn3Y+btn3H/2);
line(btn3X-btn3W/2, btn3Y+btn3H/2, btn3X+btn3W/2, btn3Y-btn3H/2);

}

//moving square
fill(movingSquareBackground);
noStroke();
rect(x, y, w, h);
x+=xSpeed;
// show speed
rect(x, y, w, h);
fill(75);
text(xSpeed, 10, height-10);
// ensure square stays on screen
if (x>width){
x = 0;
y = random(h/2, 70);
movingSquareBackground = color(random(255), ➥

random(255), random(255));
}
else if (x<0){
x = width;
y = random(h/2, 70);
movingSquareBackground = color(random(255), ➥

random(255), random(255));
}

}

void mousePressed(){
if (mouseX>btn1X-btn1W/2 && mouseX< btn1X+btn1W/2 && ➥

mouseY>btn1Y-btn1H/2 && mouseY< btn1Y+btn1H/2){

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

584

617xCH12.qxd 4/20/07 2:22 PM Page 584

xSpeed-=.2;
btn1Background = btnDownState;

}
if (mouseX>btn2X-btn2W/2 && mouseX< btn2X+btn2W/2 && ➥

mouseY>btn2Y-btn2H/2 && mouseY< btn2Y+btn2H/2){
xSpeed+=.2;
btn2Background = btnDownState;

}
if (mouseX>btn3X-btn3W/2 && mouseX< btn3X+btn3W/2 && ➥

mouseY>btn3Y-btn3H/2 && mouseY< btn3Y+btn3H/2){
if (isTrailsSelected) {
isTrailsSelected = false;
isTrailable = false;

}
else {
isTrailsSelected = true;
isTrailable = true;

}
}

}
void mouseReleased(){
if (btn1Background==btnDownState){
btn1Background = btnOverState;

}
else if (btn2Background==btnDownState){
btn2Background = btnOverState;

}
}

void mouseMoved(){
if (mouseX>btn1X-btn1W/2 && mouseX< btn1X+btn1W/2 && ➥

mouseY>btn1Y-btn1H/2 && mouseY< btn1Y+btn1H/2){
cursor(HAND);
btn1Background = btnOverState;

}
else {
cursor(ARROW);
btn1Background = btnUpState;

}

if (mouseX>btn2X-btn2W/2 && mouseX< btn2X+btn2W/2 && ➥

mouseY>btn2Y-btn2H/2 && mouseY< btn2Y+btn2H/2){
cursor(HAND);
btn2Background = btnOverState;

}
else {
cursor(ARROW);
btn2Background = btnUpState;

}

INTERACTIVITY

585

12

617xCH12.qxd 4/20/07 2:22 PM Page 585

//button 3
if (mouseX>btn3X-btn3W/2 && mouseX< btn3X+btn3W/2 && ➥

mouseY>btn3Y-btn3H/2 && mouseY< btn3Y+btn3H/2){
cursor(HAND);

}
else {
cursor(ARROW);

}
}

Figure 12-2. Final Interactive Button Example sketch

The finished interactive buttons example is likely a little intimidating, mostly due to its
length. One of the (annoying) difficulties of coding graphical interfaces is the sheer
amount of required code. Although verbose, interface code is not overly complex. Much
of the code is redundant. For example, the last sketch included three buttons (one of
which operated as a check box) which all shared a lot of common functionality.

// font used for button text
PFont myFont;
// buttons
float btn1X, btn1Y, btn1W, btn1H;
float btn2X, btn2Y, btn2W, btn2H;
float btn3X, btn3Y, btn3W, btn3H;

color btnUpState = color(200, 200, 200);
color btnOverState = color(200, 200, 50);
color btnDownState = color(255, 150, 20);

color btn1Background = btnUpState;
color btn2Background = btnUpState;

All three buttons are defined by btn#x, btn#y, btn#w, and btn#h properties. (The # symbol
just represents the different button numbers.) I could have made this example more effi-
cient and elegant by creating a Button or even Widget class, since all the objects have the
same four properties. This would be an excellent thing to try on your own. The rest of
the example should be straightforward, and stuff you’ve seen before. For example, notice
the following conditional statement within the draw() function:

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

586

617xCH12.qxd 4/20/07 2:22 PM Page 586

// mouse trails
if (isTrailable){
fill(150, 16);
rect(width/2, height/2, width, height);

}
else {
background(150);

}

The if...else statement paints either a semi-opaque layer or an opaque layer, based on
the state of the isTrailable Boolean variable. Clicking the trails check box button con-
trols whether the variable is true or false. Within the draw() function, the drawing of
each of the buttons is handled with the following code:

stroke(100);
//btn 1 - decreases speed
fill(btn1Background);
rect(btn1X, btn1Y, btn1W, btn1H);
fill(75);
text("speed -", btn1X-17, btn1Y+btn1H/4);

//btn2 - increases speed
fill(btn2Background);
rect(btn2X, btn2Y, btn2W, btn2H);
fill(75);
text("speed +", btn2X-17, btn2Y+btn2H/4);

//btn3 - check box controls mouse trails
fill(255);
rect(btn3X, btn3Y, btn3W, btn3H);
fill(75);
text("trails", btn3X+10, btn3Y+btn3H/4);

if (isTrailsSelected){
// draw x in box
line(btn3X-btn3W/2, btn3Y-btn3H/2, btn3X+btn3W/2, btn3Y+btn3H/2);
line(btn3X-btn3W/2, btn3Y+btn3H/2, btn3X+btn3W/2, btn3Y-btn3H/2);

}

The last snippet in the preceding code controls whether the check box is filled or empty,
based on another Boolean variable, isTrailsSelected.

Each time the square exits the screen, either right or left, it is mapped back to the oppo-
site side so that it will keep moving. Also, just for some variety, the color and y position of
the box change randomly:

if (x>width){
x = 0;
y = random(h/2, 70);
movingSquareBackground = color(random(255),➥

INTERACTIVITY

587

12

617xCH12.qxd 4/20/07 2:22 PM Page 587

random(255), random(255));
}
else if (x<0){
x = width;
y = random(h/2, 70);
movingSquareBackground = color(random(255), ➥

random(255), random(255));
}

The main crux of the sketch is the mouse detection code. In the discussion that follows, I’ll
look at each mouse event separately. Here’s the first event:

void mousePressed(){
if (mouseX>btn1X-btn1W/2 && mouseX< btn1X+btn1W/2 && ➥

mouseY>btn1Y-btn1H/2 && mouseY< btn1Y+btn1H/2){
xSpeed-=.2;
btn1Background = btnDownState;

}
if (mouseX>btn2X-btn2W/2 && mouseX< btn2X+btn2W/2 && ➥

mouseY>btn2Y-btn2H/2 && mouseY< btn2Y+btn2H/2){
xSpeed+=.2;
btn2Background = btnDownState;

}
if (mouseX>btn3X-btn3W/2 && mouseX< btn3X+btn3W/2 && ➥

mouseY>btn3Y-btn3H/2 && mouseY< btn3Y+btn3H/2){
if (isTrailsSelected) {
isTrailsSelected = false;
isTrailable = false;

}
else {
isTrailsSelected = true;
isTrailable = true;

}
}

}

When the mouse is pressed, the code checks if the mouse is over one of the buttons by
comparing the button’s coordinates to the mouse position. To keep things simple, I used a
bunch of redundant code in the three conditional statements. When either of the speed
buttons are pressed, I set the fill color of the buttons with the lines:

btn1Background = btnDownState;
or

btn2Background = btnDownState;

These buttons also obviously increment/decrement the xSpeed of the moving square.
When the check box is pressed, it is toggled either on or off depending upon its current
state, setting the Boolean variable isTrailsSelected. When isTrailsSelected is true, an
x fills the box. I also set the Boolean variable isTrailable to the same value as

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

588

617xCH12.qxd 4/20/07 2:22 PM Page 588

isTrailsSelected, which changes the display window’s background fill from 100 percent
alpha to 16 percent alpha with the following conditional block in the draw() function:

if (isTrailable){
fill(150, 16);
rect(width/2, height/2, width, height);

}
else {
background(150);

}

Next, I’ll look at the mouse Release event:

void mouseReleased(){
if (btn1Background==btnDownState){
btn1Background = btnOverState;

}
else if (btn2Background==btnDownState){
btn2Background = btnOverState;

}
}

The mouse release event just returns the buttons to their over states. I used the over state
instead of the up state, as the mouse will still be over the button during the mouse release.

void mouseMoved(){
if (mouseX>btn1X-btn1W/2 && mouseX< btn1X+btn1W/2 && ➥

mouseY>btn1Y-btn1H/2 && mouseY< btn1Y+btn1H/2){
cursor(HAND);
btn1Background = btnOverState;

}
else {
cursor(ARROW);
btn1Background = btnUpState;

}

if (mouseX>btn2X-btn2W/2 && mouseX< btn2X+btn2W/2 && ➥

mouseY>btn2Y-btn2H/2 && mouseY< btn2Y+btn2H/2){
cursor(HAND);
btn2Background = btnOverState;

}
else {
cursor(ARROW);
btn2Background = btnUpState;

}

//button 3
if (mouseX>btn3X-btn3W/2 && mouseX< btn3X+btn3W/2 && ➥

mouseY>btn3Y-btn3H/2 && mouseY< btn3Y+btn3H/2){
cursor(HAND);

INTERACTIVITY

589

12

617xCH12.qxd 4/20/07 2:22 PM Page 589

}
else {
cursor(ARROW);

}
}

The mouse move event code is functionally not very important with regard to actually
moving the square. However, it is critically important with regard to the ergonomics of the
sketch. By changing the cursor and adding a rollover state, when the user hovers over one
of the interactive elements, the GUI feels more responsive and responds in a more
expected way vis-à-vis other modern software applications. This last example could be
greatly expanded, particularly through the addition of more GUI components and stan-
dardization of the elements and functionality.

Most programming languages have dedicated code libraries or GUI toolkits for handling
GUI elements (widgets) such as buttons, dialog boxes, sliders, and so on. AWT and Swing
are two popular Java GUI toolkits for this purpose (see http://java.sun.com/products/
jfc/ for more information on AWT and Swing).

As of this writing, Processing has five (user-contributed) GUI libraries, which you can
access from within the Processing application by choosing Help ➤ Reference ➤ Libraries, or
online at http://processing.org/reference/libraries/index.html. I will not be cover-
ing Processing’s libraries within this book. The best place to learn more about them is by
searching Processing’s online discussion board at http://processing.org/discourse/
yabb_beta/YaBB.cgi. As Processing continues to evolve, it’s likely that other GUI libraries
will be created, and eventually maybe even a visual editor that will allow you to drag and
drop pre-made components right into your sketches.

Creating a simple drawing application
Before moving on from the topic of mouse events, I thought it might be fun to create a
simple drawing program. Within this program, you’ll create pencil, paint, and eraser tools,
as well as a selectable palette. There are two basic paths you could take here: a vector-
based drawing program or a raster-based program (of course, you could also combine
the two).

A vector-based program would allow you to select and edit the shapes you draw, as in a
program such as Adobe Illustrator. However, programming this level of interactivity comes
at the cost of added complexity (lots of it). With a simpler, raster-based approach, the dis-
play window pixels are colored directly—there is no functionality allowing the selection of

Please note that it is not recommended that any AWT or Swing components be
incorporated in Processing sketches. For the official statement on this and other
GUI-relevant information, check out http://dev.processing.org/reference/
core/index.html.

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

590

617xCH12.qxd 4/20/07 2:22 PM Page 590

http://java.sun.com/products/
http://dev.processing.org/reference/
http://processing.org/reference/libraries/index.html
http://processing.org/discourse/

shapes. The following example, in spite of being raster-based, is still a bit complicated; and
similar to the last example, the GUI elements require quite a bit of code—therefore, the
sketch will be built in stages. Figure 12-3 shows the completed drawing application.

Figure 12-3. Simple Drawing Application sketch

With this sketch, I tried to create a user-friendly interface with reactive interactive ele-
ments that clearly alert users when they can do something. The inclusion of both button
over states and event-specific cursors should make users feel more comfortable mousing
around the sketch. Although the sketch is over 350 lines of code, the functionality and fea-
ture set is still very simple. You can draw with a pencil, paintbrush, or eraser. The current
selected paint color is the background color surrounding the three tool buttons. I found
this solution simple to code in comparison to the addition of a highlight box on the actual
palette or some other more complicated alternative. The pencil tool draws a continuous
line, and the brush tool draws a line composed of a series of strokes; the faster you move
the brush, the straighter the strokes making up the paint mark. The eraser paints the back-
ground color over whatever it moves across. You can control the size of the marks all three
tools make by using the slider in the top-right of the sketch. I gave the slider handle an
over state as well, similar to the tool buttons, again to give users feedback as they mouse
over it. The clear button fills the entire screen with the currently selected color. Other
things that might be fun to add to the sketch could include a series of pre-made shapes
that you could draw with (simple polygons, ellipses, stars, etc.). I imagined that these could
be created as buttons on the top bar of the sketch (between the Processing Paint title and
the slider). You could also add some imaging filters, such as blur and contrast. In addition,
a save function could be added to allow users to capture a screenshot of the art they cre-
ate with the sketch.

INTERACTIVITY

591

12

617xCH12.qxd 4/20/07 2:22 PM Page 591

To ensure that the sketch functions properly, please enter the following code into
Processing in the exact order that I present it. As usual, the sketch begins with a title and
global variable declarations:

/* Basic Drawing Application Example
Ira Greenberg, April 17, 2006 */
// fonts
PFont titleFont, clearFont;

The PFont variables were used for label text. I chose to dynamically generate a font by
using Processing’s createFont() function. This function attempts to convert a typeface
installed on your system into the format Processing needs. Later in the sketch, I specified
Arial as the typeface to convert, as it’s a very common face. Don’t worry if you don’t have
Arial installed on your system—you’ll be able to substitute a different face.

// canvas background color
color canvasBg = color(255);

// paint color
color paintColor;

// palette
color[]palette = new color[156];

The palette array was initialized with 156 slots in memory, based on a table 6 swatches
across and 26 swatches down (6 ✕ 26 = 156). This size was arbitrarily based on the size of
the overall palette, as well as the size of each swatch.

// create 3 icons
PImage pencil, brush, eraser;

I used imported images for the three tool buttons and Processing’s built-in PImage data
type. These images need to live in Processing’s data directory. You can download these
images from the Download section of the friends of ED web site (www.friendsofed.com/
downloads.html).

// panels coordinate arrays
float[] menu, tools, canvas;

// buttons coordinate arrays
float[] pencilBtn, brushBtn, eraserBtn;

Each section of the drawing interface, as well as the buttons, was broadly defined as a
coordinate array (with a length of 4), holding each section/button’s x, y, width, and height
values.

//create button state colors
color buttonUp = color(175, 175, 50, 150);
color buttonOver = color(255, 130, 20, 175);
color buttonSelected = color(250, 250, 30, 175);

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

592

617xCH12.qxd 4/20/07 2:22 PM Page 592

// set initial button background colors
color pencilBg = buttonSelected;
color brushBg = buttonUp;
color eraserBg = buttonUp;

// button booleans
boolean isPencilSelected = true;
boolean isBrushSelected = false;
boolean isEraserSelected = false;

As in the last example, I created up, over, and selected states for each of the buttons, as
well as Boolean values to hold the specific button states. For example, I initialized the
sketch by making the pencil active and the other tools inactive. Thus, I set
isPencilSelected to true and isBrushSelected and isEraserSelected to false.

// slider
float[] sliderBar, sliderHandle;
boolean isSliderMovable = false;
color sliderHandleUp = color(255, 127, 0);
color sliderHandleOver = color(255, 200, 0);
color sliderHandleBg = sliderHandleUp;
float sliderValue = 0;

//clear button
float[]clearBtn;

color clearBtnOver = color(50, 50, 150);
color clearBtnUp = color(0, 0);
color clearBtnBg = clearBtnUp;

The slider and the clear button were handled very similarly to the tool buttons. I could
have encapsulated this more and removed some of the redundant structures, but the code
would have become denser and more inscrutable. I could have also used an object-
oriented structure—building a base widget class and having each specific interactive
element extend (inherit) it and then add its own specific properties/methods. This OOP
approach would be an excellent exercise to try on your own.

After declaring all the global variables, I then initialized many of them in the setup()
function.

void setup(){
size(600, 400);
background(canvasBg);
frameRate(30);

// create fonts
titleFont = createFont("Arial", 11);
clearFont = createFont("Arial", 10);

INTERACTIVITY

593

12

617xCH12.qxd 4/20/07 2:22 PM Page 593

The createFont() function dynamically generates a font based on the typeface name
argument passed to the function. Again, I used Arial as it’s a very common face, and is
likely installed on your computer. If you don’t have Arial (or if you dislike it), you can sub-
stitute it with any face installed on your computer. If you’re not sure what faces are
installed, you can run the command println(PFont.list()); in Processing, which will
output all your installed fonts.

// create icons
pencil = loadImage("pencil_cursor.png");
brush = loadImage("brush_cursor.png");
eraser = loadImage("eraser_cursor.png");

To load the cursor PNG images, you need to first import them into the sketch’s data direc-
tory using the Add File command, found under the Sketch menu.

// create panel coordinate arrays
menu = new float[]{
0, 0, width, 25 };

tools = new float[]{
0, menu[3], 50, 165 };

canvas = new float[]{
tools[2], menu[3], width-tools[2], height-menu[3]+1 };

// create button coordinate arrays
pencilBtn = new float[]{
tools[0]+5, tools[1]+10, tools[2]-11, 45 };

brushBtn = new float[]{
tools[0]+5, pencilBtn[1]+ pencilBtn[3]+5, tools[2]-11, 45 };

eraserBtn = new float[]{
tools[0]+5, brushBtn[1]+ brushBtn[3]+5, tools[2]-11, 45 };

// create slider coordinate arrays
sliderBar = new float[]{
width-150, menu[1]+menu[3]/2, 75, menu[1]+menu[3]/2 };

sliderHandle = new float[]{
sliderBar[0]+sliderBar[2]/2, sliderBar[1]-3, 6, 6 };

// create clear button coordinate array
clearBtn = new float[]{
width-45, 6, 31, 13 };

I initialized the coordinate arrays, using existing interface elements as references in defin-
ing the specific coordinate values. Laying out an application based on these types of rela-
tionships adds flexibility to the GUI. For example, if three buttons are sized and placed
based on the width of the tool pane, it doesn’t matter if the application window eventually
scales up or down—the buttons will resize appropriately and remain in the correct place
in the interface. In this sketch, I didn’t follow this rule religiously, but rather used it when
it seemed convenient. Although laying elements relative to each other adds flexibility, it

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

594

617xCH12.qxd 4/20/07 2:22 PM Page 594

also makes the code a little harder to read. I tried to find a balance in the example, using
a minimal amount of hard-coded magic numbers, or specific values put directly into the
code. As mentioned previously, magic numbers are generally to be avoided.

//temporarily set colorMode to HSB
colorMode(HSB, 6, 26, 26);

//construct palette values
int paletteCounter = 0;
for (int j=0; j<6; j++){
for (int i=palette.length/6; i>0; i--){
if (i>13){
palette[paletteCounter] = color(random(6), random(26)+5, ➥

random(26)+5);
}
if (i<=13){
palette[paletteCounter] = color(j, i*2, i*4);

}
paletteCounter++;

}
}

//set initial color
paintColor = palette[23];

//reset colorMode to RGB
colorMode(RGB, 256, 256, 256);

}

In generating the palette, I used Processing’s color data type. The top of the palette is
generated with random color values, while the bottom part includes color gradients. I
switched color modes from RGB to HSB, as I found it simpler to code the gradients this
way. The colorMode() function not only allows you to select between the RGB and HSB
modes, but it also lets you define the numeric range for each color component. This is a
very handy function, especially for generating something like a gradient based on specific
loop counter values. After I finished generating the color values, which I stored in an array,
I switched back to the default RGB mode, with a range of 256 values for each color com-
ponent. Next, we’ll look at the draw() function:

void draw(){
strokeWeight(1.0);

// menu bar
fill(40, 40, 60);
noStroke();
rect(menu[0], menu[1], menu[2], menu[3]);

// tool panel
fill(paintColor);
noStroke();

INTERACTIVITY

595

12

617xCH12.qxd 4/20/07 2:22 PM Page 595

rect(tools[0], tools[1], tools[2], tools[3]);

// title
fill(175, 175, 220);
textFont(titleFont);
text("Processing Paint", 5, menu[1]+menu[3]-8);

// slider (controls stroke width)
stroke(255, 127, 0);
noFill();
// slider artwork
rect(sliderBar[0]-10, sliderBar[1]-1.5, 3, 3);
rect(sliderBar[0]-8.5, sliderBar[1]-.5, 3, 3);
// slider bar
rect(sliderBar[0]+sliderBar[2]+5, sliderBar[1]-3.5, 7, 7);
rect(sliderBar[0]+sliderBar[2]+7.5, sliderBar[1]-1, 7, 7);
stroke(255);
line(sliderBar[0], sliderBar[1], sliderBar[0]+ sliderBar[2], ➥

sliderBar[3]);
// slider handle
fill(sliderHandleBg);
stroke(150);
rect(sliderHandle[0], sliderHandle[1], sliderHandle[2], ➥

sliderHandle[3]);

// clear button
stroke(255, 200, 0);
fill(clearBtnBg);
rect(clearBtn[0],clearBtn[1], clearBtn[2], clearBtn[3]);
fill(255, 200, 0);
textFont(clearFont);
text("clear", width-40, menu[1]+menu[3]-10);

// pencil button
fill(pencilBg);
stroke(200);
rect(pencilBtn[0], pencilBtn[1], pencilBtn[2], pencilBtn[3]);
image(pencil, pencilBtn[0]+pencilBtn[2]/2-pencil.width/2, ➥

pencilBtn[1]+pencilBtn[3]/2-pencil.height/2);

// brush button
fill(brushBg);
stroke(200);
rect(brushBtn[0], brushBtn[1], brushBtn[2], brushBtn[3]);
image(brush, brushBtn[0]+brushBtn[2]/2-brush.width/2, ➥

brushBtn[1]+brushBtn[3]/2-brush.height/2);

// eraser button
fill(eraserBg);

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

596

617xCH12.qxd 4/20/07 2:22 PM Page 596

stroke(200);
rect(eraserBtn[0], eraserBtn[1], eraserBtn[2], eraserBtn[3]);
image(eraser, eraserBtn[0]+eraserBtn[2]/2-eraser.width/2, ➥

eraserBtn[1]+eraserBtn[3]/2-eraser.height/2);

The code to draw all the interface elements, although verbose, is very straightforward,
with the elements positioned in the display window in reference to other existing ele-
ments. Notice the numerous calls to the fill() and stroke() functions. As you’ll remem-
ber, these calls set the rendering state of the program; if I call fill(255, 0, 0) until I call
fill() again with different values, all future shapes will be filled with red. Also notice that
I did not include any interactive code (the code that makes the buttons work) directly with
the GUI elements.

// draw palette
int paletteCounter=0;
for (float i=0; i<tools[2]-8; i+=8){
for (float j=menu[3]+tools[3]; j<height-8; j+=8){
fill(palette[paletteCounter++]);
strokeWeight(.5);
rect(i, j, 8, 8);

}
}

The nested for loops in the palette code are a little scary (and ugly) looking. The color
palette is really just a series of rectangles filled with the colors stored in the palette color
array, which was filled back in the setup() function. Users are able to select colors out of
the palette through Processing’s get() function, which simply returns a color value at a
specific point in the display window. The mouse position will be used to define this point,
like this: get(mouseX, mouseY);.

if (mousePressed && mouseX>tools[0]+tools[2] && ➥

mouseY>menu[1]+menu[3]) {
smooth();

//pencil
if (isPencilSelected){
stroke(paintColor);
strokeWeight(sliderValue);
line(mouseX, mouseY, pmouseX, pmouseY);

}
//brush
else if (isBrushSelected){
strokeWeight(.25);
float nozzleRadius = sliderValue;
float sprayFeather = sliderValue*4;
float strokeAngle = 0;
float px = 0, py = 0, px2 = 0, py2 = 0;
stroke(paintColor);
for (int i=0; i<360; i++){
px = mouseX-nozzleRadius*2+cos(radians(strokeAngle))* ➥

INTERACTIVITY

597

12

617xCH12.qxd 4/20/07 2:22 PM Page 597

nozzleRadius+random(sprayFeather);
py = mouseY-nozzleRadius*2+sin(radians(strokeAngle))* ➥

nozzleRadius+random(sprayFeather);
px2 = pmouseX-nozzleRadius*2+cos(radians(strokeAngle))* ➥

nozzleRadius+random(sprayFeather);
py2 = pmouseY-nozzleRadius*2+sin(radians(strokeAngle))* ➥

nozzleRadius+random(sprayFeather);
line(px, py, px2, py2);
strokeAngle+=1;

}
}
//eraser
else if (isEraserSelected){
stroke(canvasBg);
strokeWeight(sliderValue*4);
line(mouseX, mouseY, pmouseX, pmouseY);

}
}

From within draw(), the value of Processing’s built-in mousePressed Boolean variable can
be checked. As I already discussed, Processing also has a mousePressed() function, which
I use a bit later in the sketch and outside of the draw() function. In the preceding code, I
used an outer if clause to check if the mouse is pressed over the drawing canvas. If this is
true, the nested if clauses check which tool is currently selected. If the pencil tool is
selected, then the process is pretty straightforward: a stroke color and stroke weight are
set, and Processing’s line() function is called. The line() function uses Processing’s
mouse and pmouse x and y variables: line(mouseX, mouseY, pmouseX, pmouseY);. mouseX
and mouseY are the current mouse coordinates, while pmouseX and pmouseY are the mouse
x and y coordinates one frame prior to the current one. These are very convenient vari-
ables that work great for allowing you to easily simulate a drawing tool. Skipping the brush
tool for a moment, the eraser tool works identically to the pencil tool—only the stroke is
a little wider and the stroke color is always the color of the canvas background.

The brush code is a bit more complicated: as the brush is dragged, a series of lines are
drawn somewhat randomly around the mouse position, giving a brushy look to the mark.
I used the trig functions to generate the points around the current mouse position. You’ve
looked at code like this in numerous other places in the book, as well as earlier in the
chapter. The cos() function is used to get the x coordinate and sin() is used to get the y
coordinate. The expression nozzleRadius+random(sprayFeather); controls how far the
lines are drawn around the mouse position. You’ll notice that I subtracted nozzleRadius*2
at the beginning of each of the px, py, px2, and py2 lines. I did this so that the cursor would
appear in the center of the paint mark, not at the top-left corner. Try removing
nozzleRadius*2 from each of the lines if you want to see how the cursor shifts. When
painting with the brush, if you drag it quickly, the brush marks will straighten out, which is
a nice (unexpected) effect, thanks again to the pmouseX and pmouseY variables.

//slider dragging
if (isSliderMovable && mousePressed && mouseX > ➥

sliderBar[0] && mouseX<sliderBar[0]+sliderBar[2]){
sliderHandle[0] = mouseX-sliderHandle[2]/2;

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

598

617xCH12.qxd 4/20/07 2:22 PM Page 598

}
sliderValue = (sliderHandle[0]-sliderBar[0]+10)*.25;

}

The last code snippet in draw() controls the slider event behavior. If the mouse is pressed
on the slider handle, it can be dragged only across the x-axis, constrained between the
ends of the slider bar. In setting the sliderValue variable, I needed to add 10 and multi-
ply the actual coordinate value by .25 so that the value of sliderHandle’s x position could
be used for setting the pencil, brush, and eraser tools’ stroke sizes, which are controlled by
the slider.

After the draw() function is the mousePressed() function:

void mousePressed(){
//pencil
if (mouseX>pencilBtn[0] && mouseX<pencilBtn[0]+pencilBtn[2] && ➥

mouseY>pencilBtn[1] && mouseY<pencilBtn[1]+pencilBtn[3]){
// set selected button background color
pencilBg = buttonSelected;
// set boolean
isPencilSelected = true;
//set other buttons to unselected
deselectBtns(0);

} else
//brush
if (mouseX>brushBtn[0] && mouseX<brushBtn[0]+brushBtn[2] && ➥

mouseY>brushBtn[1] && mouseY<brushBtn[1]+brushBtn[3]){
// set selected button background color
brushBg = buttonSelected;
// set boolean
isBrushSelected = true;
//set other buttons to unselected
deselectBtns(1);

} else
//eraser
if (mouseX>eraserBtn[0] && mouseX<eraserBtn[0]+eraserBtn[2] && ➥

mouseY>eraserBtn[1] && mouseY<eraserBtn[1]+eraserBtn[3]){
// set selected button background color
eraserBg = buttonSelected;
// set boolean
isEraserSelected = true;
//set other buttons to unselected
deselectBtns(2);

} else
// set painting color
if (mouseX>tools[0] && mouseX<tools[0]+tools[2] && ➥

mouseY>tools[1]+tools[3] && mouseY<height){
paintColor = get(mouseX, mouseY);

}
}

INTERACTIVITY

599

12

617xCH12.qxd 4/20/07 2:22 PM Page 599

The pencil, brush, and eraser snippets all work similarly. With this code, I detect if the
mouse is pressed on any of the buttons. If a button is pressed, I change the background
color of the pressed button to show that it has been selected. In addition, I set a Boolean
variable (either isPencilSelected, isBrushSelected, or isEraserSelected) to true. In
draw(), I am checking for one of these to be true to allow drawing to occur. The last state-
ment in each of these conditional blocks is deselectBtns(number); (number is replaced
with either 0, 1, or 2 (for pencil, brush, or eraser, respectively). This function ensures that
only one button is selected at a time. It wouldn’t make sense for two drawing tools to be
selected at the same time, so this function, in a sense, treats the three buttons as a group,
preventing multiple selections. Radio buttons often work this way, allowing you only to
select one button in a group.

The last part of the mousePressed() function is the code to select the paint color from the
palette. As I discussed earlier, you can get specific color pixel values from Processing very
simply, by using Processing’s get() function and the mouse’s current coordinate. The con-
ditional block ensures that the mouse is pressed on the palette, but doesn’t ensure that
the mouse isn’t on a line; so it’s possible to select the color from the lines separating the
swatches as the painting color.

void mouseReleased(){
// clear button repaints background
if (mouseX>clearBtn[0] && mouseX<clearBtn[0]+clearBtn[2] && ➥

mouseY>clearBtn[1] && mouseY<clearBtn[1]+clearBtn[3]){
canvasBg = paintColor;
fill(canvasBg);
rect(canvas[0], canvas[1], canvas[2], canvas[3]);

}
}

I used the mouseReleased() function for the clear button. I could have used the
mousePressed() function, but I thought it might be helpful to have an example of this
function as well. mouseReleased() works very similarly to mousePressed(), except that the
event is triggered when the button is released. Next, we’ll look at the mouseMoved() func-
tion. This function provides the visual cues to the viewer (e.g., mouse over states), making
the application interaction easy to understand.

void mouseMoved(){
//pencil
if (!isPencilSelected){
if (mouseX>pencilBtn[0] && mouseX<pencilBtn[0]+pencilBtn[2] && ➥

mouseY>pencilBtn[1] && mouseY<pencilBtn[1]+pencilBtn[3]){
cursor(HAND);
// set buttonOver background color
pencilBg = buttonOver;

}
else {
pencilBg = buttonUp;

}
}

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

600

617xCH12.qxd 4/20/07 2:22 PM Page 600

if (!isBrushSelected){
if (mouseX>brushBtn[0] && mouseX<brushBtn[0]+brushBtn[2] && ➥

mouseY>brushBtn[1] && mouseY<brushBtn[1]+brushBtn[3]){
cursor(HAND);
// set buttonOver background color
brushBg = buttonOver;

}
else {
brushBg = buttonUp;

}
}

if(!isEraserSelected){
if (mouseX>eraserBtn[0] && mouseX<eraserBtn[0]+eraserBtn[2] && ➥

mouseY>eraserBtn[1] && mouseY<eraserBtn[1]+eraserBtn[3]){
cursor(HAND);
// set buttonOver background color
eraserBg = buttonOver;

}
else {
eraserBg = buttonUp;

}
}

The three conditionals for the pencil, brush, and eraser tools ensure that the cursor hand
shows when the mouse is hovering over a button (if a button tool is not currently
selected), and also changes the buttons’ over states. Since the over states are just changes
in fill color, the color needs be to reset to the button up color once the mouse has moved
off the button (e.g., eraserBg = buttonUp).

// set palette cursor
if (mouseX>tools[0] && mouseX<tools[0]+tools[2] && ➥

mouseY>tools[1]+tools[3] && mouseY<height){
cursor(ARROW);

}
// set painting cursor
if (mouseX>tools[0]+tools[2] && mouseX<width && ➥

mouseY>menu[1]+menu[3] && mouseY<height){
cursor(CROSS);

}

These conditionals set the cursor state when the mouse is over the palette and drawing
part of the window (the canvas).

// slider handle detection and cursor
if (mouseX>sliderHandle[0] && mouseX<sliderHandle[0]+ ➥

sliderHandle[2] &&
mouseY>sliderHandle[1] && mouseY<sliderHandle[1]+ ➥

sliderHandle[3]){
cursor(HAND);

INTERACTIVITY

601

12

617xCH12.qxd 4/20/07 2:22 PM Page 601

isSliderMovable = true;
sliderHandleBg = sliderHandleOver;

} else {
//cursor(CROSS);
isSliderMovable = false;
sliderHandleBg = sliderHandleUp;

}

// clear button detection and cursor
if (mouseX>clearBtn[0] && mouseX<clearBtn[0]+clearBtn[2] && ➥

mouseY>clearBtn[1] && mouseY<clearBtn[1]+clearBtn[3]){
cursor(HAND);
clearBtnBg = clearBtnOver;

} else {
clearBtnBg = clearBtnUp;

}
}

The slider handle and clear button code work very similarly to the other buttons we
looked at. The slider handle button uses a isSliderMovable Boolean variable that works
in conjunction with code in draw(), only allowing the slider handle to be dragged when
the mouse is pressed directly on the handle.

// reset unselected buttons (pencil, brush, eraser)
void deselectBtns(int index){
switch(index){
case 0:
brushBg = buttonUp;
eraserBg = buttonUp;
isBrushSelected = false;
isEraserSelected = false;
break;

case 1:
pencilBg = buttonUp;
eraserBg = buttonUp;
isPencilSelected = false;
isEraserSelected = false;
break;

case 2:
pencilBg = buttonUp;
brushBg = buttonUp;
isPencilSelected = false;
isBrushSelected = false;
break;

}
}

The deselectBtns() function is used to maintain only one active drawing tool button at a
time. Again, I structured these three buttons like a radio button group, where only one

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

602

617xCH12.qxd 4/20/07 2:22 PM Page 602

selection can be active at a time. The function, by receiving the index of the current tool,
resets the other unselected tools, including setting their up states.

If you’ve entered all the code in the order I presented it, your drawing application should
now be able to be run. Please remember that if you don’t have the typeface Arial installed
(you probably do), you’ll need to specify a different (installed) typeface on your computer,
in the following two lines:

titleFont = createFont("Arial", 11);
clearFont = createFont("Arial", 10);

Remember to also add the cursor PNGs to the sketch’s data directory.

Whew! I realize that was a lot of code, but hopefully you’re starting to see the redundancy,
especially in the GUI implementation. By restructuring a program like this using an object-
oriented approach, you could eliminate some of the redundancy (but not necessarily use
less code). If I were going to scale this program to a much larger application, the added
organizational aspects of OOP would make it worthwhile to do so.

Keystroke events
In addition to mouse events, interactivity often includes keystroke events. As usual,
Processing simplifies the process, making it really easy to add keystroke control to your
sketches. Processing includes built-in functions to detect key presses and releases and to
also determine what specific key was pressed. For example, this sketch changes the rec-
tangle’s color to red on the key press and blue on the key release:

color rectBackground = color(0, 0, 255);
void setup(){
size(400, 400);
background(255);
rectMode(CENTER);

}
void draw(){
fill(rectBackground);
rect(width/2, height/2, 200, 200);

}
void keyPressed(){
rectBackground = color(255, 0, 0);

}
void keyReleased(){
rectBackground = color(0, 0, 255);

}

Obviously, you’ll usually want to know what key was pressed when detecting a key event.
The next sketch adds arrow key detection to the key press event, giving each directional
arrow control over a different color fill:

INTERACTIVITY

603

12

617xCH12.qxd 4/20/07 2:22 PM Page 603

color rectBackground = color(0, 0, 255);
void setup(){
size(400, 400);
background(255);
rectMode(CENTER);

}
void draw(){
fill(rectBackground);
rect(width/2, height/2, 200, 200);

}
void keyPressed(){
if(key == CODED){
if (keyCode == UP) {
rectBackground = color(255, 0, 0);

}
else if (keyCode == DOWN) {
rectBackground = color(255, 255, 0);

}
else if (keyCode == RIGHT) {
rectBackground = color(0, 255, 0);

}
else {
rectBackground = color(255, 0, 255);

}
}

}

The keyCode property is used to check special keys on the keyboard, such as the arrow
keys. Processing defines these keys with constants (that’s why the arrow direction names
are in all caps). Before checking the individual key codes, you need to check if the key is
coded at all; this is handled by the external conditional if(key == CODED){}. For an up-to-
date list of the available key codes in Processing, please refer to the online reference at
http://processing.org/reference/keyCode.html.

In addition to key codes, it’s also possible to detect the value of each standard key. The
next sketch is based on the last example, replacing the arrow keys with the keys A, S, W,
and Z, for left, right, up, and down, respectively.

color rectBackground = color(0, 0, 255);
void setup(){
size(400, 400);
background(255);
rectMode(CENTER);

}
void draw(){
fill(rectBackground);
rect(width/2, height/2, 200, 200);

}
void keyPressed(){
if(key == 'a'){

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

604

617xCH12.qxd 4/20/07 2:22 PM Page 604

http://processing.org/reference/keyCode.html

rectBackground = color(255, 0, 0);
}
else if (key == 's') {
rectBackground = color(255, 255, 0);

}
else if (key == 'w') {
rectBackground = color(0, 255, 0);

}
else if (key == 'z') {
rectBackground = color(255, 0, 255);

}
}

Finally, instead of using the keyPressed() function, you can use a keyPressed Boolean
variable directly within the draw() function. We already looked at this multiple approach
to solving a problem earlier in the chapter, when I discussed the mousePressed() function
vs. the mousePressed Boolean variable. Here’s the code:

color rectBackground = color(0, 0, 255);
void setup(){
size(400, 400);
background(255);
rectMode(CENTER);

}
void draw(){
fill(rectBackground);
rect(width/2, height/2, 200, 200);

// keyPressed boolean variable
if (keyPressed){
if(key == 'a'){
rectBackground = color(255, 0, 0);

}
else if (key == 's') {
rectBackground = color(255, 255, 0);

}
else if (key == 'w') {
rectBackground = color(0, 255, 0);

}
else if (key == 'z') {
rectBackground = color(255, 0, 255);

}
}

}

I’ve included one more somewhat lengthy interactive example that takes advantage of
Processing’s easy-to-use key event detection (see Figure 12-4). The piece is a motion paint-
ing application that uses an animated brush, which is completely controlled by the key-
board. I’ve killed enough trees this chapter, so I’ve added my descriptions about the sketch

INTERACTIVITY

605

12

617xCH12.qxd 4/20/07 2:22 PM Page 605

directly within the code as comments. I recommend running the example first before
going through the code. Happy motion painting!

/* Motion Painter
Ira Greenberg, April 17, 2006 */

/* Begin declaring global variables above
the setup() function. */
int points = 5;

/*parentNode[] array holds x and y position of
center of moving brush shape.*/
float[]parentNode = new float[2];

/*shape[][] 2-dimensional array holds x and y position
of up to 8 points making up the vertices of each
brush shape. Each brush shape can have a minimum
of 2 points or a maximum of 8 points.*/
float[][]shape = new float[8][2];

float shapeRadius = 10.0;
float strokeAlpha = 255;
float speed = 2;
float rotation = 15;
float rotationSpeed = 4;
float xSpeed = 0.0;
float ySpeed = 0.0;
byte xDirection = 1;
byte yDirection = 1;
float strokeWt = 1;

/*strokeColor[][] 2-dimensional array holds
color values for each edge of the brush shapes.*/
float[][]strokeColor = new float[8][3];

boolean isWallSolid = true;
int canvasWidth;
int canvasHeight;
PFont font;

void setup(){
size(600, 400);
canvasWidth = width;
canvasHeight = height-100;
background(255);
smooth();
frameRate(30);

/*Initialize parentNode to center of canvas, which

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

606

617xCH12.qxd 4/20/07 2:22 PM Page 606

is smaller (vertically) than the entire display window.*/
parentNode[0] = canvasWidth/2;
parentNode[1] = canvasHeight/2;

/*Fill pallete with random colors for brush shape edges.
Each shape can have between 2 and 8 edges*/
setPalette();

// Font for key commands at bottom of sketch
font = createFont("Verdana", 12);

}

void draw(){
/*xSpeed and ySpeed variables controlled by trig functions.
rotation variable is controlled by user, through keystroke
commands. x and y value of parentNode is incremented by
xSpeed and ySpeed. The brush shape is drawn around the
parentNode as its origin, ensuring the brush shape moves
with the parentNode*/
xSpeed = cos(radians(rotation))*speed*xDirection;
ySpeed = sin(radians(rotation))*speed*yDirection;
parentNode[0]+=xSpeed;
parentNode[1]+=ySpeed;

/*If isWallSolid boolean variable is true, the shape bounces off
the canvas edges. If false, the shape exits the canvas and is
remapped to the opposite side of the canvas. The isWallSolid
variable is controlled by the user with the keystrokes 'b' for
bounce or 'n' for no bounce.*/
if (!isWallSolid){
if (parentNode[0]>canvasWidth+shapeRadius*2){
parentNode[0] = 0;

}
else if (parentNode[0]<-shapeRadius*2){
parentNode[0] = canvasWidth;

}
if (parentNode[1]>canvasHeight+shapeRadius*2){
parentNode[1] = 0;

}
else if (parentNode[1]<-shapeRadius*2){
parentNode[1] = canvasHeight;

}
}
else {
if (parentNode[0]>canvasWidth-shapeRadius/2){
xDirection*=-1;

}
else if (parentNode[0]<shapeRadius/2){
xDirection*=-1;

INTERACTIVITY

607

12

617xCH12.qxd 4/20/07 2:22 PM Page 607

}
if (parentNode[1]>canvasHeight-shapeRadius/2){
yDirection*=-1;

}
else if (parentNode[1]<shapeRadius/2){
yDirection*=-1;

}
}

/*drawShape() function draws a 2-8 point polygon, which
functions as a brush shape. The number of sides to
the shape is determined by the user pressing keys 2-8.*/
drawShape();

/*keyPressed boolean property
checks for specific keys*/
if (keyPressed){
if(key == '+') {
//Increase shape size
shapeRadius++;

}
else if(key == '_') {
//Decrease shape size
shapeRadius--;

}
else if(key == 'a') {
if (strokeAlpha>0){
//Decrease alpha
strokeAlpha-=5;

}
}
else if(key == 's') {
if (strokeAlpha<255){
//Increase alpha
strokeAlpha+=5;

}
}
else if(key == 'b') {
//Causes shape to bounce off canvas edges.
isWallSolid = true;

}
else if(key == 'n') {
//Causes shape to pass through canvas edges.
isWallSolid = false;

}
else if(key == 'c') {
//Set new random color palette for each shape edge.
setPalette();

}

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

608

617xCH12.qxd 4/20/07 2:22 PM Page 608

//keys 2-8 control number of edges for brush shape.
else if(key == '2') {
points = 2;

}
else if(key == '3') {
points = 3;

}
else if(key == '4') {
points = 4;

}
else if(key == '5') {
points = 5;

}
else if(key == '6') {
points = 6;

}
else if(key == '7') {
points = 7;

}
else if(key == '8') {
points = 8;

}
}
//Bottom info panel
fill(130);
noStroke();
rect(0, canvasHeight, canvasWidth, height-canvasHeight);

textFont(font);
fill(255, 200, 0);
text("key commands:", 10, canvasHeight+20);
fill(0);
//left column
text("UP Arrow: speed ++", 10, canvasHeight+35);
text("DOWN Arrow: speed --", 10, canvasHeight+50);
text("RIGHT Arrow: rotate right", 10, canvasHeight+65);
text("LEFT Arrow: rotate left", 10, canvasHeight+80);

//middle column
text("',' stop", 200, canvasHeight+20);
text("'.' start", 200, canvasHeight+35);
text("'+' (requires shift key): size ++", 200, canvasHeight+50);
text("'–' (requires shift key): size --", 200, canvasHeight+65);
text("'c' randomize color: size --", 200, canvasHeight+80);

//right column
text("change shapes (keys: 2-8)", 430, canvasHeight+20);
text("'a' alpha --", 430, canvasHeight+35);
text("'s' alpha ++", 430, canvasHeight+50);

INTERACTIVITY

609

12

617xCH12.qxd 4/20/07 2:22 PM Page 609

text("'b' bounce", 430, canvasHeight+65);
text("'n' no bounce", 430, canvasHeight+80);

}

//keyPressed function
//Check built-in coded keys
void keyPressed(){
if(key == CODED) {
if (keyCode == UP) {
if (speed<10){
speed+=.25;

}
}
else if (keyCode == DOWN) {
if (speed>-10){
speed-=.25;

}
}
else if(keyCode == RIGHT) {
rotation+=rotationSpeed;

}
else if(keyCode == LEFT) {
rotation-=rotationSpeed;

}
}
else {
// check for 2 more uncoded keys
if(key == '.') {
//start motion
loop();

}
else if(key == ',') {
//stop motion
noLoop();

}
}

}

//Randomly fill palette
void setPalette(){
for (int i=0; i<8; i++){
for (int j=0; j<3; j++){
strokeColor[i][j] = random(255);

}
}

}

//Trig functions draw 2-8 sided polygon around parentNode.
void drawShape(){

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

610

617xCH12.qxd 4/20/07 2:22 PM Page 610

strokeWeight(strokeWt);
float angle = 0;
for (int i=0; i<points; i++){
shape[i][0] = parentNode[0]+cos(radians(angle+rotation)) ➥

*shapeRadius;
shape[i][1] = parentNode[1]+sin(radians(angle+rotation)) ➥

*shapeRadius;
angle+=360/points;

}

// Each edge of the polygon (brush shape)
// has a different color.
for (int i=0; i<points; i++){
stroke(strokeColor[i][0], strokeColor[i][1], ➥

strokeColor[i][2], strokeAlpha);
if (i==points-1){
//If last point, connect to initial point to close polygon.
line(shape[i][0], shape[i][1], shape[0][0], shape[0][1]);

}
else {
//If not last point, draw line from current point to next point.
line(shape[i][0], shape[i][1], shape[i+1][0], shape[i+1][1]);

}
}

}

Figure 12-4. Motion Painter sketch

INTERACTIVITY

611

12

617xCH12.qxd 4/20/07 2:22 PM Page 611

I mentioned at the beginning of the chapter that Processing (with a little help from Java)
allows you to detect multiple mouse clicks. To close the chapter, I’ve included one last sim-
ple example that utilizes multiple mouse clicks on the display window to dynamically
change the number of sides of a polygon. The simple piece of Java code that allows you to
detect multiple mouse clicks is mouseEvent.getClickCount(), which returns an integer
value of the number of clicks. The time delay between clicks determines if the series of
clicks is considered a multiple click input or a series of individual clicks.

// Detecting Multiple Mouse Clicks
int clickCount = 0;
void setup(){
size(400, 400);
smooth();

}

void draw(){
background(255);
translate(width/2, height/2);
rotate(frameCount*PI/180);
drawPoly();

}

void mouseClicked(){
clickCount = mouseEvent.getClickCount();

}

void drawPoly(){
// draw point if single click
if (clickCount==1){
point(0, 0);

}
else {
float ang = 0;
int verts = clickCount;
beginShape();
for (int i=0; i<verts; i++){
ang += 360.0/verts;
vertex(cos(radians(ang))*150.0, sin(radians(ang))*150.0);

}
endShape(CLOSE);

}
}

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

612

617xCH12.qxd 4/20/07 2:22 PM Page 612

Summary
We began this chapter comparing Java and Processing’s approach to coding interactivity.
As usual, compared to pure Java, Processing simplifies interactivity. Using Processing’s
built-in mouse event functions, I coded some simple sketches that reacted to the user’s
mouse presses, as well as mouse releases. I compared functions such as mousePressed()
with their companion Boolean variables of the same name (mousePressed), and looked at
some examples that used both. I also discussed the difference between Processing’s
mouseMoved() and mouseDragged() functions. Developing some longer examples, I created
a node-based shape-building and animation sketch and also a simple paint program,
including a custom GUI with reactive multi-state buttons and a draggable slider. After the
mouse events, we looked at Processing’s keyboard events, which work similarly to the
mouse events. I compared coded keys, such as the arrow keys, defined as constants in
Processing, with the standard keyboard keys—letters, numbers, and so forth. Finally, I cre-
ated an animated paint program that was completely controlled by keyboard events. To
learn more about pushing Processing’s event detection and handling capabilities beyond
the mouse and keyboard, check out the Processing libraries (http://processing.org/
reference/libraries/index.html).

The final two chapters of the book introduce coding 3D in Processing—one of the most
exciting features of the language.

INTERACTIVITY

613

12

617xCH12.qxd 4/20/07 2:22 PM Page 613

http://processing.org/

617xCH13.qxd 4/18/07 3:24 PM Page 614

13 3D

617xCH13.qxd 4/18/07 3:24 PM Page 615

The term approach-avoidance describes a psychological state in which people are
attracted to and also repulsed by something. This tension aptly describes the relationship
many of my past art students had with 3D animation. On the one hand, they were enam-
ored by the cool 3D effects they watched in their favorite games and films. On the other
hand, they became easily frustrated trying to learn the extremely dense and unintuitive
software. Popular 3D modeling and animation applications such as LightWave, Maya, and
3ds Max (which handle the coding behind the scenes) are extremely complex, specialized
pieces of software, presenting steep, drawn-out learning curves. Attempting to teach these
same art students 3D programming would have been unthinkable. For this reason, coding
3D has been the domain of computer science types, requiring lots of scary math and very
low-level programming—that is, until Processing came along. Processing has full 3D sup-
port and even includes two separate 3D renderers, and of course it’s free. Most impor-
tantly, Processing greatly simplifies the process of coding 3D for creative folks, allowing us
to begin “creating” in 3D almost immediately.

In this chapter, you’ll learn about Processing’s built-in 3D support, based on the custom
P3D rendering engine. Working with some simple 3D functions, such as box(), you’ll learn
how to create that sexy spinning cube in no time. I’ll revisit the concept of transforma-
tions, but in 3D space using Processing’s pushMatrix() and popMatrix() functions. Then
I’ll go a little beneath the hood and teach you how to code your own 3D rotations as well
as create some custom 3D geometry. First, I’ll start with the basics.

Processing 3D basics
Here’s the ubiquitous spinning cube I promised, using only nine lines of code (see
Figure 13-1):

void setup(){
size(400, 400, P3D);

}
void draw(){
background(0);
translate(width/2, height/2);
rotateY(frameCount*PI/60);
box(150, 150, 150);

}

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

616

617xCH13.qxd 4/18/07 3:24 PM Page 616

Figure 13-1. Spinning Cube 1

Man, that was even easier than using code-free 3D animation software.

In the preceding example, the cube only spun around the y-axis. The following code cre-
ates a cube that spins around the x- and y-axes (see Figure 13-2):

void setup(){
size(400, 400, P3D);

}
void draw(){
background(0);
translate(width/2, height/2);
rotateY(frameCount*PI/60);
rotateX(frameCount*PI/60);
box(150, 150, 150);

}

Figure 13-2. Spinning Cube 2

3D

617

13

617xCH13.qxd 4/18/07 3:24 PM Page 617

If you compare the code in the preceding two sketches carefully, you’ll notice all I had to
do to get the second rotation was add a single line of code: rotateX(frameCount*PI/60);.
The sketch is very simple, but it does introduce a few new concepts. First, I included an
extra argument in the size(400, 400, P3D) function call. In reality, the size() function
always includes a third argument that tells Processing what renderer to use. If you don’t
specify a renderer, then the default renderer (JAVA2D) is used. P3D is a 3D renderer, also
referred to as a 3D engine, built within in Processing. A 3D engine is just software that cal-
culates the math of 3D coordinate space (x, y, and z), and then remaps the 3D space back
to a 2D projection so that you can view it on a monitor. Since our monitors still rely on a
flat, illuminated 2D surface, they can’t really plot 3D information. In a sense, what you see
on your monitor is sort of a photograph of 3D that has been flattened to 2D coordinate
space. 3D engines typically allow you to work with 3D geometry, light sources, textures,
and even virtual cameras. Besides that, 3D works very similarly to 2D, allowing you to set
properties like fills, strokes, position, and scale, and animate these properties as well.

3D transformation
In the last two examples, Processing’s box() function took three arguments (width, height,
and depth), and placed the box, centered, at (0, 0, 0). Since you’re using three dimensions
now, you use three values (x, y, and z) to identify a point in space. To move the box to the
center of the display window, you can use Processing’s translate() function. Try running
the last sketch again, but commenting out the translate(width/2, height/2); call. You
should see the box spinning around the top-left corner of the display window, centered at
(0, 0, 0).

You can also translate along the z-axis. In the last sketch, change translate(width/2,
height/2); to translate(width/2, height/2, -400); and run the sketch. You should
now see a smaller cube spinning in the display window. You can also try using a larger pos-
itive value for the third argument; for example, translate(width/2, height/2, 130);
will generate a cube that fills the entire display window.

I referred to the cube getting smaller and larger when translated along the z-axis. More
accurately, the cube remains the same size (with regard to its internal width/height/depth
properties), but its translation along the z-axis moves it within a virtual space modeled
after space in the physical world, in which objects appear to decrease and increase in size
as they move away from or toward a viewer, according to the rules of perspective. 3D
engines attempt to simulate this phenomenon by coding perspective projection, usually
through a virtual camera that can be moved, rotated, and even zoomed. I’ll discuss virtual
cameras in Processing in Chapter 14.

The process of translating the contents of the display window is a little confusing and takes
some time to get used to. This shouldn’t be a completely new concept, though, as it was
covered earlier in the book in the discussion of 2D space, and the same principles apply.
The benefit of translation becomes apparent when you try to rotate a shape drawn in the
middle of the display window. The next sketch draws a 2D rectangle in the center of the
screen and then rotates it. I used the rect() command, since it takes x- and y-coordinate
and dimension arguments (as opposed to box() and sphere(), which only take dimension
arguments).

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

618

617xCH13.qxd 4/18/07 3:24 PM Page 618

void setup(){
size(400, 400);

}
void draw(){
background(0);
rotate(frameCount*PI/60);
rect(50, 50, 150, 150);

}

If you run the sketch, you may be surprised to see the rectangle rotating off the screen,
around the origin, instead of around its own center point. This is a common error new
coders make. Intuitively, it seems that rotate() should spin the shape around its center
point. However, rotate() doesn’t actually spin the shape; it spins the entire contents of
the display window. If you’re used to graphics applications like Illustrator, FreeHand, or
Flash, which internally handle translations when you draw highly encapsulated shape
objects, it can seem frustrating to have to think about the translation process in
Processing. A basic rule of thumb is to draw your objects initially around the origin (0, 0,
0) and then translate them. Here’s a new version of the last sketch, correctly implemented
for centered rotation:

void setup(){
size(400, 400);

}
void draw(){
background(0);
translate(width/2, height/2);
rotate(frameCount*PI/60);
rect(-75, -75, 150, 150);

}

The order of transformations also has an effect on how and where in the display window
things are drawn.

The next sketch (see Figure 13-3) uses Processing’s sphere() function. I call translate()
after rotateY(), which doesn’t get the sphere rotating around the center of the window.
However, if I switch the order of the rotateY(frameCount*PI/60); and translate(width/2,
height/2); commands, the rotation happens as expected, around the center of the
window.

void setup(){
size(400, 400, P3D);

}
void draw(){
background(0);
// the next 2 lines should be switched in order
rotate(frameCount*PI/60);
translate(width/2, height/2);
sphere(100);

}

3D

619

13

617xCH13.qxd 4/18/07 3:24 PM Page 619

Figure 13-3. Order of Transformations example

The problem becomes a little trickier when using multiple objects. For example, the next
sketch tries to rotate four cubes as one larger block. Each cube will be 100 ✕ 100 ✕ 100,
so I need to offset each block by 50. For example, I want the top-left block to be at –50 on
the x-axis and –50 on the y-axis; the top-right block at 50 on the x-axis and –50 on the
y-axis; the bottom-left block at –50, 50; and the bottom-right one at 50, 50. In addition, I
want the entire group of four blocks to be centered in the display window. The intuitive
thing to try is to initially translate everything to the center of the display window, as I did
in the previous example, and then call a series of translations for each block, using the off-
set values I just mentioned. Unfortunately, this won’t work as expected. But don’t take my
word for it; give it a try (see Figure 13-4):

// Multiple Translations
void setup(){
size(400, 400, P3D);

}
void draw(){
background(0);
translate(width/2, height/2);
rotateY(frameCount*PI/60);

translate(-50, -50);
fill(255, 0, 0);
box(100, 100, 100);

translate(50, -50);
fill(255, 255, 0);
box(100, 100, 100);

translate(-50, 50);
fill(0, 0, 255);
box(100, 100, 100);

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

620

617xCH13.qxd 4/18/07 3:24 PM Page 620

translate(50, 50);
fill(0, 255, 0);
box(100, 100, 100);

}

Figure 13-4. Multiple Translations example

So what happened? Translations are cumulative. Each time you call translate(), the
entire drawing context of the display window is translated. For example, here’s a series of
translations that move a box across the screen (see Figure 13-5):

void setup(){
size(400, 100, P3D);

}
void draw(){
background(255);
translate(10, height/2);
for (int i=10; i<width-20; i+=10){
translate(10, 0);
box(10, 10, 10);

}
}

Figure 13-5. Cumulative Translations example

You’ll notice that I called translate() twice. The first call happens within draw(), while
the second call is inside the for loop within draw(). When a transformation such as a
translation happens within draw(), it is reset each time that draw() executes. Thus, not to
contradict myself from the earlier paragraph, but the first call, translate(10, height/2),
is actually not cumulative. However, the second call, translate(10, 0); within the for
loop, executes 37 times each time draw() runs, which creates the cumulative translations

3D

621

13

617xCH13.qxd 4/18/07 3:24 PM Page 621

as the block is offset across the stage. Returning to the rotating block wall, how would you
solve this problem?

Processing comes equipped with two handy functions to solve the problem: pushMatrix()
and popMatrix(). These functions work in pairs and allow you to temporarily offset the
drawing context of the display window, draw something, and then put the drawing context
back to where it was before you transformed it. Pretty cool, right? Here’s the fixed rotat-
ing wall utilizing the two functions (see Figure 13-6):

// Multiple Translations with pushMatrix() and popMatrix()
void setup(){
size(400, 400, P3D);

}
void draw(){
background(0);
translate(width/2, height/2);
rotateY(frameCount*PI/60);

pushMatrix();
translate(-50, -50);
fill(255, 0, 0);
box(100, 100, 100);
popMatrix();

pushMatrix();
translate(50, -50);
fill(255, 255, 0);
box(100, 100, 100);
popMatrix();

pushMatrix();
translate(50, 50);
fill(0, 0, 255);
box(100, 100, 100);
popMatrix();

pushMatrix();
translate(-50, 50);
fill(0, 255, 0);
box(100, 100, 100);
popMatrix();

}

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

622

617xCH13.qxd 4/18/07 3:24 PM Page 622

Figure 13-6. Multiple Translations with pushMatrix()
and popMatrix() example

Notice how the pushMatrix() and popMatrix() functions surround the translate() and
box() calls. pushMatrix() must come before popMatrix(), and they need to work as a
pair. The underlying math and theory behind these functions is not simple, but using them
really is. You can even nest these function calls, as long as you have a popMatrix() for
each pushMatrix(). The next example, shown in Figure 13-7, constructs a cube of cubes.
The fill color is controlled by the counters in the three for loops. I also made the color
translucent, in order to reveal the multicube structure.

// Cubic Grid
float boxSize = 40;
float margin = boxSize*2;
float depth = 400;
color boxFill;

void setup(){
size(400, 400, P3D);
noStroke();

}

void draw(){
background(255);
// center and spin grid
translate(width/2, height/2, -depth/2);
rotateY(frameCount*PI/60);
rotateX(frameCount*PI/60);

// build grid using multiple translations
for (float i=-depth/2+margin; i<=depth/2-margin; i+=boxSize){
pushMatrix();
for (float j=-height/2+margin; j<=height/2-margin; j+=boxSize){
pushMatrix();

3D

623

13

617xCH13.qxd 4/18/07 3:24 PM Page 623

for (float k=-width/2+margin; k<=width/2-margin; k+=boxSize){
// base fill color on counter values, abs function
// ensures values stay within legal range
boxFill = color(abs(i), abs(j), abs(k), 50);
pushMatrix();
translate(k, j, i);
fill(boxFill);
box(boxSize, boxSize, boxSize);
popMatrix();

}
popMatrix();

}
popMatrix();

}
}

Figure 13-7. Cubic Grid sketch

So 3D seems pretty easy, right? Well, as you no doubt suspect, there is a lot of stuff going
on beneath Processing’s surface when it come to 3D—stuff that looks truly scary (even to
folks who enjoy math). Not to pop your happy bubble, but I’d like to take just a little look
under the hood (but well above the really nasty stuff). Since I’ve been using Processing’s
box() function, I’ll show you how to create a custom version of the command, as well as
some custom rotation methods. I think seeing how a cube is constructed will give you a
better sense about how to think in 3D. I also think it will begin to give you insight into how
to create other 3D geometry besides Processing’s box and sphere. You’ll continue to use
Processing’s translate() function to center your geometry; so you’ll design your cube to
be centered at the origin, which, if you’ll remember, is (0, 0, 0) in 3D. You’ll also build the
cube using object-oriented methodology, with classes. Finally, you’ll give your cube an
extra feature or two beyond Processing’s built-in version.

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

624

617xCH13.qxd 4/18/07 3:24 PM Page 624

Creating a custom cube
To begin to think about a cube, you need to think about the components of a cube. A
cube can be thought of in a number of ways: as a group of points defining the cube’s ver-
tices, sometimes referred to as a point cloud; as a wireframe, representing the lines con-
necting the cube’s vertices; or as a solid, composed of polygonal sides or faces. In a more
advanced example, you might also look at different shading and surface material algo-
rithms to create a photorealistically textured cube. This section will begin with the creation
of a simple class that holds the three x, y, and z coordinates for each of the cube’s vertices.
The class will be named Point3D.

/*
Extremely simple class to
hold each 3D vertex
*/
class Point3D{
float x, y, z;

// constructors
Point3D(){
}

Point3D(float x, float y, float z){
this.x = x;
this.y = y;
this.z = z;

}
}

I hope this class looks self-explanatory. I’m using the class simply to group the three com-
ponent properties of each vertex. As a refresher, to create a Point3D object and then out-
put its component properties, you’d write the following:

void setup(){
Point3D p1 = new Point3D(-50, -50, -50);
println(p1.x + ", " + p1.y + ", " + p1.z);

}

/*
Extremely simple class to
hold each 3D vertex
*/
class Point3D{

float x, y, z;

// constructors
Point3D(){
}

3D

625

13

617xCH13.qxd 4/18/07 3:24 PM Page 625

Point3D(float x, float y, float z){
this.x = x;
this.y = y;
this.z = z;

}
}

If you run this, you should see the following output: -50.0, -50.0, -50.0.

Next, you’ll create your Cube class.

I should point out that technically a cube would be composed only of equal-area square
faces. However, my Cube class will allow you to specify different values for width, height,
and depth; sorry if this offends any of you purists out there.

The Cube class will rely on the Point3D class in a compostional relationship, in which I’ll
embed variables of type Point3D directly within the Cube class. Remember, each cube will
be created around the origin, so I won’t account for an x, y, or z property for the entire
cube; only the cube’s overall width, height, and depth properties will be specified, similarly
to how Processing’s box() function works. (The class code that follows will not execute on
its own, but you probably realize that by now.)

class Cube{
Point3D[] vertices = new Point3D[24];
float w, h, d;

// constructors
// default constructor
Cube(){
}

Cube(float w, float h, float d){
this.w = w;
this.h = h;
this.d = d;

// cube composed of 6 quads
//front
vertices[0] = new Point3D(-w/2,-h/2,d/2);
vertices[1] = new Point3D(w/2,-h/2,d/2);
vertices[2] = new Point3D(w/2,h/2,d/2);
vertices[3] = new Point3D(-w/2,h/2,d/2);
//left
vertices[4] = new Point3D(-w/2,-h/2,d/2);
vertices[5] = new Point3D(-w/2,-h/2,-d/2);
vertices[6] = new Point3D(-w/2,h/2,-d/2);
vertices[7] = new Point3D(-w/2,h/2,d/2);
//right

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

626

617xCH13.qxd 4/18/07 3:24 PM Page 626

vertices[8] = new Point3D(w/2,-h/2,d/2);
vertices[9] = new Point3D(w/2,-h/2,-d/2);
vertices[10] = new Point3D(w/2,h/2,-d/2);
vertices[11] = new Point3D(w/2,h/2,d/2);
//back
vertices[12] = new Point3D(-w/2,-h/2,-d/2);
vertices[13] = new Point3D(w/2,-h/2,-d/2);
vertices[14] = new Point3D(w/2,h/2,-d/2);
vertices[15] = new Point3D(-w/2,h/2,-d/2);
//top
vertices[16] = new Point3D(-w/2,-h/2,d/2);
vertices[17] = new Point3D(-w/2,-h/2,-d/2);
vertices[18] = new Point3D(w/2,-h/2,-d/2);
vertices[19] = new Point3D(w/2,-h/2,d/2);
//bottom
vertices[20] = new Point3D(-w/2,h/2,d/2);
vertices[21] = new Point3D(-w/2,h/2,-d/2);
vertices[22] = new Point3D(w/2,h/2,-d/2);
vertices[23] = new Point3D(w/2,h/2,d/2);

}

void create(){
// draw cube
for (int i=0; i<6; i++){
beginShape(QUADS);
for (int j=0; j<4; j++){
vertex(vertices[j+4*i].x, vertices[j+4*i].y, ➥

vertices[j+4*i].z);
}
endShape();

}
}

}

The Cube class is divided into two constructors and a create() method. The first con-
structor is just the default no-arguments constructor, in case a Cube object is instantiated
without any initial values. The second constructor takes three arguments and assembles
the data, while the create() method actually handles the drawing. In comparison to the
Cube class, Processing’s box() function, which seems to handle both instantiation and
drawing, might initially seem like a better procedural model—it’s certainly less work.
However, suppose you wanted to pass Cube objects to another class that would then take
care of positioning and drawing the cubes—you’d need to separate the object creation
from the actual drawing of the object, as in the preceding example. The second construc-
tor initializes the vertices array, which holds 24 Point3D objects. Although a cube looks like
it only has eight unique points, it’s simpler (for now) to think of a cube as six separate
quadrangle faces composed of four points each. This will prevent you from having to use
some of the points for more than one face (which you’ll eventually learn how to do
as well).

3D

627

13

617xCH13.qxd 4/18/07 3:24 PM Page 627

The create() method includes a nested for loop that is a bit dense to untangle. I needed
an algorithm that would run through the vertices array and treat each individual face as a
self-contained quadrangle (composed of four points). Notice that the beginShape() and
endShape() functions are nested within the outer for loop as well, allowing each face to
be drawn as a separate unit. This structure will also allow you to easily customize the color
of each face, which we’ll look at shortly. However, before getting into that, I’ll show you
how to use the two classes just created to generate a cube.

Here’s some runnable code. (Please note that I didn’t repeat the code from the Point3D
and Cube classes shown previously. Just make sure you add the two classes beneath the fol-
lowing code, or put each class in its own tab.)

Cube c1;
void setup(){
size(400, 400, P3D);
c1 = new Cube(200, 200, 200);
c1.create();

}
// Don't forget to add the Point3D and Cube classes code

I also want to translate the cube to the middle of the drawing space, or at least have
it move around some. I’ll use Processing’s translate() and rotate() functions in
conjunction with the classes to achieve this. In addition, I’ll create an overloaded
create(color[]quadBG) method for customizing the color of each quad face.

The next example, shown in Figure 13-8, creates two cubes, using the two overloaded cre-
ate() methods. Since I added an additional create() method to the Cube class, I’ve
included the updated class code in the following example. I didn’t repeat the Point3D
class, which you’ll need as well to run the example; simply paste it below the Cube class or
put it into its own tab.

// Two Rotating Custom Cubes

// custom Cube reference variables
Cube c1, c2;
// array to hold different face colors
color[]quadBG = new color[6];

void setup(){
size(400, 400, P3D);
quadBG[0] = color(175, 30, 30, 150);
quadBG[1] = color(30, 175, 30, 150);

You may remember that an overloaded method is an object-oriented concept
meaning that more than one method with the same name exists in a class. What
differentiates the same named methods is the number and type of parameters
between the parentheses in the head of the method. You can read more about
overloaded methods and other object-oriented concepts in Chapter 8.

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

628

617xCH13.qxd 4/18/07 3:24 PM Page 628

quadBG[2] = color(30, 30, 175, 150);
quadBG[3] = color(175, 175, 30, 150);
quadBG[4] = color(175, 30, 175, 150);
quadBG[5] = color(175, 87, 30, 150);
c1 = new Cube(200, 200, 200);
c2 = new Cube(100, 100, 100);

}

void draw(){
background(100);
translate(width/2, height/2);
rotateX(frameCount*PI/50);
rotateY(frameCount*PI/60);
// create larger colored cube
noStroke();
c1.create(quadBG);
// create inner black cube
fill(0, 200);
stroke(255);
c2.create();

}

// Updated custom Cube class
class Cube{
Point3D[] vertices = new Point3D[24];
float w, h, d;

// Constructors
// default constructor
Cube(){
}

// constructor 2
Cube(float w, float h, float d){
this.w = w;
this.h = h;
this.d = d;

// cube composed of 6 quads
//front
vertices[0] = new Point3D(-w/2,-h/2,d/2);
vertices[1] = new Point3D(w/2,-h/2,d/2);
vertices[2] = new Point3D(w/2,h/2,d/2);
vertices[3] = new Point3D(-w/2,h/2,d/2);
//left
vertices[4] = new Point3D(-w/2,-h/2,d/2);
vertices[5] = new Point3D(-w/2,-h/2,-d/2);
vertices[6] = new Point3D(-w/2,h/2,-d/2);
vertices[7] = new Point3D(-w/2,h/2,d/2);

3D

629

13

617xCH13.qxd 4/18/07 3:24 PM Page 629

//right
vertices[8] = new Point3D(w/2,-h/2,d/2);
vertices[9] = new Point3D(w/2,-h/2,-d/2);
vertices[10] = new Point3D(w/2,h/2,-d/2);
vertices[11] = new Point3D(w/2,h/2,d/2);
//back
vertices[12] = new Point3D(-w/2,-h/2,-d/2);
vertices[13] = new Point3D(w/2,-h/2,-d/2);
vertices[14] = new Point3D(w/2,h/2,-d/2);
vertices[15] = new Point3D(-w/2,h/2,-d/2);
//top
vertices[16] = new Point3D(-w/2,-h/2,d/2);
vertices[17] = new Point3D(-w/2,-h/2,-d/2);
vertices[18] = new Point3D(w/2,-h/2,-d/2);
vertices[19] = new Point3D(w/2,-h/2,d/2);
//bottom
vertices[20] = new Point3D(-w/2,h/2,d/2);
vertices[21] = new Point3D(-w/2,h/2,-d/2);
vertices[22] = new Point3D(w/2,h/2,-d/2);
vertices[23] = new Point3D(w/2,h/2,d/2);

}
void create(){
// draw cube
for (int i=0; i<6; i++){
beginShape(QUADS);
for (int j=0; j<4; j++){
vertex(vertices[j+4*i].x, vertices[j+4*i].y, ➥

vertices[j+4*i].z);
}
endShape();

}
}
void create(color[]quadBG){
// draw cube
for (int i=0; i<6; i++){
fill(quadBG[i]);
beginShape(QUADS);
for (int j=0; j<4; j++){
vertex(vertices[j+4*i].x, vertices[j+4*i].y, ➥

vertices[j+4*i].z);
}
endShape();

}
}

}
// This example requires the Point3D class.

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

630

617xCH13.qxd 4/18/07 3:24 PM Page 630

Figure 13-8. Two Rotating Custom Cubes sketch

I made the cubes translucent in this example (by lowering the fill color alpha to below
255) so that you can see the inner cube. Notice how the two create() method calls auto-
matically invoke the correct version of the method, based on the argument passed to the
method.

I created another example using the Cube class that’s a little more interesting, and of
course a little more complicated. The sketch includes a bunch of small rotating, moving
cubes within a larger rotating cube (see Figure 3-9). When the inner cubes hit the bound-
aries of the outer cube, they reverse direction. In addition, the cubes are all connected by
a line. There’s actually nothing in this sketch that you haven’t already looked at. However,
thinking in 3D space is definitely more confusing than in 2D. Again, I didn’t bother repeat-
ing the code from the updated Cube or Point3D classes; just remember to include both
classes beneath the following code or in their own tabs.

// Cubes Contained Within a Cube
Cube stage; // external large cube
int cubies = 50;
Cube[]c = new Cube[cubies]; // internal little cubes
color[][]quadBG = new color[cubies][6];

// controls cubie's movement
float[]x = new float[cubies];
float[]y = new float[cubies];
float[]z = new float[cubies];
float[]xSpeed = new float[cubies];
float[]ySpeed = new float[cubies];
float[]zSpeed = new float[cubies];

3D

631

13

617xCH13.qxd 4/18/07 3:24 PM Page 631

// controls cubie's rotation
float[]xRot = new float[cubies];
float[]yRot = new float[cubies];
float[]zRot = new float[cubies];

// size of external cube
float bounds = 300;

void setup(){
size(400, 400, P3D);
for (int i=0; i<cubies; i++){
// each cube face has a random color component
float colorShift = random(-75, 75);
quadBG[i][0] = color(175+colorShift, 30, 30);
quadBG[i][1] = color(30, 175+colorShift, 30);
quadBG[i][2] = color(30, 30, 175+colorShift);
quadBG[i][3] = color(175+colorShift, 175+colorShift, 30);
quadBG[i][4] = color(175+colorShift, 30, 175+colorShift);
quadBG[i][5] = color(175+colorShift, 87+colorShift, 30);

// cubies are randomly sized
float cubieSize = random(5, 15);
c[i] = new Cube(cubieSize, cubieSize, cubieSize);

//initialize cubie's position, speed and rotation
x[i] = 0;
y[i] = 0;
z[i] = 0;

xSpeed[i] = random(-2, 2);
ySpeed[i] = random(-2, 2);
zSpeed[i] = random(-2, 2);

xRot[i] = random(40, 100);
yRot[i] = random(40, 100);
zRot[i] = random(40, 100);

}
// instantiate external large cube
stage = new Cube(300, 300, 300);

}

void draw(){
background(50);
// center in display window
translate(width/2, height/2, -130);

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

632

617xCH13.qxd 4/18/07 3:24 PM Page 632

// outer transparent cube
noFill();
// rotate everything, including external large cube
rotateX(frameCount*PI/225);
rotateY(frameCount*PI/250);
rotateZ(frameCount*PI/275);
stroke(255);
// draw external large cube
stage.create();

//move/rotate cubies
for (int i=0; i<cubies; i++){
pushMatrix();
translate(x[i], y[i], z[i]);
rotateX(frameCount*PI/xRot[i]);
rotateY(frameCount*PI/yRot[i]);
rotateX(frameCount*PI/zRot[i]);
noStroke();
c[i].create(quadBG[i]);
x[i]+=xSpeed[i];
y[i]+=ySpeed[i];
z[i]+=zSpeed[i];
popMatrix();

// draw lines connecting cubbies
stroke(10);
if (i<cubies-1){
line(x[i], y[i], z[i], x[i+1], y[i+1], z[i+1]);

}

// check wall collisions
if (x[i]>bounds/2 || x[i]<-bounds/2){
xSpeed[i]*=-1;

}
if (y[i]>bounds/2 || y[i]<-bounds/2){
ySpeed[i]*=-1;

}
if (z[i]>bounds/2 || z[i]<-bounds/2){
zSpeed[i]*=-1;

}
}

}

3D

633

13

617xCH13.qxd 4/18/07 3:24 PM Page 633

Figure 13-9. Cubes Contained Within a Cube sketch

This example is long—but again, it’s stuff you’ve looked at before. The most complex part
of the sketch is the following code snippet, within the for loop of the draw() function:

pushMatrix();
translate(x[i], y[i], z[i]);
rotateX(frameCount*PI/xRot[i]);
rotateY(frameCount*PI/yRot[i]);
rotateX(frameCount*PI/zRot[i]);
noStroke();
c[i].create(quadBG[i]);
x[i]+=xSpeed[i];
y[i]+=ySpeed[i];
z[i]+=zSpeed[i];
popMatrix();

It is sometimes confusing, when using the pushMatrix() and popMatrix() functions, to
determine what commands need to be called between them. Since I’m using a loop to
process an array of items, I need to make sure that each transformation only affects its
respective item; otherwise, the transformations will become cumulative, so objects stored
later in the array will be affected much more than the earlier ones. It is helpful to break
down the last example by commenting out the pushMatrix() and popMatrix() calls and
then rerunning the sketch to see the effect. In addition, I recommend playing with some
of the values in the sketch, especially the variables in the following code:

int cubies = 50;
float bounds = 300;
float cubieSize = random(5, 15);
xSpeed[i] = random(-2, 2);
ySpeed[i] = random(-2, 2);
zSpeed[i] = random(-2, 2);

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

634

617xCH13.qxd 4/18/07 3:24 PM Page 634

As complicated as this last sketch might have seemed, it only scratches the surface of
what’s possible. For example, a more advanced version of the sketch could include physics
calculations: gravity, collisions, angular or rotational velocities, and so on. Well, don’t
worry, I won’t torture you further with this example. However, before moving on, there is
one more fundamental concept used in the last example that I’d like to discuss: 3D
rotations.

3D rotations
Thus far in the chapter, I’ve been happily using Processing’s 3D rotation functions:
rotateX(), rotateY(), and rotateZ(). These are really easy to use, which is a good
thing—but it’s also valuable to understand how these functions operate beneath the hood.
I actually already covered the basic math that controls 3D rotation when I discussed 2D
rotation around the z-axis. In 2D, when you want to rotate around the origin, you use the
following trig functions:

y = sin(theta)*radius
x = cos(theta)*radius

Hopefully, these expressions seem like old friends by now (if so, you’re well on your way to
geek certification). In 3D, the situation isn’t much more complicated than applying these
same rotation expressions to the x- and y-axes. To perform rotations around each of the
three individual axes, you’d use the following expressions:

z-axis rotation
x = cos(theta)*radius
y = sin(theta)*radius

x-axis rotation
y = cos(theta)*radius
z = sin(theta)*radius

y-axis rotation
z = cos(theta)*radius
x = sin(theta)*radius

These expressions work fine for single-axis rotations, but if you want to put a bunch of
these together, or allow a user to randomly rotate a shape around any axis in real time,
you need slightly more complicated versions of these equations. Before looking at those,
here’s a simple implementation that rotates three rectangles around the x-, y-, and z-axes
(see Figure 13-10):

// Single Axis 3D Rotation

// rectangle vertices
float[][]rectX = new float[3][4];
float[][]rectY = new float[3][4];
float[][]rectZ = new float[3][4];

3D

635

13

617xCH13.qxd 4/18/07 3:24 PM Page 635

// rotation variables
float[]angle = {45, 45, 45};
float[]rot = {1, 1, 1};

void setup(){
size (400, 200, P3D);

}

void draw(){
background(255);
for (int i=0; i<3; i++){
pushMatrix();
// spread rects evenly across window
translate(75+(125*i), height/2);
beginShape();
for (int j=0; j<4; j++){
// rotation around z-axis
if (i==0){
rectX[i][j] = cos(radians(angle[i]))*50;
rectY[i][j] = sin(radians(angle[i]))*50;

}
// rotation around x-axis
else if (i==1){
rectY[i][j] = cos(radians(angle[i]))*50;
rectZ[i][j] = sin(radians(angle[i]))*50;

// offset added just to show rotation better
rectX[i][j] = 10;

}
// rotation around y-axis
else if (i==2){
rectZ[i][j] = cos(radians(angle[i]))*50;
rectX[i][j] = sin(radians(angle[i]))*50;

// offset added just to show rotation better
rectY[i][j] = 10;

}
vertex(rectX[i][j], rectY[i][j], rectZ[i][j]);
angle[i]+=360/4;
angle[i]+=rot[i];

}
endShape(CLOSE);
popMatrix();

}
}

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

636

617xCH13.qxd 4/18/07 3:24 PM Page 636

Figure 13-10. Single Axis 3D Rotation sketch

I coded this procedurally, but of course I could have created a custom rectangle class to
do the same thing. The rectangles are plotted using the two trig equations by increment-
ing the angle[] variable in the trig functions by 90 degrees. To make the rectangles spin, I
just incremented angle[] by the rot[] variable. Again, the order of translations and
placement of the pushMatrix() and popMatrix() functions are significant; try comment-
ing out the functions or moving them to see what effect this has on the output. You’ll
notice I also added an extra offset statement (rectX[i][j] = 10; and rectY[i][j] = 10;)
for the x-axis and y-axis rotations, respectively. I only did this so that you could better see
the rotations. If you comment these lines out, two of the rotations will be perpendicular to
the screen and thus look like two shifting lines instead of planes.

The problem with the last implementation is that you can’t do much with it, unless of
course you’re really into single-axis rotations. It would be better to be able to rotate
around all three axes. To do this, you need to, in a sense, keep track of where the vertices
are as they are rotating so that you can smoothly transition them to a new rotation.
Internally, Processing does this with its own 3D rotation functions, allowing you to call
each of the functions in succession, without the last one overriding the previous ones. The
three x, y, and z rotation calls blend into a seamless and interesting rotation. I’ve discussed
this previously—but here’s another really simple example, using Processing’s box() func-
tion and three built-in rotation functions:

void setup(){
size(400, 400, P3D);

}
void draw(){
background(150);
translate(width/2, height/2, 200);
rotateX(PI*frameCount/60);
rotateY(PI*frameCount/80);
rotateZ(PI*frameCount/100);
box(50, 50, 50);

}

And here’s an interactive version, allowing the user to perform axis rotations by moving
the mouse. (Since the mouse normally only moves along the x- and y-axes, I only included
rotations around these axes.)

3D

637

13

617xCH13.qxd 4/18/07 3:24 PM Page 637

float rotX, rotY;
void setup(){
size(400, 400, P3D);

}
void draw(){
background(150);
translate(width/2, height/2, 200);
rotateX(rotX);
rotateY(rotY);
box(50, 50, 50);

}
void mouseMoved(){
rotX = radians(mouseY);
rotY = radians(mouseX);

}

So that was the easy way. Of course, you by now know that I can’t leave well enough alone.
Next, I’ll show you how to re-create the functionality of Processing’s three rotation func-
tions, which mostly just means altering the trig functions. Here they are, along with some
declared variables to help illustrate how they work. (Please note that this code is not
meant to be run.)

float originalX, originalY, originalZ;
float x2, y2, z2;
float x3, y3, z3;
float finalX, finalY, finalZ;

// rotation around x-axix
y2 = cos(angleX) * originalY - sin(angleX) * originalZ;
z2 = sin(angleX) * originalY + cos(angleX) * originalZ;

// rotation around y-axis
z3 = cos(angleY) * z2 - sin(angleY) * x2;
x3 = sin(angleY) * z2 + cos(angleY) * x2;

// rotation around z-axis
finalX = cos(angleZ) * x3 - sin(angleZ) * y3;
finalY = sin(angleZ) * x3 + cos(angleZ) * y3;

Although the expressions may at first seem a little confusing, if you look at them carefully,
you’ll see that they’re pretty redundant. A key feature to using these expressions, which
some books don’t seem to clarify properly, is that the expressions use existing x, y, and z
values as inputs. So, for example, if you wanted to do rotations around all three axes,
you’d need to keep feeding the new values calculated from the previous axis rotations into
the next set of expressions, as I illustrated by using the different variables. I accomplish this
in the next example by using three separate vertices arrays in addition to the original array
of vertices; it’s mostly an organizational problem.

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

638

617xCH13.qxd 4/18/07 3:24 PM Page 638

The first example I’ll look at simply rotates a rectangle, which is coded procedurally. In the
second example, I’ll reuse the Cube and Point3D classes to rotate a cube. Here’s the code
for the first example (shown in Figure 13-11):

// Custom Rotation of a Rectangle Around the X-, Y-, and Z-Axes

// rectangle's vertices before rotation
float[][]originalVertices = new float[4][3];

// rectangle's vertices after rotation
float[][]transformedVertices = new float[4][3];

// control rectangle rotations
float angleX, angleY, angleZ;

void setup(){
size(400, 400, P3D);

/* generate initial rectangle coordinate data
filling originalVertices array */

// creates rectangle parallel to window
float angle = 45;
for (int i=0; i<4; i++){
originalVertices[i][0] = cos(radians(angle))*50;
originalVertices[i][1] = sin(radians(angle))*50;
originalVertices[i][2] = 0;
angle+=360/4.0;

}
}

void draw(){
background(100);
// rotate rectangle around all 3 axes
myRotateX(2);
myRotateY(6);
myRotateZ(3);

//draw rect
createRect();

}

void myRotateX(float deg){
angleX+=deg;

}
void myRotateY(float deg){
angleY+=deg;

}
void myRotateZ(float deg){
angleZ+=deg;

}

3D

639

13

617xCH13.qxd 4/18/07 3:24 PM Page 639

void createRect(){
translate(width/2, height/2, 200);
transformedVertices = rotateVertices();
beginShape();
for (int i=0; i<4; i++){
vertex(transformedVertices[i][0], transformedVertices[i][1], ➥

transformedVertices[i][2]);
}
endShape(CLOSE);

}

// called every frame
float[][]rotateVertices(){

// arrays to temporarily store rotated vertices
float[][]rotatedVertices_XAxis = new float[4][3];
float[][]rotatedVertices_YAxis = new float[4][3];
float[][]rotatedVertices_ZAxis = new float[4][3];

for (int i=0; i<4; i++){
// rotation around x-axis
rotatedVertices_XAxis[i][0] = originalVertices[i][0];
rotatedVertices_XAxis[i][1] = cos(radians(angleX))* ➥

originalVertices[i][1] - sin(radians(angleX))* ➥

originalVertices[i][2];
rotatedVertices_XAxis[i][2] = sin(radians(angleX))* ➥

originalVertices[i][1] + cos(radians(angleX))* ➥

originalVertices[i][2];

// rotation around y-axis
rotatedVertices_YAxis[i][1] = rotatedVertices_XAxis[i][1];
rotatedVertices_YAxis[i][2] = cos(radians(angleY))* ➥

rotatedVertices_XAxis[i][2] - sin(radians(angleY))* ➥

rotatedVertices_XAxis[i][0];
rotatedVertices_YAxis[i][0] = sin(radians(angleY))* ➥

rotatedVertices_XAxis[i][2] + cos(radians(angleY))* ➥

rotatedVertices_XAxis[i][0];

// rotation around z-axis
rotatedVertices_ZAxis[i][0] = cos(radians(angleZ))* ➥

rotatedVertices_YAxis[i][0] - sin(radians(angleZ))* ➥

rotatedVertices_YAxis[i][1];
rotatedVertices_ZAxis[i][1] = sin(radians(angleZ))* ➥

rotatedVertices_YAxis[i][0] + cos(radians(angleZ))* ➥

rotatedVertices_YAxis[i][1];
rotatedVertices_ZAxis[i][2] = rotatedVertices_YAxis[i][2];

}
return rotatedVertices_ZAxis;

}

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

640

617xCH13.qxd 4/18/07 3:24 PM Page 640

Figure 13-11. Custom Rotation of a Rectangle Around
the X-, Y-, and Z-Axes example

The 2D array float[][]originalVertices is used to store the original rectangle vertices
data, and float[][]transformedVertices is used eventually to receive the transformed
vertices data, which is then passed to Processing’s vertex() function for drawing. In the
setup() function, I create the original rectangle with the standard sin() and cos() func-
tion approach described in numerous sections of the book. I don’t draw the rectangle
here, but rather construct it in data and assign that data to the originalVertices[][]
array. Next, in draw(), I call some custom rotate functions that update the values of the
angleX, angleY, and angleZ variables used in the rotation calculations. Finally, I call the
createRect() function, which internally calls the rotateVertices() function and draws
the rectangle on the screen. It is in the rotateVertices() function that most of the
sketch’s real heavy lifting occurs.

At the top of the rotateVertices() function I declare three 2D arrays. These arrays are
used to temporarily store the transformed vertices data. To make things simpler (hon-
estly), I set up the sketch to call the rotateVertices() function every time draw()
executes. This isn’t the most efficient approach, but it avoids things like having to check
which rotation function commands were invoked; I just assume they’re all being called.
However, if you comment out any/all of the following lines:

myRotateX(2);
myRotateY(6);
myRotateZ(3);

the program will still work properly. The rotateVertices() function will still be called
from within createRect(), but some/all of the rotation angle values won’t change, so
you’ll get less or no rotation. Reading though the rotateVertices() function should be
straightforward, even though it’s kind of dense. The important thing to notice is how the
previous array’s values are input into the next set of expressions, and how these expres-
sions are assigned to one of the temporary arrays. I chose to have the function return the
final array, which is why I used the expression transformedVertices = rotateVertices();
in the createRect() function and created the three temporary arrays (rotatedVertices_
XAxis[][], rotatedVertices_YAxis[][], and rotatedVertices_ZAxis[][]) locally within

3D

641

13

617xCH13.qxd 4/18/07 3:24 PM Page 641

the rotateVertices() function; there are certainly other ways to implement this. Before
you move on to the cube example, I strongly recommend you play/experiment with this
one for a while.

I’ll reuse the Point3D and Cube classes to build the next example. I’ll need to create
another method to handle the combined 3D rotations. I could redesign the Cube class and
add the new rotation method directly in there. But a much better a way to deal with
adding the new method is to create a new class as a subclass of the Cube class. This
approach gives me the benefit of using the original class without having to alter it, still
allowing me to extend its capabilities. As discussed earlier in the book, the term inheri-
tance in OOP is used to describe this extending approach. Although I could have gone into
my original Cube class and added a rotation method, it’s best practice to not edit existing
classes, as other dependent classes could be adversely affected. The following code gives
the completed example (shown in Figure 13-12). I didn’t include the Point3D or Cube class
code, just the new SpinnyCube class (Cube subclass); so don’t forget to add the Point3D
and Cube classes before running the example. (Remember, you can either create a new tab
for each class, or simply paste the classes beneath your current sketch code.)

// Rotation of a Custom Cube Around the X-, Y-, and Z-Axes

// custom Cube reference variable
SpinnyCube c1;

// array to hold different face colors
color[]quadBG = new color[6];

void setup(){
size(400, 400, P3D);
quadBG[0] = color(175, 30, 30, 255);
quadBG[1] = color(30, 175, 30, 255);
quadBG[2] = color(30, 30, 175, 255);
quadBG[3] = color(175, 175, 30, 255);
quadBG[4] = color(175, 30, 175, 255);
quadBG[5] = color(175, 87, 30, 255);

//instantiate cube
c1 = new SpinnyCube(200, 200, 200);

}

void draw(){
background(100);
translate(width/2, height/2);

if (mousePressed){
//interactive rotation
c1.spinnyRotateX(mouseY);
c1.spinnyRotateY(mouseX);

}
else {

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

642

617xCH13.qxd 4/18/07 3:24 PM Page 642

//automatic rotation
c1.spinnyRotateX(frameCount*PI);
c1.spinnyRotateY(frameCount*PI/4);
c1.spinnyRotateZ(frameCount*PI/5);

}

//draw cube
noStroke();
c1.create(quadBG);

}

// SpinnyCube class
class SpinnyCube extends Cube{
float angleX, angleY, angleZ;
Point3D[] transformedVertices = new Point3D[24];

// default constructor
SpinnyCube(){
}

// constructor
SpinnyCube(float w, float h, float d){
// call superclass constructor
super(w, h, d);

}

// rotation method
void spinnyRotateXYZ(){
// temporary vertices arrays
Point3D[] rotatedVertices_XAxis = new Point3D[24];
Point3D[] rotatedVertices_YAxis = new Point3D[24];
Point3D[] rotatedVertices_ZAxis = new Point3D[24];

for (int i=0; i<24; i++){
// initialize temp vertices arrays
rotatedVertices_XAxis[i] = new Point3D();
rotatedVertices_YAxis[i] = new Point3D();
rotatedVertices_ZAxis[i] = new Point3D();

// rotation around x-axis
rotatedVertices_XAxis[i].x = vertices[i].x;
rotatedVertices_XAxis[i].y = cos(radians(angleX))* ➥

vertices[i].y - sin(radians(angleX))*vertices[i].z;
rotatedVertices_XAxis[i].z = sin(radians(angleX))* ➥

vertices[i].y + cos(radians(angleX))*vertices[i].z;

// rotation around y-axis
rotatedVertices_YAxis[i].y = rotatedVertices_XAxis[i].y;
rotatedVertices_YAxis[i].z = cos(radians(angleY))* ➥

3D

643

13

617xCH13.qxd 4/18/07 3:24 PM Page 643

rotatedVertices_XAxis[i].z - sin(radians(angleY))* ➥

rotatedVertices_XAxis[i].x;
rotatedVertices_YAxis[i].x = sin(radians(angleY))* ➥

rotatedVertices_XAxis[i].z + cos(radians(angleY))* ➥

rotatedVertices_XAxis[i].x;

// rotation around z-axis
rotatedVertices_ZAxis[i].x = cos(radians(angleZ))* ➥

rotatedVertices_YAxis[i].x - sin(radians(angleZ))* ➥

rotatedVertices_YAxis[i].y;
rotatedVertices_ZAxis[i].y = sin(radians(angleZ))* ➥

rotatedVertices_YAxis[i].x + cos(radians(angleZ))* ➥

rotatedVertices_YAxis[i].y;
rotatedVertices_ZAxis[i].z = rotatedVertices_YAxis[i].z;

}
// update transformedVertices arrays
transformedVertices = rotatedVertices_ZAxis;

}

// assign rotation angles for each axis
void spinnyRotateX(float angle){
angleX = angle;

}
void spinnyRotateY(float angle){
angleY = angle;

}
void spinnyRotateZ(float angle){
angleZ = angle;

}

/* SpinnyCube (subclass) create() methods will
override Cube (superclass) create() methods. */

void create(){
// draw cube
spinnyRotateXYZ();
stroke(0);
for (int i=0; i<6; i++){
beginShape(QUADS);
for (int j=0; j<4; j++){
vertex(transformedVertices[j+4*i].x, transformedVertices[j+ ➥

4*i].y, transformedVertices[j+4*i].z);
}
endShape();

}
}
void create(color[]quadBG){
// draw cube
spinnyRotateXYZ();

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

644

617xCH13.qxd 4/18/07 3:24 PM Page 644

for (int i=0; i<6; i++){
fill(quadBG[i]);
beginShape(QUADS);
for (int j=0; j<4; j++){
vertex(transformedVertices[j+4*i].x, transformedVertices[j+ ➥

4*i].y, transformedVertices[j+4*i].z);
}
endShape();

}
}

}

Figure 13-12. Rotation of a Custom Cube Around the
X-, Y-, and Z-Axes example

The example begins similarly to the earlier cube example, except that I’m using my new
SpinnyCube reference type to declare variable c1. Remember, a class is a legal data type,
just as float, int, and color are. Since the SpinnyCube class extends the Cube class, I was
able to instantiate the SpinnyCube object with the help of the constructor in the Cube
superclass. If this doesn’t make sense yet, it will become clearer shortly (and you can
always refer back to Chapter 8 for a review on OOP).

Within the draw() function, I set up a simple if...else block that starts the cube spinning
and allows the user to drag and rotate the cube. The last line in draw() is the create()
method that handles drawing the cube. Below the draw() function is the SpinnyCube class.

Even though I used an OOP approach for this example, the SpinnyCube class is imple-
mented quite similarly to the last procedural spinning rectangle example. I declared a
transformedVertices[] array to eventually handle the rotated vertices. The drawing code
uses this array. I didn’t need to create the original vertices[] array, as I have access to all
the members (properties and methods) in the Cube class (through inheritance), which

3D

645

13

617xCH13.qxd 4/18/07 3:24 PM Page 645

contains this array. The SpinnyCube constructor accepts the same three arguments as the
Cube class, for the width, height, and depth of the cube. The first line of the SpinnyCube
constructor

super(w, h, d);

passes the arguments through to the superclass (Cube) constructor. This is a very efficient
structure that allows you to build upon base and component classes. One little reminder—
if there had been any other code in the SpinnyCube constructor, it would need to be put
after the super() call, which (when included) must always be the first line in the subclass
constructor. (However, you are not required to include a call to super() in a subclass con-
structor.)

Following the constructors is the spinnyRotateXYZ() method. This method works practi-
cally identically to the rotateVertices() function in the previous example. To keep things
organized, I declared and initialized all the temporary vertices arrays locally within this
method. As in the last example, the transformed vertices need to be plugged into the next
set of expressions. Finally, at the end of the method, I assigned the updated vertices to the
transformedVertices[] array used to draw the cube. Following this method are three
simple utility methods (spinnyRotateX(), spinnyRotateY(), and spinnyRotateZ()) that
update rotation angles, used by the expressions in the spinnyRotateXYZ() method.

The last methods in the SpinnyCube class are two overloaded create() methods, just as in
the Cube class. Creating two more methods with the same name may seem confusing and
unnecessary, since the subclass has access to the superclass’s create() methods. I wanted
to call the spinnyRotate() method internally from within the create() methods, and I
didn’t want to make that change to the cube’s original create() methods. Since the cre-
ate() methods in the SpinnyCube subclass have the same method signatures (parameter
lists) as the create() methods in the Cube superclass, the methods in the subclass will
override the same named ones in the superclass. In other words, when I call

c1.create(quadBG);

and c1 is of type SpinnyCube, the create() method in the SpinnyCube subclass is exe-
cuted, not the one with the identical signature in the Cube class. The SpinnyCube create()
methods are implemented nearly identically to the ones in the Cube class, except that they
have additional lines for calling the spinnyRotateXYZ() method.

I recommend always adding a default no-argument constructor to any class that will
be extended, since the superclass constructor is always invoked, even without an
explicit call to super(). To learn more about this and related (albeit geeky and low-
level) issues, check out www.beginner-java-tutorial.com/ and http://java.sun.
com/docs/books/jls/second_edition/html/classes.doc.html.

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

646

617xCH13.qxd 4/18/07 3:24 PM Page 646

http://java.sun

Beyond box() and sphere()
While there are many common 3D primitives (including cylinders, pyramids, cones, and
toroids), Processing’s built-in primitive-creation functions are limited to the measly box()
and sphere(). I’ll show you how to construct a few of these—which is mostly a matter of
creating algorithms. What I mean by this is that you need a set of logical instructions to
create these forms (unless you’re a math genius, which I’m not). Sometimes forms seem
complex until you see the steps to generate them. Before switching shapes, I’ll develop an
algorithm to construct a brick tower (shown in Figure 13-13) that includes a crenellated
roof, using the existing Cube class.

The tower will be constructed of rings of bricks with a rotational offset between the brick
rows, allowing the vertically adjacent brick seams to alternate, like in a regular brick wall.
The first part of the algorithm generates a single ring of bricks; next, the graphics context
(the object that controls the actual drawing) is translated the distance equal to the height
of a brick and rotated one-half the ring rotation angle so that the vertical seams alternate.
Then the first step is repeated until some specified height is reached. Finally, the last step
involves creating the crenellation, which uses the same basic routine as step 1 (generating
a brick ring), but with every other brick removed (actually never added).

To generate the initial brick ring, I used the following trig expressions:

z = cos(radians(angle))*radius;
x = sin(radians(angle))*radius;

These expressions, which were discussed earlier in the chapter, can be used to generate a
regular polygon that is flipped to face the top and bottom of the display window. In addi-
tion to placing the bricks in a ring in the xz plane, I also need to rotate the bricks so that
they are aligned with the ring path. I accomplished this by rotating each brick the same
number of degrees I displaced it to form the ring. To help understand this, imagine that
you have a brick floating in front of your eyes. The brick’s wide side is facing you, as if you
were looking straight at a building. Now displace the brick 90 degrees around your head
(but don’t rotate it), so that it’s next to your left ear. The brick’s end is now facing your ear.
To make the wide side of the brick again face your head (actually, your ear), you need to
rotate the brick around its center point the same number of degrees it was displaced (i.e.,
90 degrees).

Following is the code for the example, which requires the Cube and Point3D classes:

// Brick Tower

// Point3D and Cube classes required.
float bricksPerLayer = 16.0; // value must be even
float brickLayers = 25.0;
Cube[]bricks = new Cube[int(bricksPerLayer*brickLayers)];
float brickWidth = 60, brickHeight = 25, brickDepth = 25;
float radius = 150.0;
float angle = 0;

3D

647

13

617xCH13.qxd 4/18/07 3:24 PM Page 647

void setup(){
size(400, 400, P3D);

//instantiate bricks
for (int i=0; i<bricks.length; i++){
bricks[i] = new Cube(brickWidth, brickHeight, brickDepth);

}
}

void draw(){
background(100, 125, 200);
float tempX = 0, tempY = 0, tempZ = 0;
fill(175, 87, 20);
stroke(100, 50, 10);
// add basic light setup
lights();
translate(width/2, height*1.2, -550);
// tip tower to see the inside
rotateX(radians(-45));
// slowly rotate tower
rotateY(frameCount*PI/60);
for (int i=0; i<brickLayers; i++){
// increment rows
tempY-=brickHeight;
// alternate brick seams
angle = 360.0/bricksPerLayer*i/2;
for (int j=0; j<bricksPerLayer; j++){
tempZ = cos(radians(angle))*radius;
tempX = sin(radians(angle))*radius;
pushMatrix();
translate(tempX, tempY, tempZ);
rotateY(radians(angle));
// add crenelation
if (i==brickLayers-1){
if (j%2 == 0){
bricks[j].create();

}
}
// create main tower
else {
bricks[j].create();

}
popMatrix();
angle += 360.0/bricksPerLayer;

}
}

}
// Point3D and Cube classes required

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

648

617xCH13.qxd 4/18/07 3:24 PM Page 648

Figure 13-13. Brick Tower sketch

This is a pretty long example, but I assure you you’ve seen it all before. I reused the
Point3D and Cube classes, which really simplified things. If you build your classes well, you
can continue to reuse or extend them, which will increase your efficiency over time. This is
one of the great benefits of OOP. The only somewhat complicated parts of the sketch are
the code that controls the alternating brick layer rotation and the crenellation code. Since
I knew what angle of rotation I needed to generate the brick ring, I wrote the expression

angle = 360.0/bricksPerLayer*i/2;

to control the alternating seams per each brick layer. Remember the order of operations
(which does make a difference): when the operators are of the same precedence level, the
expression is solved from left to right. This was the case with this expression, as multipli-
cation and division have the same precedence level. The expression evaluates alternating
values per loop cycle between an even multiple of the angle and one-half of an even mul-
tiple, which gives me the alternating brick seams. (The actual angle value doesn’t really
matter.) Try removing the /2 from the expression to see what happens when the seams
don’t alternate.

The crenellation code uses the modulus operator, which I’ve discussed in numerous chap-
ters throughout the book; remember that it evaluates to the remainder of a division. I
used the operator so that every other brick would be drawn.

// add crenellation
if (i==brickLayers-1){
if (j%2 == 0){
bricks[j].create();

}
}

I guess with crenellation like this (one brick high), you’d need very tall bricks (or very short
soldiers).

3D

649

13

617xCH13.qxd 4/18/07 3:24 PM Page 649

Hopefully, the rotating castle tower didn’t bring your computer to a standstill. Calculating
all that 3D data in real time is demanding. There are some advanced and frighteningly low-
level approaches to optimizing 3D that I won’t go into. However, Processing includes a
really simple way to speed things up, which I’ll look at in the next chapter (sorry to be a
tease). For now, if the code is executing really slowly, try lowering the number of brick lay-
ers and/or increasing the speed of the rotation.

Extrusion

To begin to generate forms such as cylinders, cones, spheres, and toroids (also sometimes
referred to as toruses), it helps to understand the concept of lathing. However, to under-
stand lathing, you need to understand extrusion (lots of annoying terms, I know). Extrusion
simply pushes 2D geometry into 3D space by adding a depth component to the 2D shape.
For example, a rectangle on the xy plane is extruded into a cube that now exists in xyz
space. Next is a simple interactive extrusion example beginning with a rectangle (shown in
Figure 13-14). Move your mouse right and left to rotate the rectangle, and drag the mouse
up and down to extrude it (remember, dragging requires the mouse button to be pressed).

/* Extrusion Example
move right to left to rotate
drag up and down to extrude
*/
float depth = 0, boxDepth = 0;
float mousePt_Y = 0;

void setup(){
size(500, 300, P3D);

}

void draw(){
background(25);
lights();
fill(100, 100, 175);
stroke(200);
translate(width/2, height/2);
rotateY(radians(mouseX));
box(100, 50, boxDepth);

}

void mouseDragged(){
boxDepth = depth + (mousePt_Y-mouseY);

}
void mousePressed(){
mousePt_Y = mouseY;

}
void mouseReleased(){
depth = boxDepth;

}

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

650

617xCH13.qxd 4/18/07 3:24 PM Page 650

Figure 13-14. Extrusion Example sketch

In reality, my example is a pretty cheap version of extrusion, since I used Processing’s
box() command, which created the rectangle in 3D space, allowing me to just interactively
change the value of the depth argument in the box() call. If I had started with a “real” rec-
tangle, I would have had to deal with adding and attaching new geometry to have enough
vertices (at least eight) to make a box. Notice in the example that when you drag the
mouse up, the rectangle becomes a solid box, but when you drag it down, the box exterior
seems to become strangely transparent. This occurrence isn’t a quantum paradox, but one
of the clever ways 3D is optimized for our still slow computers. Since we normally aren’t
interested in the inside of a form (the part we can’t see), 3D engines tend not to waste
processing power rendering that information. Thus, in 3D, polygons are usually single-
sided. So, when the mouse is dragged down and the box collapses in on itself, the inside
surfaces become the outside surfaces; however, since the inside faces are invisible, you can
see through them to the original outside surfaces, which are now inside the box—oy vey!

Lest you think I got off too easy borrowing Processing’s box() function in the last extrusion
example, I’ll follow it up with a better one. Using the keyboard, you can control the length
of the extrusion and the number of segments. You can also set the rendering as wireframe,
hollow shaded, or filled solid. The left and right arrows control extrusion length, the up
and down arrows control the addition/deletion of segments, the S key toggles between
solid shaded and hollow shaded, and the W key toggles between wireframe and shaded.
All the surfaces are double-sided, allowing you to see both the inside and outside of the
box when in hollow shaded mode. I included three screenshots generated by the sketch,
shown in Figures 13-15 through 13-17.

/* Better Extrusion Example
Arrow keys control segments (up/down)
and extrusion length (left/right)
's' key controls solid rendering
'w' key controls wireframe rendering
*/

// begin as a flat cube
int segments = 1;
int pts = 8;
float rectWidth = 150, rectHeight = 100;
float extrudeLength;

3D

651

13

617xCH13.qxd 4/18/07 3:24 PM Page 651

boolean isSolid = true;
boolean isWireFrame = false;
// vertices arrays
float[]verticesX = new float[pts];
float[]verticesY = new float[pts];
float[]verticesZ = new float[pts];

void setup(){
size(500, 300, P3D);
float px, py, pz;
float angle = 45;
// initialize vertices
// initially create 2 planes in the same position,
for (int i=0; i<pts; i++){
px = cos(radians(angle))*rectWidth/2;
py = sin(radians(angle))*rectHeight/2;
pz = 0;
verticesX[i] = px;
verticesY[i] = py;
verticesZ[i] = pz;
angle+=360/4;

}
}

void draw(){
background(25);
lights();
if(isWireFrame){
noFill();

} else {
fill(100, 100, 175);

}

stroke(200);
translate(width/2, height/2);
rotateY(frameCount*PI/200);
rotateZ(frameCount*PI/190);
rotateX(frameCount*PI/180);
extrude();

}

// add/subtract points to vertices arrays
// called from within Key event functions below
void setSegments(int seg){
//increase/decrease segment count
segments+=seg;

/*
Temp array used to add another segment to vertices

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

652

617xCH13.qxd 4/18/07 3:24 PM Page 652

arrays. The x and y values don't change between planes.
The extruded z values are calculated in extrude function
*/
float[][]inputArray = {
{verticesX[0], verticesX[1], verticesX[2], verticesX[3]},
{verticesY[0], verticesY[1], verticesY[2], verticesY[3]},
{verticesZ[0], verticesZ[1], verticesZ[2], verticesZ[3]}

};

// add new segment to vertices array, using
// Processing's splice() function
verticesX = splice(verticesX, inputArray[0], verticesX.length);
verticesY = splice(verticesY, inputArray[1], verticesY.length);
verticesZ = splice(verticesZ, inputArray[2], verticesZ.length);

}

void extrude(){
// Calculate z positions of vertices
float segmentWidth = extrudeLength/segments;
for (int i=0; i<segments+1; i++){
for (int j=0; j<4; j++){
verticesZ[j+4*i] = -extrudeLength/2+segmentWidth*i;

}
}

// render cross planes between segments
if (isSolid){
for (int i=0; i<segments+1; i++){
beginShape();
for (int j=0; j<4; j++){
vertex(verticesX[j+4*i], verticesY[j+4*i], verticesZ[j+4*i]);

}
endShape(CLOSE);

}
}

// render external skin
for (int i=0; i<segments+1; i++){
beginShape(QUAD_STRIP);
for (int j=0; j<4; j++){
if (i<segments){
vertex(verticesX[j+4*i], verticesY[j+4*i], verticesZ[j+4*i]);
vertex(verticesX[j+4*i+4], verticesY[j+4*i+4], ➥

verticesZ[j+4*i+4]);
if (j==3){
// connnect last vertices back to beginning
// to close form
vertex(verticesX[4*i], verticesY[4*i], verticesZ[4*i]);
vertex(verticesX[4*i+4], verticesY[4*i+4], verticesZ[4*i+4]);

3D

653

13

617xCH13.qxd 4/18/07 3:24 PM Page 653

}
}

}
endShape();

}
}

/*
arrow keys control segments
and extrusion length
*/
void keyPressed(){
if(key == CODED) {
// segements
if (keyCode == UP) {
if (segments<25){
setSegments(1);

}
}
else if (keyCode == DOWN) {
if (segments>1){
setSegments(-1);

}
}

// extrusion length
if (keyCode == RIGHT) {
extrudeLength+=5;

}
else if (keyCode == LEFT) {
if (extrudeLength>0){
extrudeLength-=5;

}
}

}
if (key =='s'){
if (isSolid){
isSolid=false;

} else {
isSolid=true;

}
}
if (key =='w'){
if (isWireFrame){
isWireFrame=false;

} else {
isWireFrame=true;

}
}

}

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

654

617xCH13.qxd 4/18/07 3:24 PM Page 654

Figure 13-15. Better Extrusion Example sketch (solid box version)

Figure 13-16. Better Extrusion Example sketch (hollow box version)

3D

655

13

617xCH13.qxd 4/18/07 3:24 PM Page 655

Figure 13-17. Better Extrusion Example sketch (wireframe box version)

This example is lengthy in large part because of all the interactivity. Really, the only com-
plicated problem in the sketch is in dynamically generating the equal segementation of the
solid. I also wanted the shape to remain centered as it rotated. Since the solid never actu-
ally moves (remember that the rotation is the entire drawing context) as the shape
increases in width, I needed to shift the vertices negatively the same distance I increased
the length of the cube; I used the following block to accomplish this:

// Calculate z positions of vertices
float segmentWidth = extrudeLength/segments;
for (int i=0; i<segments+1; i++){
for (int j=0; j<4; j++){
verticesZ[j+4*i] = -extrudeLength/2+segmentWidth*i;

}
}

The expression verticesZ[j+4*i] = -extrudeLength/2+segmentWidth*i; is not very
friendly looking. The part inside the array brackets (j+4*i) allows the nested loops to run
through all the vertices. If this doesn’t make sense, run through the loops manually a cou-
ple iterations (using the supercomputer in your head). The second part of the expression,
-extrudeLength/2+segmentWidth*i;, is what positions the vertices along the z-axis. For
example, if extrudeLength is 100 and segments equals 4, then the segmentWidth would
equal 25. Plugging these values into the expression would generate the following results
(there’s actually four copies of each value): –50, –25, 0, 25, 50. Notice how these value are
symmetrical with regard to the origin.

I was able to render the segment planes as well as the external skin using two different
render modes (no argument/CLOSE and QUAD_STRIP) with Processing’s beginShape() and
endShape(). Remember, by using no arguments in the beginShape() call and the CLOSE
argument in the endShape() call, Processing creates a closed polygon. These functions are
useful in 2D, but essential in 3D. The dense block that follows skins the cube, which is
somewhat complicated by the need to skin between all the dynamic segments. Rather
than trying to articulate what the code’s doing, I recommend that you try commenting out
different lines and running the sketch a couple times to see the effect. That’s generally the
way I build this stuff anyway—I often have little idea of what I’m actually doing until I
begin to see things emerge; then I clean up the really ugly stuff (and hope for the best).

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

656

617xCH13.qxd 4/18/07 3:24 PM Page 656

//render external skin
for (int i=0; i<segments+1; i++){
beginShape(QUAD_STRIP);
for (int j=0; j<4; j++){
if (i<segments){
vertex(verticesX[j+4*i], verticesY[j+4*i], verticesZ[j+4*i]);
vertex(verticesX[j+4*i+4], verticesY[j+4*i+4], ➥

verticesZ[j+4*i+4]);
if (j==3){
//connnect last vertices back to beginning
// to close form
vertex(verticesX[4*i], verticesY[4*i], verticesZ[4*i]);
vertex(verticesX[4*i+4], verticesY[4*i+4], ➥

verticesZ[4*i+4]);
}

}
}
endShape();

}

Cube to pyramid to cone to cylinder

Moving from a cube to a cylinder is very simple. In fact, you can even move from a cube
to a pyramid to a cone to a cylinder quite easily (see Figures 13-18 through 13-21).
Watching this transmutation reveals the interesting interrelationship between these forms.
The next example allows you to interactively shift between these forms in real time. The
code implementation is yet another variation on what you’ve already looked at the last
few examples, although the form-building algorithms are slightly different. Hopefully
you’re beginning to see how certain implementations recur when you try to solve related
problems. One of the biggest advantages of OOP is the structural abstraction it provides
for handling these types of common implementations. Computer scientists refer to these
common implementations as design patterns. This is too big a topic to cover here, but you
can read more about it at www.patterndepot.com/put/8/JavaPatterns.htm.

Please note that this next sketch requires the Point3D class (not repeated following), but
not the Cube class. Without further ado, here’s the mutating Cube to Pyramid to Cone to
Cylinder sketch:

/*
Cube to Pyramid to Cone to Cylinder
Point3D class required

Instructions:
Up Arrow -- increases points
Down Arrow -- decreases points
'p' key toggles between cube/pyramid
*/

3D

657

13

617xCH13.qxd 4/18/07 3:24 PM Page 657

int pts = 4;
float angle = 0;
float radius = 115;
float cylinderLength = 100;
//vertices
Point3D vertices[][];
boolean isPyramid = false;

void setup(){
size(400, 400, P3D);
noStroke();

}

void draw(){
background(170, 95, 95);
lights();
fill(255, 200, 200);
translate(width/2, height/2);
rotateX(frameCount*PI/150);
rotateY(frameCount*PI/130);
rotateZ(frameCount*PI/180);

// initialize point arrays
vertices = new Point3D[2][pts+1];

// fill arrays
for (int i=0; i<2; i++){
angle = 0;
for(int j=0; j<=pts; j++){
vertices[i][j] = new Point3D();
if (isPyramid){
if (i==1){
vertices[i][j].x = 0;
vertices[i][j].y = 0;

}
else {
vertices[i][j].x = cos(radians(angle))*radius;
vertices[i][j].y = sin(radians(angle))*radius;

}
}
else {
vertices[i][j].x = cos(radians(angle))*radius;
vertices[i][j].y = sin(radians(angle))*radius;

}
vertices[i][j].z = cylinderLength;
// the .0 after the 360 is critical
angle+=360.0/pts;

}
cylinderLength*=-1;

}

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

658

617xCH13.qxd 4/18/07 3:24 PM Page 658

// draw cylinder tube
beginShape(QUAD_STRIP);
for(int j=0; j<=pts; j++){
vertex(vertices[0][j].x, vertices[0][j].y, vertices[0][j].z);
vertex(vertices[1][j].x, vertices[1][j].y, vertices[1][j].z);

}
endShape();

//draw cylinder ends
for (int i=0; i<2; i++){
beginShape();
for(int j=0; j<pts; j++){
vertex(vertices[i][j].x, vertices[i][j].y, vertices[i][j].z);

}
endShape(CLOSE);

}
}

/*
up/down arrow keys control
polygon detail.
*/
void keyPressed(){
if(key == CODED) {
// pts
if (keyCode == UP) {
if (pts<90){
pts++;

}
}
else if (keyCode == DOWN) {
if (pts>4){
pts--;

}
}

}
if (key =='p'){
if (isPyramid){
isPyramid=false;

}
else {
isPyramid=true;

}
}

}
// Point3D class required

3D

659

13

617xCH13.qxd 4/18/07 3:24 PM Page 659

Figure 13-18. Cube to Pyramid to Cone to Cylinder sketch (in the
cube form)

Figure 13-19. Cube to Pyramid to Cone to Cylinder sketch (in the
pyramid form)

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

660

617xCH13.qxd 4/18/07 3:24 PM Page 660

Figure 13-20. Cube to Pyramid to Cone to Cylinder sketch (in the
cone form)

Figure 13-21. Cube to Pyramid to Cone to Cylinder sketch (in the
cylinder form)

3D

661

13

617xCH13.qxd 4/18/07 3:24 PM Page 661

If you haven’t figured it out by now, here’s how you mutate between the four forms:

1. Press the P key to convert from a cube to a pyramid.

2. Press and hold the up arrow key to convert from a pyramid to a cone.

3. Press the P key again to convert from a cone to a cylinder.

I was surprised by how easy it was to convert between these four forms. Prior to develop-
ing this sketch, I had considered them (without really thinking much about it) as funda-
mental, irreducible primitives, like the primary colors. I even managed to earn two art
degrees never realizing that a pyramid was just a cube with one of its faces collapsed to a
point.

The sketch should be fairly self-explanatory. However, there is one subtle point worth dis-
cussing. When I first generated this sketch, it had an annoying bug. As the point count
changed, sometimes the geometry would get screwed up. I found a clever but overly com-
plicated hack to solve the problem. However, when I was cleaning up the code, I realized
that the problem was actually very simple to fix, and my complicated hack was a major
waste of time (sort of a pattern in my life). The problem related to the line

angle+=360/pts;

which I resolved by changing it to

angle+=360.0/pts;

You have to look closely to even notice the difference between these two lines. Adding the
.0 after the 360 solved the problem. Can you tell why? Originally, I thought the problem
related to needing the point count to be a factor of 360, which does solve the problem.
However, that was more of a symptom, not really the cause. The real problem was that I
was using two int values in the 360/pts calculation, which not surprisingly produced an
int; however, I needed a float value. By adding the .0 after the 360, the value was treated
as type float. Operations involving an int and a float will return a float. Thus, my angle
calculations, requiring float values, were getting rounded to int values, and I was slowly
losing accuracy, which screwed up the geometry. This may seem like an obscure point, but
it is a pretty common error in programming and can be a nasty bug to track down.
Sometimes rounding errors don’t show up for many iterations, as long as the error is small
enough. I recommend blaming the computer for these kinds of problems.

Toroids

Building upon the last few examples, it’s possible to put some of these ideas together to
build slightly more complex forms, such as toroids and related forms (shown in Figures 13-22
through 13-26). Toroids are ring forms (think inner tubes, bagels, or doughnuts). Toroids
also have an interesting relationship to spheres and helixes, which you’ll see in the follow-
ing example.

The algorithm for a regular toroid, where the cross-section shape is a circle and the toroid
radius is constant, might be as follows:

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

662

617xCH13.qxd 4/18/07 3:24 PM Page 662

1. Generate a circle (actually a polygon) on the xy plane at the origin (0, 0).

2. Displace the circle on the x-axis the distance of the toroid radius.

3. Copy (lathe) the circle elliptically around the y-axis, maintaining the toroid radius
distance from the origin.

Toroids have a ring thickness, which relates to the initial diameter of the lathed circle, and
an inner hole diameter based on the distance of the lathed circle from the origin. The ini-
tial circle, which you’ll be lathing with, will actually be a polygon with a lot of points (like
in the preceding cylinder example). Finally, the lathing will be controlled by a segment
level, which determines how many copies of the circle are rotated around the y-axis. The
lathe segments will be evenly spaced, and will determine the smoothness of the toroid.
The really cool thing is that you can easily control all these properties in real time, inter-
actively revealing a wide range of interesting 3D forms based on your initial algorithm. The
following sketch includes a bunch of key commands, which are listed at the top of the pro-
gram as a code comment. The sketch requires the Point3D class, but not the Cube class.

/* Interactive Toroid
Point3D class required

**
key command controls

UP arrow key pts++;
DOWN arrow key pts--;
LEFT arrow key segments--;
RIGHT arrow key segments++;
'a' key toroid radius--;
's' key toroid radius++;
'z' key initial polygon radius--;
'x' key initial polygon radius++;
'w' key toggle wireframe/solid shading
'h' key toggle sphere/helix
**/

//ellipse (shape to lathe)
int pts = 40;
float angle = 0;
float radius = 40.0;
// lathe segments
int segments = 60;
float latheAngle = 0;
float latheRadius = 100.0;
//vertices
Point3D vertices[], vertices2[];
// for shaded or wireframe rendering
boolean isWireFrame = false;
// for optional helix
boolean isHelix = false;
float helixOffset = 5.0;

3D

663

13

617xCH13.qxd 4/18/07 3:24 PM Page 663

void setup(){
size(400, 400, P3D);

}

void draw(){
background(50, 64, 42);
// basic lighting setup
lights();
// 2 rendering styles
// wireframe or solid
if (isWireFrame){
stroke(255, 255, 150);
noFill();

}
else {
noStroke();
fill(150, 195, 125);

}
//center and spin toroid
translate(width/2, height/2);

rotateX(frameCount*PI/150);
rotateY(frameCount*PI/170);
rotateZ(frameCount*PI/90);

// initialize point arrays
vertices = new Point3D[pts+1];
vertices2 = new Point3D[pts+1];

// fill arrays
for(int i=0; i<=pts; i++){
vertices[i] = new Point3D();
vertices2[i] = new Point3D();
vertices[i].x = latheRadius + sin(radians(angle))*radius;
if (isHelix){
vertices[i].z = cos(radians(angle))*radius-(helixOffset* ➥

segments)/2;
} else{
vertices[i].z = cos(radians(angle))*radius;

}
angle+=360.0/pts;

}

// draw toroid
latheAngle = 0;
for(int i=0; i<=segments; i++){
beginShape(QUAD_STRIP);
for(int j=0; j<=pts; j++){
if (i>0){

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

664

617xCH13.qxd 4/18/07 3:24 PM Page 664

vertex(vertices2[j].x, vertices2[j].y, vertices2[j].z);
}
vertices2[j].x = cos(radians(latheAngle))*vertices[j].x;
vertices2[j].y = sin(radians(latheAngle))*vertices[j].x;
vertices2[j].z = vertices[j].z;
// optional helix offset
if (isHelix){
vertices[j].z+=helixOffset;

}
vertex(vertices2[j].x, vertices2[j].y, vertices2[j].z);

}
// create extra rotation for helix
if (isHelix){
latheAngle+=720.0/segments;

}
else {
latheAngle+=360.0/segments;

}
endShape();

}
}

/*
left/right arrow keys control ellipse detail
up/down arrow keys control segment detail.
'a','s' keys control lathe radius
'z','x' keys control ellipse radius
'w' key toggles between wireframe and solid
'h' key toggles between toroid and helix
*/
void keyPressed(){
if(key == CODED) {
// pts
if (keyCode == UP) {
if (pts<40){
pts++;

}
}
else if (keyCode == DOWN) {
if (pts>3){
pts--;

}
}
// extrusion length
if (keyCode == LEFT) {
if (segments>3){
segments--;

}
}

3D

665

13

617xCH13.qxd 4/18/07 3:24 PM Page 665

else if (keyCode == RIGHT) {
if (segments<80){
segments++;

}
}

}
// lathe radius
if (key =='a'){
if (latheRadius>0){
latheRadius--;

}
}
else if (key == 's'){
latheRadius++;

}
// ellipse radius
if (key =='z'){
if (radius>10){
radius--;

}
}
else if (key == 'x'){
radius++;

}
// wireframe
if (key =='w'){
if (isWireFrame){
isWireFrame=false;

}
else {
isWireFrame=true;

}
}
// helix
if (key =='h'){
if (isHelix){
isHelix=false;

}
else {
isHelix=true;

}
}

}
// Point3D class required

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

666

617xCH13.qxd 4/18/07 3:24 PM Page 666

Figure 13-22. Interactive Toroid sketch (toroid variation)

Figure 13-23. Interactive Toroid sketch (wireframe sphere variation)

3D

667

13

617xCH13.qxd 4/18/07 3:24 PM Page 667

Figure 13-24. Interactive Toroid sketch (helix variation)

Figure 13-25. Interactive Toroid sketch (picture frame variation)

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

668

617xCH13.qxd 4/18/07 3:24 PM Page 668

Figure 13-26. Interactive Toroid sketch (polyhedron variation)

If you haven’t yet, I suggest interacting with the toroid sketch. The four arrow keys and the
keys A, S, Z, and X can all be pressed and held down. The W and H keys can only be
pressed and released. When playing with the sketch, you might try to make some of the
following forms: a bicycle inner tube, a monster truck inner tube, a picture frame, a
sawed-off pyramid, a sphere, a shell, a star, a braid, or part of a phone cord. Toggling
between shaded and wireframe view (using the W key) makes it easier to see how the
geometry is changing.

Here’s how to make a sphere: press and hold the A key until the form stops collapsing.
Make sure that you press the W key to see the wireframe. To increase the size of the
sphere, press and hold the X key. Obviously, this is not the most efficient way to generate
a sphere, but it’s interesting to see its relationship to the toroid. A more efficient way to
generate a sphere would be to create a 180-degree arc and then lathe it 360 degrees.

This sketch brings together many of the features covered earlier in this chapter. The major
challenge was combining the point coordinate data used to generate the initial polygon
with the lathing of that data around the toroid. I used two separate arrays, vertices[] and
vertices2[], to enable me to combine the data. The initial polygon (to be lathed) was
generated with the two lines of code used to plot a polygon in the xz plane:

vertices[i].x = latheRadius + sin(radians(angle))*radius;
vertices[i].z = cos(radians(angle))*radius;

If I had plotted this initial polygon, it would have displayed only a horizontal line on the
right side of the screen, since the y values are all 0 and the z dimension of the polygon
can’t be seen in the xy plane.

3D

669

13

617xCH13.qxd 4/18/07 3:24 PM Page 669

I then took this initial polygon data and lathed it around the z-axis, on the xy plane, with
the following expressions:

vertices2[j].x = cos(radians(latheAngle))*vertices[j].x;
vertices2[j].y = sin(radians(latheAngle))*vertices[j].x;
vertices2[j].z = vertices[j].z;

Notice that the equations are basically the original unit circle expressions, where the cos()
function controls the x component of a point, the sin() function controls the y compo-
nent, and vertices[j].x is the toroid radius value. Instead of a single point, though, I’m
rotating a group of points that just happen to form a polygon on the xz plane.

The rest of the program is stuff I’ve gone over before. One small snippet that might raise
a question, however, is the following:

if (isHelix){
latheAngle+=720.0/segments;

}

I decided to rotate the helix version of the toroid two rotations instead of one, just to bet-
ter illustrate the coil effect—that’s why I used 720.0 instead of 360.0. If you want, you can
change that number to see the effect. If you make it higher, you might also want to raise
the 80 segment level maximum in the conditional head if (segments<80). This will allow
the coil to remain smooth, if that sort of thing is important to you. Processing has a
simple 3D function that does just this when creating a sphere. The function is called
sphereDetail(), and it works very similarly to the arrow keys in the last toroid example.
Here’s a simple example (shown in Figure 13-27) to end the chapter on. Use the up and
down arrow keys to see the sphereDetail() function in action:

// sphereDetail() Example
int detail = 10;
int depth = 100;
void setup(){
size(400, 400, P3D);

}
void draw(){
background(50);
translate(width/2, height/2, depth);
rotateY(PI*frameCount/125);
lights();
fill(100, 50, 175);
stroke(150, 75, 255);
sphereDetail(detail);
sphere(20);
println(depth);

}

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

670

617xCH13.qxd 4/18/07 3:24 PM Page 670

void keyPressed(){
if(key == CODED) {
if (keyCode == UP) {
if (depth<310){
depth+=20;
detail+=2;

}
}
else if (keyCode == DOWN) {
if (depth>70){
depth-=20;
detail-=2;

}
}

}
}

Figure 13-27. sphereDetail() Example sketch

If you play with the arrow keys, notice that the number of vertices making up the sphere
increases as the sphere grows in size (it actually stays the same size, but comes closer to
the screen on the z-axis), and vice versa. This represents another optimization approach
used in 3D—only render the necessary resolution. Since the sphere is composed of trian-
gles, when the sphere detail appears too low, the sphere loses its smooth, sphere-like qual-
ity. I simply changed the sphere detail based on the sphere’s position on the z-axis. In the
next and final chapter, I’ll discuss a few other techniques for optimizing 3D, along with
Processing’s virtual camera and lighting functions.

3D

671

13

617xCH13.qxd 4/18/07 3:24 PM Page 671

Summary
Coding 3D, long the domain of hardcore programmers, is now accessible to the rest of us,
thanks to Processing. One of the main difficulties in coding 3D has simply been getting
started. Most books on the subject are geared toward computer scientists, mathemati-
cians, and engineers, and are filled with scary diagrams and equations. Just getting a sim-
ple, static cube (a 3D primitive) on the screen can be an ordeal. This is not the case with
Processing, as the simple, ten-line rotating cube sketch at the beginning of the chapter
revealed. Using Processing’s handy pushMatrix() and popMatrix() functions, as shown in
the previous brick tower example, you can also easily construct more complex structures,
combining simple 3D primitives.

This chapter went beneath the surface as well, revealing the usefulness of the same old
basic trig functions you’ve been using throughout the book. You created your own
Point3D, Cube, and SpinnyCube classes, with which you created a custom multicolored
cube and even coded your own 3D rotations. Building upon these classes with some sim-
ple algorithms, you generated a larger set of 3D primitives, including a pyramid, cone,
cylinder, toroid, and helix; and you explored how these forms are related through a few
interactive sketches. Finally, you learned some 3D optimization techniques and looked at
Processing’s sphereDetail() function.

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

672

617xCH13.qxd 4/18/07 3:24 PM Page 672

PART THREE REFERENCE

In Part 1 of the book, I covered general creative coding theory, and in Part 2, I demon-
strated how the theory is implemented. This final part functions as sort of a Processing
cheat sheet. Appendix A gives an overview of the Processing language reference;
Appendix B contains some handy equations, as well as some important coding struc-
tures and concepts; and Appendix C (available online) includes information on inte-
grating the Processing core graphics library within Java. Keep in mind that the language
reference in Appendix A was designed to supplement the excellent official Processing
language reference—not to replace it.

617xAppA.qxd 4/26/07 10:57 AM Page 673

617xAppA.qxd 4/26/07 10:57 AM Page 674

A PROCESSING LANGUAGE API

617xAppA.qxd 4/26/07 10:57 AM Page 675

In this appendix, you will find a handy reference to all aspects of the Processing language,
including many code examples to help you out and give you inspiration. This is the place
to come first if you want to quickly look up anything covered throughout the rest of
the book.

Introducing the Processing API
The Processing API is the reference for the core Processing language. This is the place to
look up a specific Processing command. The Processing API lives online at http://
processing.org/reference/index.html, and a copy of it is also installed within your local
Processing application directory on your computer. The API is HTML-based with cross-
referenced links throughout. There are also additional libraries available to Processing that
extend the language. The library reference is not included in the core language API.

The Processing core API can be viewed four different ways:

Abridged

Abridged (A–Z)

Complete

Complete (A–Z)

According to a blurb on the language reference page, the abridged reference “omits
description and functions for drawing in 3D and for detailed drawing and data manipula-
tion.” The abridged and complete options (bullets 1 and 3) break the language down into
logical segments relating to basic command functionality. The two “A–Z” options lay the
language out alphabetically. Personally, I find the segmentation of the API by function
easier to work with.

When you launch the reference site, the abridged viewing option is initially loaded.
However, since in this chapter I’ll be discussing the complete API, you might want to select
the complete option at first (before sending an angry e-mail to the publisher). To all you
new coders, you don’t need to work with the entire API to use Processing. A lot of really
interesting things can be done with minimal amounts of code, using only a fraction of the
API. As you progress, though, you’ll naturally begin to use more and more of the API, so
don’t worry about trying to cram or memorize all this stuff.

As I mentioned, it doesn’t make a lot of sense to me to re-create the entire API in this
book when it is free to use, well organized, and easily accessible—both locally and at

Since there’s already an official reference available online and within your Processing
installation, you might ask why I’ve written this appendix. Well, my intention was to
expand upon the more challenging concepts in the official reference, as well as
include many additional code examples.

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

676

617xAppA.qxd 4/26/07 10:57 AM Page 676

http://processing.org/reference/index.html

http://processing.org/. My main objective therefore is to briefly describe the overall
organization of the API and emphasize certain key issues. The rest of the book focuses on
code experiments that contextually move throughout the entire API, including some of the
core code libraries, which I’ll say more about at the end of this reference.

The complete (extended) API is segmented into 15 sections, which are further divided into
45 subsections, with nearly 300 separate items, including functions, operators, constants,
system variables, data types, and control structures. The 15 main sections are titled as
follows:

Structure

Environment

Data

Control

Shape

Input

Output

Transform

Lights, Camera

Color

Image

Rendering

Typography

Math

Constants

Structure
The nearly 30 items organized within the Structure section range from basic syntactic
symbols—such as comment structures (// and /* */), parentheses, semicolons, and array
brackets—to reserved language keywords, such as “class,” “this,” “true,” “super,” and
“extends.” In addition, there are the Processing function calls setup(), size(), noLoop(),
delay(), exit(), draw(), loop(), and redraw().

Structural elements in a programming language are used to organize the process of
coding—a semicolon terminates a line, a dot connects an object to its properties and
methods, curly braces ({ }) organize a block of code, and so forth. Structure allows you to
build, in a sense, sentences and stories with your code to visualize and express your ideas.
I cover the concept of structure as it relates to general programming theory/practice in
more detail in Chapter 3.

PROCESSING LANGUAGE API

677

A

617xAppA.qxd 4/26/07 10:57 AM Page 677

http://processing.org/

Environment
The Environment section contains ten entries for dealing with (getting or setting) global
environment properties. Three of the entries are function calls (which include parenthe-
ses) for setting environmental properties, such as frameRate() for setting the sketch play-
back rate, noCursor() for hiding the cursor, and cursor() for setting the cursor’s icon.

The rest of the entries are for accessing environmental properties—for example, focused
gets the current focus state (true or false) of a sketch (whether the running sketch is the
active application on your desktop); online accesses the sketch’s online status (whether
the sketch is running in a browser—note that the applet can be on your local machine or
a remote server for this property to be true); and screen gets information about the
resolution of your monitor (e.g., screen.width gets the width of your screen).

One somewhat confusing detail in this section is the use of the identical keywords
frameRate() and frameRate. The first is a function call (you can always tell by the inclu-
sion of the parentheses) for setting the sketch’s frame rate, and the second is a variable
(property) for accessing the current frame rate.

In general, environment properties are connected to what can be referred to as object sin-
gletons—objects representing the mouse, computer screen, Processing program, and so
on—that are the only instance created from their respective class. For example, there may
be a Mouse class defined in your operating system that describes the attributes and behav-
ior of a mouse. To use the Mouse class, an object of the Mouse class is created. Since there
is (usually) only one mouse connected to your computer, there is only ever one mouse
object at any time—unlike, say, window objects, which are created every time you open a
document. Thus, when you change an environmental variable, its effect is felt throughout
the entire program.

Data
The Data section contains entries that represent the core data types within Processing, as
well as utility functions that allow you to conveniently work with data (such as converting
from one data type to another, manipulating strings, and transforming arrays).

At the lowest level, the computer sees all data as bits (zeros and ones), and couldn’t care
less what each bit stands for. In contrast, we humans, with our limited internal calculating
capabilities, require more complex signs (labels) than bitstrings to be able to remember
and categorize stuff. Data types add logical meaning to the process of coding, allowing us
to express ourselves through programming languages—in a form somewhere between
pure bits and our natural language. For example, even though the statement

String yourName = "Matilda";

is not quite English, it does tell us that the literal name Matilda is being assigned to a vari-
able called yourName that is of data type String. This is certainly easier to understand than
1101101110000111101001101001110110011001001100001, which is Matilda converted to

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

678

617xAppA.qxd 4/26/07 10:57 AM Page 678

its binary equivalent. I used some of the commands in this section of the API to generate
the Matilda bitstring. Here’s the code I ran:

int m = int(‘M’);
int a = int(‘a’);
int t = int(‘t’);
int i = int(‘i’);
int l = int(‘l’);
int d = int(‘d’);
println(binary(m)+binary(a)+binary(t)+binary(i)+ ➥

binary(l)+binary(d)+binary(a));

The five subsections of Data are as follows:

Primitive

Composite

Conversion

String Functions

Array Functions

Primitive

Primitive includes data types used to store individual values—for example, int nodeCount
= 6; or float speed = .5;. As discussed already, variables in Processing and Java need to
be declared of a specific type. Types specify the kind of data a variable can hold and also
the limit to the size of the value they can hold. Primitive variables are also assigned values
directly. In the statement float speed = .5;, the real value .5 is literally assigned to the
variable speed.

There are also reference variables in Processing and Java, in which a variable is not
assigned a direct value, but rather the address in memory to where the value is stored. This
strange-sounding arrangement is also referred to as a pointer in other languages. Since
objects, as well as arrays (which hold multiple values), are complex structures, it makes
some sense to store a reference to the data, rather than the actual data.

The Processing primitive data types are a subset of Java’s primitive data types. Java has a
few more subtle variations on the main ones in Processing that most beginning coders can
avoid. However, you are free to use Java’s extra data types in Processing if you’d like.
Finally, there is a primitive data type in Processing that is not in Java: the color data type.
This Processing type is really just an int type in disguise, used to deal specifically with
color values. Appendix B includes detailed technical information about the inner workings
of Processing’s color data type.

Fortunately, actually using primitives in Processing is a lot simpler than trying to under-
stand my theoretical, long-winded description of them. I go into greater depth about vari-
ables and data types in Chapter 3, and I also cover color in more detail toward the end of
this chapter, as well as in Chapter 4.

PROCESSING LANGUAGE API

679

A

617xAppA.qxd 4/26/07 10:57 AM Page 679

Composite

The Composite section includes data types used to store object references (the memory
addresses I mentioned in the primitive data type discussion). The three composite types
Array, Object, and String can each hold multiple pieces of data.

Arrays are collections of any other data type, referenced by a single variable name. Arrays
can only hold one data type at a time, but lots of it. I cover arrays in detail in Chapter 3.

Objects are the main units in object-oriented programming. An object is an instance of a
class and includes copies of the properties and methods defined within the class. Objects
are covered in much greater depth in Chapter 8 in the discussion of object-oriented pro-
gramming (OOP).

Strings are kind of like arrays that only hold characters (e.g., letters). There are two ways
to create String objects in Processing and Java (which is confusing):

String s1 = "hello";

and

String s2 = new String("hello");

The first way looks like a normal primitive declaration, like you would use to declare an
int (int count = 3;), a float (float speed = .5;), and so on. The second way looks like
standard object creation, called instantiation, which uses the standard object-oriented syn-
tax ClassType variableName = new ClassType();. Based on what I’ve told you about
data types up to this point in the book, this may not make sense. How can a string repre-
sent both a primitive data type and also a reference (composite) data type? Well, in truth,
there is no primitive String data type in Java or Processing; you’re always creating a
String object. The shortcut approach String s1 = "hello"; internally creates a String
object from the literal (the word in quotes). This is all fine and good, as well as probably a
little overly technical. However, if you eventually find yourself needing to compare two
strings and test them for equality, these two different string-creation approaches have
some confusing (and probably annoying) differences.

As an example, run the following:

String s1 = "hello";
String s2 = new String("hello");
println(s1 == s2);

String s3 = "goodbye";
String s4 = "goodbye";
println(s3 == s4);

The output tells you that s1 and s2 are not equal, but s3 and s4 are. Even though the two
values being compared in each comparison are the same (hello and hello and goodbye
and goodbye), the output is different because of the different ways the strings were cre-
ated. I won’t bore you further with why this occurs, but you can read more about it here:
http://java.about.com/library/weekly/aa_strings1.htm. Be sure to check the second

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

680

617xAppA.qxd 4/26/07 10:57 AM Page 680

http://java.about.com/library/weekly/aa_strings1.htm

part of the article as well. My suggestion when creating strings is to use the shortcut
approach. If for some reason you do need to compare the values of two strings created
using the object-oriented approach (using the new keyword), you can use Java’s String
method equals(). Here’s an example:

String s1 = new String("hello");
String s2 = "hello";
println("s1 == s2 is " + (s1 == s2));
println("s1.equals(s2) is " + s1.equals(s2));

String s3 = new String("goodbye");
String s4 = new String("goodbye");
println("s3 == s4 is " + (s3 == s4));
println("s3.equals(s4) is " + s3.equals(s4));

Conversion

The Conversion section includes ten entries, each of which is a utility function for convert-
ing between one data type and another. Since variables hold values of a specific type,
there are times when, for example, you may need to use a value of type float to pass into
a function that requires an integer value. Processing has a way of doing this conversion,
called type casting. For example, to convert a float variable named gpa to an integer, you
just need to write int(gpa). One issue to consider when doing conversion is truncation. In
my example, the gpa float value will be truncated, or shortened, when it is converted. For
example, if gpa equals 3.97, after converting it using int(gpa), the value returned will be
3 (not 4). Instead of rounding the value, it simply snips off all the values to the right of the
decimal point. Thus, a simple data conversion mistake like this could keep you out of grad
school. There are of course other and better ways to solve this last example (involving log-
ical value rounding), which I’ll cover later in my discussion of the Math section.

There’s one final cautionary note about using Processing’s int() and float() conversion
functions. Currently, there is a reported and unresolved bug about their use
(http://dev.processing.org/bugs/show_bug.cgi?id=4). Thus, if these functions don’t
seem to be working, it’s recommended that you use Java’s alternative syntax. Here’s an
example:

float temp = 98.64783;
//Processing conversion syntax
int pTemp = int(temp);
println(pTemp);
//Java conversion syntax
int jTemp = (int)temp;
println(jTemp);

PROCESSING LANGUAGE API

681

A

617xAppA.qxd 4/26/07 10:57 AM Page 681

http://dev.processing.org/bugs/show_bug.cgi?id=4

String Functions

The String Functions section has seven functions that are helpful when working with
strings, including join(), which combines elements in an array into a string; nf(), which
formats numbers into strings; and split(), which separates a series of data within a string
into separate arrays of strings. Here’s a little example using the String function trim(),
which removes whitespace characters around strings:

String s1 = " Hi there, ";
String s2 = " bye now. ";
println(s1+s2);
s1 = trim(s1);
s2 = trim(s2);
println(s1+" "+s2);

Array Functions

The Array Functions section includes nine functions that allow you to manipulate arrays. In
Java, the size of an array can’t be changed once its length has been set. Values at specific
index positions within arrays can easily be changed—as in scores[3] = 23; or names[4]
= "Bella";—and there are ways of easily sorting and searching though arrays (see Java’s
Arrays class). However, in Java, if you want to change the length of an array, you need to
copy the contents of the array into a new array that has been initialized with the new
desired length (too much work). I’ll provide an example of this process later in this section.

There are two additional classes in Java, ArrayList and Vector, that (sort of) function as
mutable arrays, in that they can dynamically change size. However, using these more com-
plex structures necessitates converting data types (type casting, which I discussed a couple
paragraphs back), and also requires some extra syntax (which I’m not going to cover here).
To learn more about Java’s mutable array structures, check out http://java.sun.com/
j2se/1.4.2/docs/api/java/util/Vector.html.

Processing arrays, in conjunction with the array functions, are a hybrid solution—retaining
the simplicity of using a standard Java array while also providing the ability to modify the
array (including altering its length), similar to Java’s ArrayList and Vector classes.

Processing’s array functions include append() and shorten(), which respectively add or
subtract data to or from the end of an array, changing the array’s length by one position;
splice(), which adds a single value or an entire array of values into an array at a specific
index position, also changing the length of the array by the number of total values added;
and subset(), which extracts an array of elements out of an array at a specific index posi-
tion. The subset() function doesn’t affect the initial array.

In the following sections, I’ve included some example implementations of an append()
function. The first sketch example demonstrates the long way to append, as you might
using Java arrays. The second example uses Processing’s built-in append() function. Finally,
the third example uses Processing’s append() function again, but with an array full of
object references instead of primitive values.

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

682

617xAppA.qxd 4/26/07 10:57 AM Page 682

http://java.sun.com/

Example 1: A Java approach

void setup(){
// before appending
int[]a = {2, 4, 5, 9, 13, 17, 20};
print("before myAppend a = ");
for (int i=0; i<a.length; i++) {
print(a[i]+" ");

}
//after appending
a = myAppend(a, 23);
print("\nafter myAppend a = ");
for (int i=0; i<a.length; i++) {
print(a[i]+" ");

}
}
/*Java append implementation -- doing it the long way.
An array and new value are passed to the myAppend()
function, which copies the passed in array values into a
new array, with a length 1 greater than the passed in array.
Then the passed in valueToAdd argument is assigned
to the added index position in the new array*/
int[] myAppend(int[]ar1, int valueToAdd){
int length = ar1.length;
int[]ar2 = new int[length+1];
for (int i=0; i<length; i++){
ar2[i] = ar1[i];

}
ar2[length] = valueToAdd;
return ar2;

}

Example 2: Using Processing’s append() function,
the easy way

// before appending
int[]a = {2, 4, 5, 9, 13, 17, 20};
print("before append a = ");
for (int i=0; i<a.length; i++) {
print(a[i]+" ");

}
//after appending
a = append(a, 23);
print("\nafter append a = ");
for (int i=0; i<a.length; i++) {
print(a[i]+" ");

}

PROCESSING LANGUAGE API

683

A

617xAppA.qxd 4/26/07 10:57 AM Page 683

Example 3: Using Processing’s append() function on an
array of objects

// type casting required
void setup(){
SimpleClass[] sc = {new SimpleClass(), new SimpleClass(), ➥

new SimpleClass()};
println("sc length before append = " + sc.length);
// I need to explicitely cast the returned Object array ➥

to a SimpleClass array
sc = ((SimpleClass[])append(sc, new SimpleClass()));
print("sc length after append = " + sc.length);

}
class SimpleClass{}

This third example requires some understanding of OOP, which is covered in detail in
Chapter 8.

The last line in the example is the definition for a class (which has no capabilities at all, but
is a valid class nonetheless). Since a class is a legal data type, it’s OK for me to declare an
array of type SimpleClass, as I did in this line:

SimpleClass[] sc = {new SimpleClass(), new SimpleClass(), ➥

new SimpleClass()};

I also filled the array with three SimpleClass objects when I declared it. Every time new
SimpleClass() is called, a SimpleClass object is returned between the curly braces. Thus,
the sc array holds three SimpleClass object references. The first println() statement
confirms this. Next, I call Processing’s append() function, which is where the type casting
occurs. If I had tried to call the append() function as I did in the previous example—like
this:

sc = append(sc, new SimpleClass());

I’d get an error to the effect that I can’t assign an array of type Object to a variable of
type SimpleClass[]. The reason that the append() function converts the original
SimpleClass[] array to type Object relates to how the append() function works inter-
nally, which I won’t go into. The way to fix this type mismatch is to explicitly type cast the
Object array back to SimpleClass[], as I did in this line:

sc = ((SimpleClass[])append(sc, new SimpleClass()));

Control
The Control section includes 18 entries divided in four sections. Control elements in
Programming are the logic constructs that control how a program flows, as well as, in the
case of loops, the data processing mechanisms supplying power and iterative efficiency.

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

684

617xAppA.qxd 4/26/07 10:57 AM Page 684

The combination of these two structures that control program flow and processing
efficiency are what make most of the cool things we do with computers possible; an exam-
ple might be the photorealistic effects in big-budget animated features, such as naturally
moving fur on a virtual animal. To the computer, the fur is just a large array of coordinates
changing over time, based on expressions and conditional logic—of course, this is a lot
easier said than done. The Control section is divided into the following four subsections:

Relational Operators

Iteration

Conditionals

Logical Operators

Relational Operators

Relational operators function by Boolean logic—the condition being assessed is either true
or false. These six operators include < (less than), <= (less than or equal to), == (equals),
and their respective opposites. These operators are used in the heads of conditional state-
ments, where a true condition is tested for. Based on the outcome of the conditional test,
program flow continues either within the conditional block (true) or past it (false).

Iteration

The Iteration section includes just two entries, for() and while(). These are loop struc-
tures within Processing and Java that allow for efficient processing of large quantities of
data. Loops are essential to programming, and programs of even modest complexity will
almost always utilize them. However, loops can also be a little confusing when you are just
starting out, as programming logic can get more densely packed in loops and look a little
intimidating. It is also possible (and very common practice) to nest loops, in which a loop
is put within another loop. This is often an efficient solution, but it adds complexity to the
look and logic of the structure. Since loops are great at processing large amounts of data,
they are often used in conjunction with arrays. Following, I’ve included three examples
(shown in Figures A-1 through A-3) to help illustrate both the power and complexity of
loops. The first example doesn’t use a loop, but simply creates three rectangles, spacing
them evenly in the display window. The second example uses a while loop to space ten
rectangles evenly in the window. The third example, which is a lot more complicated, uses
a bunch of for loops, including a nested for loop, to create a honeycomb structure.

Example 1: Spacing rectangles the hard way

// create 3 rectangles
// without loop
size(200, 200);
int rects = 3;
int w = width/rects;
int h = w;

PROCESSING LANGUAGE API

685

A

617xAppA.qxd 4/26/07 10:57 AM Page 685

int x = 0;
int y = height/2-h/2;
rect(x, y, w, h);
rect(x+w, y, w, h);
rect(x+w*2, y, w, h);

Figure A-1. Create 3 Rectangles sketch

Example 2: Spacing rectangles the easy way

// Use a loop to create 10 rectangles
size(200, 200);
int rects = 10;
int w = width/rects;
int h = w;
int x = 0;
int y = height/2-h/2;
int i = 0;
while (i++<rects){
rect(x, y, w, h);
x+=w;

}

Figure A-2. Use a Loop to Create 10 Rectangles sketch

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

686

617xAppA.qxd 4/26/07 10:57 AM Page 686

Example 3: Creating a honeycomb gradient

/*
HoneyComb
Ira Greenberg, November 6, 2005
*/

// total polys
int polyCount;
// poly array
Poly[]pols;
// I created 2 radii to allow asymmetry
int rad1 = 10, rad2 = 10;
// change poly orientation
float initAng = 0;

void setup(){
size(400, 400);
background(255);
/* 1 extra cell is added to each row and
column to allow the honeycomb to bleed
off the display window */
polyCount = (width/(rad1*2) + 1) * (height/(rad2*2) + 1);
//create Poly array
pols = new Poly[polyCount];

for (int i=0; i<polyCount; i++){
// instantiate each Poly obj in pols array
pols[i] = new Poly(6, rad1, rad2, initAng);

}
}

void draw(){
background(255);
// counter keeps track of Poly count
int counter = 0;
// shift creates honeycomb pattern
// and bleed
int shiftx = rad1/2;
int shifty = rad2/2;
/* create rows and columns in honeycomb,
calling Poly drawPoly method for each
Poly obj*/
for (int i=shiftx; i<=width+shiftx; i+=rad1*2){
shifty*=-1;
for (int j=shifty; j<=height+shifty; j+=rad2*2){
pols[counter++].drawPoly(i, j);

}
}

}

PROCESSING LANGUAGE API

687

A

617xAppA.qxd 4/26/07 10:57 AM Page 687

/*Simple Poly class, plots any
regular polygon*/
class Poly {
int sides;
float r1, r2;
float angle;

Poly(int sides, int r1, int r2, float initAng){
this.sides = sides;
this.r1 = r1;
this.r2 = r2;
angle = initAng;

}

void drawPoly(int cx, int cy){
noStroke();
fill(cy, cx, 100);
float px= 0, py = 0;
beginShape();
for (int i=0; i<sides; i++){
px = cx+cos(radians(angle))*r1;
py = cy+sin(radians(angle))*r2;
vertex(px, py);
angle+=360/sides;

}
endShape(CLOSE);

}
}

Figure A-3. HoneyComb sketch

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

688

617xAppA.qxd 4/26/07 10:57 AM Page 688

Conditionals

Conditionals and the relational operators work together. The seven entries in the
Conditionals section are the words/structures used in conjunction with the operators (<, >=,
etc.). The two most commonly used conditionals, especially by new coders, are the if()
structure and the reserved keyword else. When used together, along with the operators,
this simple if...else structure become a powerful data logic tool. There are also two
other structures: case, used for switch statements, and ?:, a condensed version of the
if...else structure—which are variations on this important programming construct. I
cover these structures, including some examples, in Chapter 3.

Logical Operators

The Logical Operators section includes just three entries: !, &&, and ||, which are “not”,
“and,” and “or,” respectively. These operators allow you to make compound conditional
statements, in which more than one condition can be checked within the same structure.
Using these logical operators in conjunction with the other structures in the Control sec-
tion—relational operators, loops, and conditionals—you can control the world (or at least
make some interesting code art).

The next example, which depicts population explosion, includes some relational and logi-
cal operators (see Figure A-4). Breeding in this simple world is caused by the bots colliding
with the edges of the display window. The detectCollision() function utilizes two com-
pound conditional expressions. Notice how I divided the sketch up into a series of func-
tions, with each function handling a specific task; this modular approach makes the
program easier to understand.

/* Population Explosion
Ira Greenberg, November 6, 2005
revised October 10, 2006 */

//declare some global variables
int botCount = 0;
int botLimit = 1000;
color worldColor = color(0, 40);
color[] botColor = new color[botCount];
float[] x = new float[botCount];
float[] y = new float[botCount];
float[] speedX = new float[botCount];
float[] speedY = new float[botCount];
float botSize = 3;

void setup(){
size(400, 400);
smooth();
noStroke();
breedBot();

}

PROCESSING LANGUAGE API

689

A

617xAppA.qxd 4/26/07 10:57 AM Page 689

void draw(){
fill(worldColor);
rect(0, 0, width, height);
birthBot();
moveBot();
detectCollision();

}

// expand arrays
void breedBot(){
if (botCount<1000){
botCount++;
// expand arrays
x = append(x, width/2);
y = append(y, height/2);
speedX = append(speedX, random(-3, 3));
speedY = append(speedY, random(-3, 3));
botColor = append(botColor, color(random(200, 255), ➥

random(127), random(40), random(100, 255)));
}

}

// draw bots
void birthBot(){
for (int i=0; i<botCount; i++){
fill(botColor[i]);
ellipse(x[i], y[i], botSize, botSize);

}
}

// animate bots
void moveBot(){
for (int i=0; i<botCount; i++){
x[i]+=speedX[i];
y[i]+=speedY[i];

}
}

// check boundary collisions
void detectCollision(){
for (int i=0; i<botCount; i++){
// right and left boundaries
if (x[i] >= width-botSize/2 || x[i] <= botSize/2){
// reverse direction
speedX[i]*=-1;
// make new bot
breedBot();

}

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

690

617xAppA.qxd 4/26/07 10:57 AM Page 690

// top and bottom boundaries
if (y[i] >= height-botSize/2 || y[i] <= botSize/2){
// reverse direction
speedY[i]*=-1;
// make new bot
breedBot();

}
}

}

Figure A-4. Population Explosion sketch

Shape
The 30-plus entries in the Shape section are all function calls involved in drawing geome-
try. This section is the meat and potatoes of the API, especially with regard to the creative
stuff beginning coders need to know. Most computer languages contain the other con-
structs I’ve gone over thus far—structural elements, data storage, looping, conditionals,
and so forth. However, many lack extensive drawing methods, and almost none contain
the ease-of-use and full-featured capabilities of Processing’s drawing methods, which even
include a custom 3D engine. Java does have extensive drawing capabilities, but the Java
graphics APIs are complex, and something as simple as getting a rectangle to move across
the screen can bring new (and even experienced) coders to their knees. Shape is divided
into the following five sections:

PROCESSING LANGUAGE API

691

A

617xAppA.qxd 4/26/07 10:57 AM Page 691

2D Primitives

Curves

3D Primitives

Attributes

Vertex

2D Primitives

2D primitives are the basic geometric building blocks. They include points, lines, triangles,
rectangles, arcs, and ellipses. Shapes like squares and circles are just variations on rectan-
gles and ellipses. These functions are incredibly easy to use and fun to experiment with. As
you’ll learn eventually, all shapes are really just points, or vertices connected and option-
ally filled. However, it makes it really convenient to encapsulate this process for the basic
building block shapes into neat functions, like the ones in Processing. Here’s a simple
example of a point inside a triangle, inside a rectangle, inside an ellipse (see Figure A-5):

size(200, 200);
background(255);
smooth();
noFill();
point(width/2, height/2);
triangle(40, 160, 100, 40, 160, 160);
rect(40, 40, 120, 120);
ellipse(width/2, height/2, 120, 120);

Figure A-5. Processing’s 2D primitive functions

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

692

617xAppA.qxd 4/26/07 10:57 AM Page 692

You’ll notice that by default, the rectangle is drawn from its top-left corner while the
ellipse is drawn from its center. If this doesn’t seem to make any sense, look at the differ-
ent x and y positions for these shapes (the first two arguments). You can also explicitly
change how these shapes are drawn, if the default doesn’t work for you, with calls to
either rectMode() or ellipseMode(). These two functions can take a couple different
arguments that control how the shape is drawn. For example, to reverse the default modes
for both the rect() and ellipse() functions, you would write rectMode(CENTER); and
ellipseMode(CORNER);, respectively. Now rectangles would be drawn from the center and
ellipses would be drawn from the top-left corner.

Curves

The Curves section includes eight entries, dealing with—you guessed it—creating curves.
Curves are a lot more difficult to draw than rectilinear shapes. If you don’t believe me, just
try drawing a circle freehand. Our brains and physical capabilities seem more equipped to
deal with simple linear ratios than curvy math. Unfortunately, most really interesting forms
and animations tend to deal with more organic-looking structures and dynamics. The two
main curve drawing functions in Processing are bezier() and curve().

Bézier curves require two anchor points and two control points. The control points, in a
sense, direct the curve between the anchor points. The common pen tools in programs
like Illustrator and Photoshop employ Bézier-like curves, allowing you to interactively con-
trol both the anchor points and their control handles.

The curve() function utilizes a spline curve and also requires two extra control points.
However, spline curves react quite differently from Bézier curves when these control
points are manipulated. In the next code example, you can drag the control and anchor
points on two different curves simultaneously to see this difference (see Figure A-6). The
green path is a spline curve and the blue is a Bézier curve. Notice how the control points
for the Bézier curve are off the curve, while with the spline the control points are directly
on the curve. This is a pretty advanced example, which I included to illustrate how the
curves work. I cover the curve functions in detail in Chapter 7.

/*
Curves
Ira Greenberg, November 7, 2005
revised October 9, 2006

Interact with the curves by dragging
the anchors/control points
green curve = spline
blue curve = bezier
*/

int pts = 4;
int ptSize = 6;
float[]x = new float[4];
float[]y = new float[4];
boolean[]isDragSafe = new boolean[4];

PROCESSING LANGUAGE API

693

A

617xAppA.qxd 4/26/07 10:57 AM Page 693

void setup(){
size(300, 300);
smooth();
// fill coordinate arrays
x[0] = x[1] = 50;
x[2] = x[3] = width-50;
y[0] = height/2-50;
y[3] = height/2+50;
y[1] = y[2] = height/2;

//initialize dragging flags to false
for (int i=0; i<pts; i++){
isDragSafe[i] = false;

}
}

void draw(){
background(255);
noFill();
//draw curves and control handles
strokeWeight(2);
//spline curve
stroke(0, 200, 30);
curve (x[0], y[0],x[0], y[0], x[1], y[1], x[2], y[2]);
curve (x[0], y[0], x[1], y[1], x[2], y[2], x[3], y[3]);
curve (x[1], y[1], x[2], y[2], x[3], y[3], x[0], y[0]);
//bezier curve
stroke(0, 30, 200);
bezier (x[1], y[1],x[0], y[0], x[3], y[3], x[2], y[2]);
// draw bezier handles
strokeWeight(1);
stroke(100);
line(x[0], y[0], x[1], y[1]);
line(x[2], y[2], x[3], y[3]);
// draw anchor/control points
stroke(0);
fill(0);
for (int i=0; i<pts; i++){
if (i==0 || i==3){
fill(255, 100, 10);
rectMode(CENTER);
rect(x[i], y[i], ptSize, ptSize);

}
else {
fill(0);
ellipse(x[i], y[i], ptSize, ptSize);

}
}

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

694

617xAppA.qxd 4/26/07 10:57 AM Page 694

// start dragging if flag true
for (int i=0; i<pts; i++){
if (isDragSafe[i]){
x[i] = mouseX;
y[i] = mouseY;

}
}

}

// release any point attached to the mouse
void mouseReleased (){
for (int i=0; i<pts; i++){
isDragSafe[i] = false;

}
}

// for dragg'n dem points
void mousePressed (){
for (int i=0; i<pts; i++){
if (mouseX>=x[i]-5 && mouseX<=x[i]+ptSize+5 &&
mouseY>=y[i]-5 && mouseY<=y[i]+ptSize+5){
isDragSafe[i] = true;

}
}

}

// show hand when over draggable points
void mouseMoved (){
cursor(ARROW);
for (int i=0; i<pts; i++){
if (mouseX>=x[i]-5 && mouseX<=x[i]+ptSize+5 &&
mouseY>=y[i]-5 && mouseY<=y[i]+ptSize+5){
cursor(HAND);

}
}

}

Figure A-6. Curves sketch

PROCESSING LANGUAGE API

695

A

617xAppA.qxd 4/26/07 10:57 AM Page 695

3D Primitives

The 3D Primitives section only includes three functions:

box()

sphere()

sphereDetail()

The box() and sphere() functions generate simple 3D objects. These are not simulated 3D
forms, but are actually based on 3D geometry. Thus, to use these functions, you need to
specify either the P3D or OPENGL rendering mode in the size() function call. If you use
OPENGL, you also need to import the OPENGL library (via the Sketch ➤ Import Library ➤
opengl menu option).

The SphereDetail() function controls the level of detail, or number of vertices, used to
generate the sphere, which is constructed out of triangles that all fit together in a mosaic
pattern (called tessellated triangles). Here’s a little example of some spinning stuff, using
all three of the 3D primitive functions (see Figure A-7). The outer ring of spheres in the
example illustrates the use of the sphereDetail() function. Each of the objects in the ring
is technically a sphere, but by setting the sphereDetail value very low, you get a more
rigid, less sphere-like form.

/* Spinning 3D Stuff
Ira Greenberg, October 9, 2006 */
float px, py, angle;
void setup(){
size(400, 400, P3D);
noFill();
stroke(255);

}
void draw(){
background(0);
translate(width/2, height/2);
pushMatrix();
rotateY(frameCount*PI/150);
rotateX(frameCount*PI/150);
box(100, 100, 100);
pushMatrix();
rotateY(-frameCount*PI/10);
rotateX(PI/4);
box(45, 15, 65);

popMatrix();
popMatrix();

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

696

617xAppA.qxd 4/26/07 10:57 AM Page 696

pushMatrix();
rotateY(-frameCount*PI/60);
rotateX(-frameCount*PI/70);
for (int i=0; i<12; i++){
px = cos(radians(angle))*150;
py = sin(radians(angle))*150;
pushMatrix();
translate(px, py);
sphereDetail(i);
sphere(20);

popMatrix();
angle+=360/12;

}
popMatrix();

}

Figure A-7. Spinning 3D Stuff sketch

PROCESSING LANGUAGE API

697

A

617xAppA.qxd 4/26/07 10:57 AM Page 697

Attributes

The Attributes section includes seven functions:

strokeWeight()

smooth()

strokeJoin()

noSmooth()

ellipseMode()

rectMode()

strokeCap()

Stroke is the term used for a line in computer graphics. The functions strokeWeight(),
strokeCap(), and strokeJoin() respectively control the thickness (or weight) of lines,
how the lines end (rounded, square, or extended caps), and how the lines come together
at corners (mitered, beveled, or rounded). These last two line attributes are details we
tend not to focus on until we see a problem with our output, and then of course we
obsess about them.

smooth() and noSmooth() control anti-aliasing. Anti-aliasing is not a political position, but
a way to smooth jaggies along curved and diagonal edges. Anti-aliasing makes things look
smoother, but can slow down rendering some. Please note that the smooth and stroke
attribute functions do not (as of this writing) work consistently in all three supported ren-
derers; nor do they fail consistently—the strokeWeight() attribute fails silently in P3D
mode (it just won’t do anything), but the other functions will generate a compiler error.
For more details, please see the corresponding section of the API (www.processing.org/
reference/strokeWeight_.html).

Vertex

The Vertex section includes seven functions that allow you to do some pretty amazing
things. A vertex is just a point. Vertices (the plural form of vertex) make up lines, which
make up polygons (usually triangles or quadrangles), which make up more complex geom-
etry. In fact, most complex 3D scenes are usually just a bunch of triangles and quadrangles.
To create a vertex in Processing, you use the vertex() function. Combining a series of
vertex() commands allow you to create lines and shapes (both 2D and 3D). Additionally,
you can use the related functions bezierVertex() and curveVertex() to specify curves,
and you can also combine the three commands.

The vertex functions need to be called between the functions beginShape() and
endShape(). These two functions work by first internally recording the coordinates speci-
fied by the nested vertex calls, and then plotting the coordinates. They also control how
the vertices are connected by passing arguments to the two calls. For example, here’s
some code to generate a closed regular polygon:

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

698

617xAppA.qxd 4/26/07 10:57 AM Page 698

// regular polygon
size(400, 400);
smooth();
float px, py, angle = 0, radius = 150;
int sides = 8;
beginShape();
for (int i=0; i<sides; i++){
px = width/2+cos(radians(angle))*radius;
py = height/2+sin(radians(angle))*radius;
vertex(px, py);
angle+=360.0/sides;

}
endShape(CLOSE);

By default, beginShape() and endShape() will fill the shape created by the vertices.
However, the shape will not actually be closed unless the CLOSE argument is included in
the endShape(CLOSE) call. Try removing the CLOSE argument from the last sketch and also
adding the call noFill() above beginShape(). If you run the sketch, you should see a par-
tial polygon drawn, with one of its sides missing. If you now remove noFill(), the fill of
the shape will return, but the stroke outline surrounding the polygon will remain unclosed.
There are a number of arguments that can be added to the beginShape() call, including
POINTS, LINES, TRIANGLES, TRIANGLE_FAN, TRIANGLE_STRIP, QUADS, and QUAD_STRIP.

In addition, using the P3D and OPENGL rendering modes, it’s possible to map an image
onto a shape’s surface (really the shape’s vertices) using extra coordinate arguments
passed into the individual vertex() commands. It’s also necessary to include two addi-
tional function calls: textureMode() and texture(). This is an advanced feature called UV
mapping. The U and V represent two extra coordinates for the image mapping space on
the surface. Even though it’s an advanced feature, it’s also pretty cool, so I decided to
include an example.

The sketch is of a rotating cube mapped with six images that rotate with the cube (see
Figure A-8). To try this example, you’ll need to create a data directory within your sketch
folder that contains six images named img1.jpg through img6.jpg. The data directory will
be created automatically when you import your images (by selecting Add File from the
Sketch menu). I suggest making the images each 250 by 250 pixels, but other sizes will
work as well.

/*
ImageMap
Ira Greenberg, November 4, 2005
revised, October 10, 2006
*/

/* IMPORTANT- to run this, you need
6 images in your data directory named
img1.jpg - img6.jpg. Images should each
be 250 x 250 pixels */

PROCESSING LANGUAGE API

699

A

617xAppA.qxd 4/26/07 10:57 AM Page 699

PImage[] images = new PImage[6];

void setup(){
size(400, 400, P3D);
noStroke();
//load images
for (int i=1; i<7; i++){
images[i-1] = loadImage("img"+i+".jpg");

}
// map images using 0.0-1.0
textureMode(NORMALIZED);

}

void draw(){
background(255);
//*center geometry in display windwow.
translate(width/2, height/2);
//rotate around y and x axes
rotateY(frameCount*PI/100);
rotateX(frameCount*PI/75);
createCube(100, 100, 100);

}

void createCube(float w, float h, float d){
//front face
beginShape(QUADS);
texture(images[0]);
vertex(-w/2, -h/2, -d/2, 0, 0);
vertex(w, -h/2, -d/2, 1, 0);
vertex(w, h, -d/2, 1, 1);
vertex(-w/2, h, -d/2, 0, 1);
endShape();
//back face
beginShape(QUADS);
texture(images[1]);
vertex(-w/2, -h/2, d, 0, 0);
vertex(w, -h/2, d, 1, 0);
vertex(w, h, d, 1, 1);
vertex(-w/2, h, d, 0, 1);
endShape();
//left face
beginShape(QUADS);
texture(images[2]);
vertex(-w/2, -h/2, -d/2, 0, 0);
vertex(-w/2, -h/2, d, 1, 0);
vertex(-w/2, h, d, 1, 1);
vertex(-w/2, h, -d/2, 0, 1);
endShape();
//right face
beginShape(QUADS);

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

700

617xAppA.qxd 4/26/07 10:57 AM Page 700

texture(images[3]);
vertex(w, -h/2, -d/2, 0, 0);
vertex(w, -h/2, d, 1, 0);
vertex(w, h, d, 1, 1);
vertex(w, h, -d/2, 0, 1);
endShape();
//top face
beginShape(QUADS);
texture(images[4]);
vertex(-w/2, -h/2, -d/2, 0, 0);
vertex(w, -h/2, -d/2, 1, 0);
vertex(w, -h/2, d, 1, 1);
vertex(-w/2, -h/2, d, 0, 1);
endShape();
//bottom face
beginShape(QUADS);
texture(images[5]);
vertex(-w/2, h, -d/2, 0, 0);
vertex(w, h, -d/2, 1, 0);
vertex(w, h, d, 1, 1);
vertex(-w/2, h, d, 0, 1);
endShape();

}

Figure A-8. ImageMap sketch

PROCESSING LANGUAGE API

701

A

617xAppA.qxd 4/26/07 10:57 AM Page 701

Input
This is another large section in the API, generally involved in receiving or inputting data.
Some of these processes are relatively low level, like reading bytes. However, Processing,
as you’ve probably come to expect by now, encapsulates and simplifies these processes.
The Input section includes 22 functions and 9 system variables, divided into five categories.
The categories are as follows:

Mouse

Keyboard

Files

Web

Time & Date

Mouse

The Mouse section includes six properties and five functions, used to evaluate when,
where, and how mouse input is received by your running sketch. Variables such as mouseX
and mousePressed provide live information about the mouse state; mouseX provides the
current x position of the mouse and mousePressed returns true or false depending if the
mouse button is pressed. Often, you can use this data creatively—for example, in a draw-
ing program that colors pixels as the mouse moves over them.

The mouse functions, such as mouseMoved() or mouseDragged(), put code within separate
function blocks (between the curly braces), allowing other functions or commands to be
called when the mouse motion event is detected. Following is a mouseMoved() example
that illustrates some of the interesting things you can do via mouse detection (see
Figure A-9). There are a bunch of significant concepts within this example, and in spite of
it being a bit dense, the sketch is a good base for other experiments. When the sketch
loads, move your mouse over the rectangle.

/*
Box Springs
Ira Greenberg, November 13, 2005
revised October 11, 2006
move mouse over white rectangle
*/

// you can change block count
int blocks = 40;
float margin = 50;
float boxHeight = 75;

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

702

617xAppA.qxd 4/26/07 10:57 AM Page 702

//lots of arrays
float[]x = new float[blocks];
float[]y = new float[blocks];
float[]w = new float[blocks];
float[]h = new float[blocks];
float[]py1 = new float[blocks];
float[]py2 = new float[blocks];
float[]radius = new float[blocks];
float[]amplitude = new float[blocks];
float[]frequency = new float[blocks];
float[]ang = new float[blocks];
float[]drag = new float[blocks];
float[]gravity = new float[blocks];
boolean[]isOver = new boolean[blocks];

void setup(){
size(400, 300);
background(0);
noStroke();
frameRate(30);
/* amplitude, gravity, and frequency
can be messed with. Also, if you remove
the random functions, you can get more
standard wave patterns
*/
for (int i=0; i<blocks; i++){
w[i] = (width-margin)/blocks;
h[i] = boxHeight;
x[i] = margin/2+w[i]*i;
y[i] = height/2-h[i]/2;

amplitude[i] = random(20)+height/4;
radius[i] = amplitude[i];
gravity[i] = .85+random(.13);
drag[i] = gravity[i];
drawBlocks(x[i], y[i], w[i], h[i]);
frequency[i] = 12+random(-5, 5);
//flags let us know which box
//we’re over
isOver[i] = false;

}
}

PROCESSING LANGUAGE API

703

A

617xAppA.qxd 4/26/07 10:57 AM Page 703

//main loop
void draw(){
fill(0, 50);
rect(0, 0, width, height);
fill(255, 255, 0);
for (int i=0; i<blocks; i++){
//you can add/subtract py1, py2 to x
//and width arguments as well
drawBlocks(x[i], y[i]-py1[i], w[i], h[i]+py2[i]);
// flags set in mouseMoved function
if (isOver[i]){
//trig controls spring effect
py1[i] = sin(radians(ang[i]))*radius[i];
py2[i] = cos(radians(ang[i]))*radius[i];
// spring values affect color shift
fill(255, 255-radius[i], radius[i]*2);
ang[i]+=frequency[i];
radius[i]*=drag[i];

}
}

}

/*While mosue is moving, detect what
box the mouse is over and change flag.
Also, need to reset radius, which is
decremented by drag - causing blocks to
stop */
void mouseMoved(){
for (int i=0; i<blocks; i++){
if (mouseX>x[i] && mouseX<x[i]+w[i] &&
mouseY>y[i] && mouseY<y[i]+h[i]){
radius[i] = amplitude[i];
isOver[i] = true;

}
}

}

//function to draw rectangles, called initially by
//setup and then repeatedly in draw loop
void drawBlocks(float x, float y, float w, float h){
rect(x, y, w, h);

}

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

704

617xAppA.qxd 4/26/07 10:57 AM Page 704

Figure A-9. Box Springs sketch

Keyboard

The Keyboard section is similar to the Mouse section in that it combines both system vari-
ables and functions that allow you to communicate with the keyboard. The difference
between the mouse and the keyboard is the amount and type of data input and output.
The mouse can have multiple buttons, like a small keyboard, but it also has coordinate
data. The keyboard (at least mine) remains stationary, but has to translate between many
possible input values, for all the letters, numbers, and special keys that it uses. The keys on
your keyboard have integer values associated with them, commonly referred to as ASCII
code. For example, the a key equals 65. There are also constant values for the special keys,
such as UP, DOWN, LEFT, RIGHT, ALT/OPTION, CONTROL, SHIFT, BACKSPACE, TAB, ENTER, RETURN,
ESC, and DELETE. The following simple example allows you to control a rectangle with the
arrow keys. Notice in the code the use of the if (key == CODED) { } structure around the
specific key detection code.

int x, y;
void setup(){
size(200, 200);

}
void draw() {
stroke(0, 50);
fill(255, 50);
rect(width/2+x, height/2+y, 4+x, 4+y);

}
void keyPressed() {

PROCESSING LANGUAGE API

705

A

617xAppA.qxd 4/26/07 10:57 AM Page 705

if(key == CODED) {
if (keyCode == UP) {
y--;

} else if (keyCode == DOWN) {
y++;

} else if (keyCode == LEFT) {
x--;

} else if (keyCode == RIGHT) {
x++;

}
}

}

Files

The Files section includes four functions:

•openStream()

•open()

•loadStrings()

•loadBytes()

loadStrings() and loadBytes() allow you to load the contents of a file or URL as a string
array or byte array, respectively. A byte array of a text file will include all the individual
characters converted into their ASCII equivalents. If only a file name is specified as an
argument with either of these functions, the file needs to reside within the sketch’s data
directory. It’s also possible to specify a URL, assuming you use a valid path. Relative paths
should be specified in relation to the data directory in the current sketch directory. For
example, if your file (file.txt) is outside the data directory, in another directory called
docs (also located within the sketch (parent) directory), it can be accessed (using UNIX/OS
X path syntax) as: ../docs/file.txt, or on Windows: ..\docs\file.txt. The double dot
syntax (..) refers to the parent directory; (single dot syntax(.) refers to the current direc-
tory). There is some general information about paths at http://en.wikipedia.org/wiki/
Path_(computing).

The openStream() function provides a simplified way of using Java’s InputStream class.
The InputStream class provides you with more control when inputting data. To learn more
about Java’s InputStream class, check out http://java.sun.com/j2se/1.4.2/docs/api/
java/io/InputStream.html.

Here’s what the Processing reference says about the open() function: “Attempts to open a
file or process using the platform’s shell.” A shell is just an interface to your operating sys-
tem. There are GUI (graphical user interface) shells, such as the Finder (OS X) or Windows
Explorer, where you simply click to launch an application. There are also command-line
shells, which is the type of shell the Processing reference is referring to. To communicate
with your system via a command-line shell, you type text-based commands in a terminal
(emulator) program, such as the Terminal application in OS X. (On Windows, you can
access the command shell by selecting the Run command in the Start menu and then

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

706

617xAppA.qxd 4/26/07 10:57 AM Page 706

http://en.wikipedia.org/wiki/
http://java.sun.com/j2se/1.4.2/docs/api/

entering CMD). When using a command-line shell instead of a GUI shell, you need to be
explicit when issuing commands. It is common for modern GUI shells to hide the suffixes
of files. In OS X, to launch the Calculator application using the Finder (GUI shell), you
double-click the calculator icon, named simply “Calculator.” In contrast, from the Terminal
application (command-line shell), you need to type: open Calculator.app. In addition, you
need to be explicit as to where files reside (the path) to access/launch them. When using
relative paths with Processing’s open() command, you need to provide path addresses in
relation to the Processing application. For example, the Processing application on my com-
puter lives within a Processing directory, which lives in the Applications directory. The
Calculator application also lives within the Applications directory. To launch the
Calculator on a mouse press, I can use the following Processing sketch:

void draw(){
}

void mousePressed(){
open("../Calculator.app");

}

The open() command also allows to you pass a String argument. You can read more
about open() at http://processing.org/reference/open_.html.

Web

The Web section includes the functions link(), param(), and status(). Stating the obvi-
ous, these functions involve web-based features and are used within a browser environ-
ment. link() allows you to load a web page, as well as specify which browser window to
use (the existing one or a new one). param() reads the value of a parameter, specified
within the HTML of a web page. For example, if you have the following HTML in the page
holding an applet, created from a sketch named SimpleBall:

<applet code="SimpleBall" archive=" SimpleBall jar">
<param name="ballradius" value="50"> </applet>

you can use the param value ballradius in your SimpleBall sketch:

// SimpleBall sketch
String strgRadius = param("ballradius");
int radius = Integer.parseInt(strgRadius);
size(200, 200);
ellipse(width/2, height/2, radius, radius);

You’ll notice that the param value comes back as a String, so it needs to be converted to
a number. Integer.parseInt() is a static method of Java’s Integer class that converts
strings to integers. (Remember, in Processing, you can use Java code along with Processing
code.)

status() allows you to display messages in the browser’s status area—normally in the
lower-left corner of the browser.

PROCESSING LANGUAGE API

707

A

617xAppA.qxd 4/26/07 10:57 AM Page 707

http://processing.org/reference/open_.html

Time & Date

Time & Date is the last subsection of the Input section of the API. The functions second(),
minute(), hour(), day(), month(), and year() return a component of the time, based off
your system clock. The function millis() tells you how long, in milliseconds (thousandths
of a second), your sketch has been running since you started it. Here’s an analog clock
example (see Figure A-10):

/* Analog Clock
Ira Greenberg, October 9, 2006 */

PFont font;
float x, y, r = 100;
float textH = 12;

void setup(){
size(400, 400);
font = createFont("Arial", textH);
textFont(font);
x = width/2;
y = height/2;
smooth();

}

void draw(){
background(75);
drawClock();

}

void drawClock(){
float px, py, angle = -60;
fill(200);
strokeWeight(4);
ellipse(x, y, r*2, r*2);
for (int i=1; i<13; i++){
px = x+cos(radians(angle))*(r*.8);
py = y+sin(radians(angle))*(r*.8);
fill(0);
// need to subtract 1/2 text width/height
// to align center
float textW = textWidth(str(i));
text(i, px-textW/2, py+textH/2);
angle+=360/12;

}
/*Subtract 90 degs. from each trig function, since 12
is at top of clock (not at 0 postion on unit circle).
Other numeric value is calculated by 360/number of units.*/

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

708

617xAppA.qxd 4/26/07 10:57 AM Page 708

//hour hand
strokeWeight(2);
stroke(50);
float h = hour();
float hourHandX = x+cos(radians(30*h-90))*(r*.5);
float hourHandY = y+sin(radians(30*h-90))*(r*.5);
line(x, y, hourHandX, hourHandY);

//minute hand
strokeWeight(1);
stroke(150);
float m = minute();
float minuteHandX = x+cos(radians(6*m-90))*(r*.7);
float minuteHandY = y+sin(radians(6*m-90))*(r*.7);
line(x, y, minuteHandX, minuteHandY);

//second hand
strokeWeight(1);
stroke(200, 100, 30);
float s = second();
float secondHandX = x+cos(radians(6*s-90))*(r*.9);
float secondHandY = y+sin(radians(6*s-90))*(r*.9);
line(x, y, secondHandX, secondHandY);

}

Figure A-10. Analog Clock sketch

PROCESSING LANGUAGE API

709

A

617xAppA.qxd 4/26/07 10:57 AM Page 709

Output
This section involves outputting data, both to the screen and to a file. As in the Input sec-
tion, Processing makes these relatively low-level processes really easy to perform. This
section is divided into three subsections:

Text Area

Image

Files

Text Area

Text Area is a simple category that includes the two functions print() and println(). Both
output to the text area in the Processing window, but println() adds line returns
between each call to the function. You can use the string concatenator + within the argu-
ment string, passed to the print() or println() function. For example, the following
code outputs I love Processing:

String name = "Processing";
print("I love "+name);

Image

Image includes two very cool functions that allow you to save screen image data to the
sketch directory. saveFrame() will actually save a sequence of images in TIF, TGA, JPG, or
PNG format. You can then import these sequenced images into video editing software and
produce movies of your Processing animations. save() just saves the current screen
image. Please note that neither of these functions will work when running your sketches
from within a web browser. This is a limitation of Java applets in general, imposed by Sun
to “keep applets from compromising system security,” as mentioned in the article “What
Applets Can and Can’t Do” (see http://java.sun.com/docs/books/tutorial/deployment/
applet/security.html). To learn more about Java applets, check out http://java.sun.
com/docs/books/tutorial/deployment/applet/index.html.

Files

The Files subsection of the Output section is similar to the Files subsection of Input, except
things work in reverse. The two functions saveStrings() and saveBytes()—as you might
guess—save strings and bytes, respectively, to files within the current sketch directory.
There are also two more general-purpose output functions, beginRecord() and
endRecord(), which can be used to write out drawing functions as well as the contents of
the display window (just be sure to call beginRecord() before the drawing calls you want
recorded). To use these functions, you need to explicitly specify a renderer and file name
as arguments in the beginRecord(renderer, filename) call.

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

710

617xAppA.qxd 4/26/07 10:57 AM Page 710

http://java.sun.com/docs/books/tutorial/deployment/
http://java.sun

In the next example, I use beginRecord() and endRecord() as part of a simple drawing
program (see Figure A-11). When you want to output your drawing, simply press any key
on the keyboard; this will cause your sketch to close and your drawing to be saved to your
sketch directory in PDF format.

/*
Hairy Brush Drawing
Ira Greenberg, October 9, 2006
outputs to PDF
*/

import processing.pdf.*;

void setup() {
size(400, 400);
background(255);
smooth();
String id = str(hour())+"_"+str(minute())+"_"+str(second());
beginRecord(PDF, "img"+id+".pdf");

}

void draw() {
stroke(0);
strokeWeight(4);
if (mousePressed){
line(pmouseX, pmouseY, mouseX, mouseY);
bleed(pmouseX, pmouseY);

}
}

void bleed(float x, float y){
float px = 0, py = 0, angle = 0, radius=10;
float brushDetail = 36;
stroke(0, 100);
strokeWeight(.5);
for (int i=0; i<brushDetail; i++){
px = x+cos(radians(angle))*random(radius);
py = y+sin(radians(angle))*random(radius);
line(x, y, px, py);
angle+=360/brushDetail;

}
}

// press any key on the keyboard to
// output a pdf of your drawing
void keyPressed() {
endRecord();
exit();

}

PROCESSING LANGUAGE API

711

A

617xAppA.qxd 4/26/07 10:57 AM Page 711

Notice the following statement at the top of the example:

import processing.pdf.*;

This imports Processing’s PDF library, one of Processing’s core libraries. Finally, note that
the file functions will not work from a web browser.

Figure A-11. Hairy Brush Drawing sketch

Transform
This is a very cool part of the API, and one of the feature sets that makes Processing a truly
unique and powerful creative tool. However, all this coolness does come at a small price.
The transform functions are a little complex and take some time to get your head around.
While beginning to use them isn’t all that difficult, using them well can be a challenge. At
the core of these functions is a mysterious mathematical structure called a matrix. A
matrix is just a table-like structure for organizing values. Matrices (plural) are central to
linear algebra (which I’m not going to go into), and they’re also central to computer
graphics. What makes them so significant is the ease with which geometric transformations
can be done by using them.

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

712

617xAppA.qxd 4/26/07 10:57 AM Page 712

Transformations include moving, scaling, skewing, and rotating vertices. Remember, ver-
tices (points) are the foundation for all the other geometry you see on the screen. The
simplest way to show how the transform functions work is through some examples. First,
I’ll give you a (rather dull) example that transforms 2D geometry (see Figure A-12). Then
I’ll apply the concepts from the 2D example to a more interesting (albeit more compli-
cated) 3D example.

//Example 1:
noStroke();
rect(10, 10, 25, 25);
printMatrix();

pushMatrix();
translate(20, 20);
scale (1.5);
rect(10, 10, 25, 25);
printMatrix();
popMatrix();

pushMatrix();
translate(70, 70);
scale (.5);
rect(10, 10, 25, 25);
printMatrix();
popMatrix();
printMatrix();

Figure A-12. Transform Example 1 sketch

PROCESSING LANGUAGE API

713

A

617xAppA.qxd 4/26/07 10:57 AM Page 713

This example isn’t too exciting, but it does illustrate the power and simplicity of doing
matrix transformations in Processing. In the example, I used the rect() command three
times, using the same four arguments; yet I got three rectangles with different sizes and
positions. If you run this example, you should notice four tables of numbers output in the
Processing console. Each table is composed of two rows and three columns. These myste-
rious numbers are the actual matrices at different states in the program. You’ll notice that
the first and last table of numbers are identical:

1.0000 0.0000 0.0000
0.0000 1.0000 0.0000

These tables represent the base, or identity, matrix, without any transformation applied.
The first rectangle I created used this matrix, before I called the first translate() func-
tion, and that’s why what I input with regard to the arguments is what I got out. The other
two rectangles have different transforms, and thus look different. In going over this
sketch, you should take the time to see what parts of the matrix get changed after each
transformation.

Another strange concept to deal with is the matrix stack. A stack is a temporary data struc-
ture that operates following the last in, first out (LIFO) principal. Stacks are utilized in
many areas of computing, including managing transformation matrices. The pushMatrix()
and popMatrix() functions alter the matrix stack, allowing different transformations to
happen in a seemingly independent fashion. When you want to create a localized trans-
formation (not affecting everything following the transformation call), you first call
pushMatrix(), which adds any transformations that follow it onto the matrix stack. Then,
when you’re done, you call popMatrix(), which restores the matrix to its previous form.
This is the reason that the first and last tables of values shown previously were identical—
the first table represented the untransformed matrix and the last table represented the
matrix after popMatrix() was called—which removed the last transformation pushed onto
the stack.

This next example (shown in Figure A-13) is much more interesting than the last, and really
illustrates the power of this whole matrix business. But it’s also pretty complex and long;
so watch it, play with it, and don’t worry about understanding all the code yet. After you
get a sense of what the sketch does (visually), try messing with some of the values; it’s a
great way to see what’s going on programatically (and don’t worry about breaking the
sketch, either). After you launch the example, let it run for a while, as there are some
really interesting patterns that form and change in interesting and unpredictable ways
over time.

//Example 2:
/*
PushPop
Ira Greenberg, November 8, 2005
*/

/*Need to import opengl library to use OPENGL
rendering mode. You can also try running
in P3D mode*/
import processing.opengl.*;

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

714

617xAppA.qxd 4/26/07 10:57 AM Page 714

float ang;
int rows = 20;
int cols = 20;
int cubeCount = rows*cols;
int colSpan, rowSpan;
float rotspd = 4;
Cube[]cubes = new Cube[cubeCount];
float[]angs = new float[cubeCount];
float[]rotvals = new float[cubeCount];
void setup(){
size(400, 400, OPENGL);
colSpan = width/(cols-1);
rowSpan = height/(rows-1);
noStroke();

// instantiate cubes
for (int i=0; i<cubeCount; i++){
cubes[i] = new Cube(10, 10, 10, 0, 0, 0);
/* 3 different rotation options
- 1st option: cubes each rotate uniformly
- 2nd option: cubes each rotate randomly
- 3rd option: cube columns rotate as waves
To try the different rotations, leave one
of the rotVals[i] lines uncommented below
and the other 2 commented out.
*/

//rotvals[i] = rotspd;
//rotvals[i] = random(-rotspd*2, rotspd*2);
rotvals[i]=rotspd+=.02;

}
}

void draw(){
int cubeCounter = 0;
background(255);
fill(200);
//set up some different colored lights
pointLight(51, 102, 255, width/3, height/2, 100);
pointLight(200, 40, 60, width/1.5, height/2, -150);

//raise overall light in scene
ambientLight(170, 170, 100);

//translate, rotate, and draw cubes
for (int i=0; i<cols; i++){
for (int j=0; j<rows; j++){
pushMatrix();
/* translate each block.

PROCESSING LANGUAGE API

715

A

617xAppA.qxd 4/26/07 10:57 AM Page 715

pushmatrix and popmatrix add each cube
translation to matrix, but restore
original, so each cube rotates around its
owns center*/
translate(i*colSpan, j*rowSpan, -20);
//rotate each cube around y- and x-axes
rotateY(radians(angs[cubeCounter]));
rotateX(radians(angs[cubeCounter]));
cubes[cubeCounter].drawCube();
popMatrix();
cubeCounter++;

}
}
//angs used in rotate function calls above
for (int i=0; i<cubeCount;i++){
angs[i] += rotvals[i];

}
}

//simple Cube class, based on Quads
class Cube {

//properties
int w, h, d;
int shiftX, shiftY, shiftZ;

//constructor
Cube(int w, int h, int d, int shiftX, int shiftY, int shiftZ){
this.w = w;
this.h = h;
this.d = d;
this.shiftX = shiftX;
this.shiftY = shiftY;
this.shiftZ = shiftZ;

}

/*main cube drawing method, which looks
more confusing than it really is. It's
just a bunch of rectangles drawn for
each cube face*/
void drawCube(){
//front face
beginShape(QUADS);

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

716

617xAppA.qxd 4/26/07 10:57 AM Page 716

vertex(-w/2 + shiftX, -h/2 + shiftY, -d/2 + shiftZ);
vertex(w + shiftX, -h/2 + shiftY, -d/2 + shiftZ);
vertex(w + shiftX, h + shiftY, -d/2 + shiftZ);
vertex(-w/2 + shiftX, h + shiftY, -d/2 + shiftZ);
endShape();
//back face
beginShape(QUADS);
vertex(-w/2 + shiftX, -h/2 + shiftY, d + shiftZ);
vertex(w + shiftX, -h/2 + shiftY, d + shiftZ);
vertex(w + shiftX, h + shiftY, d + shiftZ);
vertex(-w/2 + shiftX, h + shiftY, d + shiftZ);
endShape();
//left face
beginShape(QUADS);
vertex(-w/2 + shiftX, -h/2 + shiftY, -d/2 + shiftZ);
vertex(-w/2 + shiftX, -h/2 + shiftY, d + shiftZ);
vertex(-w/2 + shiftX, h + shiftY, d + shiftZ);
vertex(-w/2 + shiftX, h + shiftY, -d/2 + shiftZ);
endShape();
//right face
beginShape(QUADS);
vertex(w + shiftX, -h/2 + shiftY, -d/2 + shiftZ);
vertex(w + shiftX, -h/2 + shiftY, d + shiftZ);
vertex(w + shiftX, h + shiftY, d + shiftZ);
vertex(w + shiftX, h + shiftY, -d/2 + shiftZ);
endShape();
//top face
beginShape(QUADS);
vertex(-w/2 + shiftX, -h/2 + shiftY, -d/2 + shiftZ);
vertex(w + shiftX, -h/2 + shiftY, -d/2 + shiftZ);
vertex(w + shiftX, -h/2 + shiftY, d + shiftZ);
vertex(-w/2 + shiftX, -h/2 + shiftY, d + shiftZ);
endShape();
//bottom face
beginShape(QUADS);
vertex(-w/2 + shiftX, h + shiftY, -d/2 + shiftZ);
vertex(w + shiftX, h + shiftY, -d/2 + shiftZ);
vertex(w + shiftX, h + shiftY, d + shiftZ);
vertex(-w/2 + shiftX, h + shiftY, d + shiftZ);
endShape();

}
}

PROCESSING LANGUAGE API

717

A

617xAppA.qxd 4/26/07 10:57 AM Page 717

Figure A-13. Transform Example 2 sketch

Lights, Camera
This is a very cool part of the API, but it is also pretty complex. Using the near 30 functions
in this section isn’t all that difficult, but understanding what’s happening underneath the
surface, and ultimately being able to control stuff, is the complex part. There are many
sophisticated concepts built into a 3D renderer, including a virtual camera, light models,
surface/material properties, and matrix transformations, just to name a few. I taught 3D
modeling and animation for a number of years prior to delving into the programmatic side
of 3D, and I still find this stuff complicated and very challenging. If you are totally new
to 3D (besides experimenting with Processing’s functions), I also recommend exploring
some 3D modeling and animation tools, such as LightWave, Maya, 3ds Max, or CINEMA 4D.

The Lights, Camera section is divided into four subsections:

Lights

Camera

Coordinates

Material Properties

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

718

617xAppA.qxd 4/26/07 10:57 AM Page 718

Lights

The Lights section includes functions for controlling subtle, yet very important, aspects of
3D rendering. In general, lighting in 3D is modeled on the real world and the concept of
placing real lights in a space. The virtual camera is a similar such construct. Of course, in
Processing, all the lights are virtual, and really just a bunch of pixel color calculations. That
being said, just as in the real world, virtual lights can have direction, falloff (how far and
intensely they illuminate), color, cone angles (in the case of spotlights), and overall spatial
illumination (in the case of ambient light). Lighting is one of the key research areas in 3D,
and has an enormous impact on the overall quality of rendering.

Camera

Camera functions control the virtual camera that you view the virtual world through. This
might sound like an odd concept if you haven’t played with any 3D applications. A “real”
3D projection is impossible on a flat 2D monitor, so ultimately all the 3D spatial calcula-
tions need to be converted, or projected, back to the 2D Cartesian system. This translation
is one of the aspects that makes 3D complicated. During this geometric flattening (which
usually happens in real time), different algorithms can be applied that control how we
view the implied 3D space. For example, one of the most common approaches is to try to
simulate the effects of perspective, similar to how we, with our binocular vision, experi-
ence the real world.

Based on the rules of perspective, objects get smaller as they go back in space, and in a
one-point perspective system, lines going into the distance converge. When objects get
close to us and appear very large, distortions such as a fish-eye effect can occur. We can
easily simulate these types of effects in 3D—that is, with a lot of math. Conversely, we can
also create a more synthetic, or orthogonal, projection, in which there is no perspective.
This is quite useful for precisely modeling geometry, where you might need to work with a
set of undistorted 2D projections—for example, in an engineering application. Perspective
looks good, but it is often hard to know precisely where you are (actually, where the cur-
sor is) when working in this mode.

Virtual cameras also utilize a viewing volume and clipping planes that specify minimum
and maximum values for the x-, y-, and z-axes. Normally, only stuff within the camera’s
viewing volume, called the frustum, can be seen. The boundaries of the frustum are called
the clipping planes. If the clipping planes are not set correctly, imagery can disappear and
appear unexpectedly. However, without any clipping, geometry not visible within the cam-
era’s view can get rendered, which is obviously a waste of memory. Finally, as the virtual
camera is not bound by the physics of the real world, it has the ability to produce highly
distorted and strange effects. This can be an interesting thing to experiment with, but also
a potential source of frustration—especially when you don’t want it to happen (or can’t
track down the problem).

Coordinates

The Coordinates section includes six (conceptually) advanced functions that return coordi-
nate values. The six functions are modelZ(), modelX(), modelY(), screenZ(), screenX(),

PROCESSING LANGUAGE API

719

A

617xAppA.qxd 4/26/07 10:57 AM Page 719

and screenY(). The model functions return the 3D coordinates in model space, which
means the coordinate values after they’ve been transformed (rotated, scaled, and/or
moved), but before they’re projected to the screen. In contrast, the screen functions
return 3D coordinates in relation to screen space. If you’ve never worked in 3D, this may
sound pretty confusing. Remember, computer-generated 3D simulates space, as every-
thing really lives on the 2D screen surface. To simulate real space, geometry must be
shifted around to give the illusion of perspective, depth layering, and so forth. The actual
3D coordinate geometry we generate ultimately has to be mapped to the space of our 2D
screens, taking into account any perspective calculations. This concept is most abstract in
reference to the z-axis, which doesn’t really exist at all on the screen. Yet, when we work
in 3D, geometry is calculated at specific locations on this illusory axis. To visualize the con-
cept of screen coordinates vs. model coordinates, think about the classic one-point per-
spective image of railroad tracks receding into the distance to a point. In reality, of course,
the tracks remain parallel and never actually converge—which you can think of as their
model coordinates (the actual geometry). But visually, the receding tracks are no longer
parallel, and these illusory coordinates can be thought of as their screen coordinates.

Material Properties

The Material Properties section includes four functions:

shininess()

specular()

ambient()

emissive()

These functions control how object surfaces interact with the light in the scene. For exam-
ple, glossy and reflective surfaces have concentrated areas of light, sometimes referred to
as hotspots; think about the small, intense light spots on the surface of an eyeball, or how
light reflects off of a highly polished piece of chrome. This light phenomenon is referred
to as specularity. The specular() function controls the color of these hotspots.

Ambient light, on the other hand, refers to more general and overall lighting—think about
the light in a dense forest or in a room without a direct light source. The ambient() func-
tion controls the color of the ambient light. Like the other rendering attribute functions,
the material functions affect the rendering state as well as the light functions. Once a
material function (e.g., shininess()) is called, its influence will be felt by all future sur-
faces created in the scene, until another explicit call to the material function (using differ-
ent rendering attributes) is made.

To give an example that involves the Lights, Camera section of the API, I developed a 3D
flythrough sketch that utilizes a lot of the features I’ve been discussing. (This is another
complex sketch that I put in more for inspiration and pleasure than your edification—but
it is cool, and will still be useful for you to take apart and experiment with.)

The example (shown in Figure A-14) utilizes two images that need to be put within the
sketch’s data directory. The images need to be named ground2.jpg and metal2.jpg, and I
recommend making them around 400 by 400 pixels. If the example runs slowly on your

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

720

617xAppA.qxd 4/26/07 10:57 AM Page 720

system, you can try lowering the resolution of the images (in an image editing program),
lowering the value of the bldgCount variable in the sketch, or buying yourself a new com-
puter. If you go with option 3, I’ll take a new Mac laptop while you’re at it.

/*
FlyThrough
Ira Greenberg, November 8, 2005
*/

/*Need to import opengl library to use OPENGL
rendering mode. You can also try running
in P3D mode*/
import processing.opengl.*;

// images used for mapping
PImage ground, brick;

// camera move variables
float bank=2;
float bankAngle;
float bankSpeed = .7;
float vert = -600;
float zoom;
float vertSpeed = 1.5;
float heading;
float headingSpeed = -.75;
float pitch;
float pan;
float zoomSpeed = 1.6;

//structures
int bldgCount = 300;
BLDG[]bldgs = new BLDG[bldgCount];
BLDG plane;

void setup(){
size(600, 400, OPENGL);
noStroke();
textureMode(NORMALIZED);

//load image maps
ground = loadImage("ground2.jpg");
brick = loadImage("metal2.jpg");

//set up ground plane
plane = new BLDG(width*10, 0, width*10, 0, 60, 0, ground);

// instantiate bldgs
for (int i=0; i<bldgCount; i++){

PROCESSING LANGUAGE API

721

A

617xAppA.qxd 4/26/07 10:57 AM Page 721

bldgs[i] = new BLDG(10+random(30), random(100, 840), 10+random(50),
random(-width*2, width*2), 60, random(-width*3, width*2), brick);

}
}

void draw(){
background(4, 4, 20);
// set camera and lights
camera(width/2.0+pan, height/2+vert, ((height/2.0+1500-zoom) /
tan(PI*60 / 360.0)), width/2.0+pan, height/2+vert, -8000, 0, 1, 0);
fill(200);
//set up some different colored lights
ambientLight(90, 65, 52);
pointLight(51, 102, 255, width/3, height/2, 100);
pointLight(200, 40, 60, width/1.5, height/2, -150);
pointLight(20, 220, 25, -200, -100, 300);
pointLight(110, 55, 40, width*4, height/2, 1000);

//draw ground plane
pushMatrix();
translate(width/2, height/2, -20);
rotateY(radians(heading));
rotateX(radians(pitch));
rotateZ(radians(bank));
plane.drawBLDG();
// draw buildings
for (int i=0; i<bldgCount; i++){
bldgs[i].drawBLDG();

}
popMatrix();

//moon
spotLight(255, 255, 10, 80, -300, -400, -1, 0, 0, PI/1.4, 2);
pushMatrix();
translate(-600, -1500, -100);
fill(75, 185, 40, 255);
sphere(75);
popMatrix();

//planet
pointLight(20, 220, 25, 2000, -4000, -2000);
pushMatrix();
translate(2500, -4700, -2200);
fill(100, 100, 180, 55);
sphere(3200);
popMatrix();

//camera moves
bank = sin(radians(bankAngle))*12;

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

722

617xAppA.qxd 4/26/07 10:57 AM Page 722

bankAngle+=bankSpeed;
vert = -600 +zoom*.24;
zoom+=zoomSpeed;
if (zoom>2200 || zoom<-10) {
zoomSpeed*=-1;

}
heading+=headingSpeed;

}
//simple BLDG class
class BLDG {
//properties
float w, h, d;
float shiftX, shiftY, shiftZ;
PImage img;

//constructor
BLDG(float w, float h, float d, float shiftX,
float shiftY, float shiftZ, PImage img){
this.w = w;
this.h = h;
this.d = d;
this.shiftX = shiftX;
this.shiftY = shiftY;
this.shiftZ = shiftZ;
this.img = img;

}

//main bldg drawing method
void drawBLDG(){
beginShape(QUADS);
texture(img);
//front wall
vertex(-w/2 + shiftX, -h/2 + shiftY, -d/2 + shiftZ, 0, 0);
vertex(w + shiftX, -h/2 + shiftY, -d/2 + shiftZ, 1, 0);
vertex(w + shiftX, shiftY, -d/2 + shiftZ, 1, 1);
vertex(-w/2 + shiftX, shiftY, -d/2 + shiftZ, 0, 1);

//back wall
vertex(-w/2 + shiftX, -h/2 + shiftY, d + shiftZ, 0, 0);
vertex(w + shiftX, -h/2 + shiftY, d + shiftZ, 1, 0);
vertex(w + shiftX, shiftY, d + shiftZ, 1, 1);
vertex(-w/2 + shiftX, shiftY, d + shiftZ, 0, 1);

//left wall
vertex(-w/2 + shiftX, -h/2 + shiftY, -d/2 + shiftZ, 0, 0);
vertex(-w/2 + shiftX, -h/2 + shiftY, d + shiftZ, 1, 0);
vertex(-w/2 + shiftX, shiftY, d + shiftZ, 1, 1);
vertex(-w/2 + shiftX, shiftY, -d/2 + shiftZ, 0, 1);

PROCESSING LANGUAGE API

723

A

617xAppA.qxd 4/26/07 10:57 AM Page 723

//right wall
vertex(w + shiftX, -h/2 + shiftY, -d/2 + shiftZ, 0, 0);
vertex(w + shiftX, -h/2 + shiftY, d + shiftZ, 1, 0);
vertex(w + shiftX, shiftY, d + shiftZ, 1, 1);
vertex(w + shiftX, shiftY, -d/2 + shiftZ, 0, 1);

//roof
vertex(-w/2 + shiftX, -h/2 + shiftY, -d/2 + shiftZ, 0, 0);
vertex(w + shiftX, -h/2 + shiftY, -d/2 + shiftZ, 1, 0);
vertex(w + shiftX, -h/2 + shiftY, d + shiftZ, 1, 1);
vertex(-w/2 + shiftX, -h/2 + shiftY, d + shiftZ, 0, 1);
endShape();

}
}

Figure A-14. FlyThrough sketch

Color
The Color section is divided into two subsections: Setting and Creating & Reading. Although
it’s a relatively small section of the API, it’s a very significant one. For the most part, the
Color section is pretty straightforward, with simple background(), fill(), and stroke()
functions that take arguments to directly change color. However, there are two issues that
may be new or challenging to newbie coders, which I’ll discuss in the following respective
sections.

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

724

617xAppA.qxd 4/26/07 10:57 AM Page 724

Setting

The Setting section includes the basic functions just discussed. One issue that may be new
to you is the concept of a rendering state or graphics context. Graphics application soft-
ware can make it seem that color is generated on a per-shape basis. If you need a blue rec-
tangle, you grab the paint bucket tool, select a blue color, and click in your shape (or some
similar procedure). What a tool like the paint bucket conceals is how color is implemented
as a state change in a programming language like Java and Processing. As a comparison,
I’ve included the code for a simple Java graphics application followed by its Processing
equivalent. Both programs generate the same output, except that the Java program does it
in 19 lines (not including comments or skipped lines), while Processing does it in 5. Do not
try to run the Java application from within Processing; it will not work. (As an aside, for the
few experienced Java readers out there—and this comes from Ben Fry directly—classes
from the java.awt.* and javax.swing.* packages should not be used within Processing,
as they will generate inconsistent results.) What the Java vs. Processing code comparison
should show you is how much stuff Processing handles under the hood, or encapsulates,
making our coding lives happier. Here’s the Java version:

import java.awt.*;
import java.applet.*;

public class SimpleJavaExample extends Frame {
//constructor

public SimpleJavaExample(){
setSize(200, 200);
setBackground(Color.white);
// this program still requires window closing behavior

}
//main method
public static void main(String[]args){
new SimpleJavaExample().setVisible(true);

}
//overrides default paint method
public void paint(Graphics g){
g.setColor(new Color(0, 0, 200));
g.fillRect(25, 50, 50, 50);
g.fillOval(125, 50, 50, 50);
g.setColor(new Color(0, 0, 0));
g.drawRect(25, 50, 50, 50);
g.drawOval(125, 50, 50, 50);

}
}

In Processing, to get the same output, you can just write the following:

size(200, 200);
background(255);
fill(0, 0, 200);
rect(25, 25, 50, 50);
ellipse(150, 50, 50, 50);

PROCESSING LANGUAGE API

725

A

617xAppA.qxd 4/26/07 10:57 AM Page 725

Color, rather than being generated on a per-object basis, is part of an overall rendering
state, or graphics context. In Processing and Java, this graphics context is controlled by a
Graphics object, which sets properties of the rendering state, such as color and font, as
well as a few others. Graphics is the base class in Java that encapsulates this process,
allowing you to write relatively simple code, as in the Java example. Processing, as you’d
expect, encapsulates this stuff even further, removing the need for explicitly overriding the
paint() method, as in the Java example. The paint() method is the method that a Java
component (a component can be thought of as a panel—like the display window) calls
when it needs to paint something. What I’m actually doing in the Java example is redefin-
ing the paint() method for my component, so when paint() is called normally by the
component, which happens automatically when the program starts, it will use my paint
method, instead of the component’s default one, to do what I want it to do—in this case,
paint a simple blue rectangle and circle on the screen. This process of using one method’s
implementation to replace another is referred to as method overriding, and is a funda-
mental part of OOP.

If you run the Processing code, you’ll notice that the sketch includes two blue shapes. This
is because the state of the rendering context hasn’t been changed between the two calls
to the drawing functions. Thus, the fill is not really about those two shapes, but about the
current rendering state of the program at that point. Until you change the rendering state
color with another fill() command call, every new filled shape will be blue. I’ll shut up
about this now, but if you want to learn more about the Java Graphics class from Sun,
check out http://java.sun.com/j2se/1.4.2/docs/api/index.html. And here’s a link to
some more info about how painting works in Java: http://java.sun.com/products/
jfc/tsc/articles/painting/.

The next sketch is another example of the Color section’s Setting functions in action (see
Figure A-15). One of the functions, colorMode(), deserves a little clarification. Color can
be specified as RGB (red, green, blue—the default mode) or HSB (hue, saturation, bright-
ness). In addition, you can set the mathematical range to describe the color, or even each
part of the color. In my two calls to colorMode() in the example, the first call,
colorMode(RGB, 1.0), sets the mode to RGB and specifies the range of values to be set for
each component between 0.0 and 1.0. Thus, (0, 0, 0) would equal black, and (.5, .5, 0)
would equal yellow. The second call is pretty odd, and I only did it as an extreme example
of what is possible. colorMode(HSB, 100, 10, .1) sets the mode to HSB. It specifies the
hue value range from 0 to 100 (which is what you typically see with HSB values—0 to 100
percent), the saturation range from 0 to 10, and the brightness range from 0 to .1 (which
is pretty odd, indeed). However, it all works, and may even impress your friends (probably
not). Wikipedia has an interesting discussion on HSB (sometimes also referred to as HSV)
at http://en.wikipedia.org/wiki/HSB_color_space.

/*
Simple Color Example
Ira Greenberg, November 10, 2005
*/
size(200, 200);
background(200, 50, 40);
stroke(45);
fill(200, 200, 0);
rect(25, 50, 50, 50);

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

726

617xAppA.qxd 4/26/07 10:57 AM Page 726

http://java.sun.com/j2se/1.4.2/docs/api/index.html
http://java.sun.com/products/
http://en.wikipedia.org/wiki/HSB_color_space

ellipseMode(CORNER);
fill(200, 200, 0, 125);
stroke(175, 0, 255);
ellipse(125, 50, 50, 50);

noStroke();
colorMode(RGB, 1.0);
fill(0, .85, .2);
triangle(25, 175, 75, 175, 50, 125);

colorMode(HSB, 100, 10, .1);
fill(50, 9, .08);
beginShape();
vertex(125, 125);
vertex(120, 145);
vertex(140, 160);
vertex(145, 170);
vertex(175, 175);
vertex(182, 150);
vertex(155, 138);
vertex(145, 120);
endShape(CLOSE);

Figure A-15. Simple Color Example sketch

PROCESSING LANGUAGE API

727

A

617xAppA.qxd 4/26/07 10:57 AM Page 727

Creating & Reading

As discussed previously, color is specified as three components, for red, green, and blue
(RGB). (You can also specify a fourth component, alpha, for controlling transparency.)
Most typically on the computer, color is referred to as a hexadecimal value. The
hexadecimal system uses 16 as the base, instead of 10, as in the more common decimal
system. To account for 16 unique numbers, the letters A, B, C, D, E, and F are used along
with the numbers 0 through 9. Also remember that 0 counts as a digit, so F is equal to 15,
while B equals 11. Numbers larger than 15 are created by using additional places, just as in
the decimal system. However, the values are raised by 16 instead of 10. So, the number FF
would be equal to 15 * 16 + 15, which equals 255, and the number AFB would equal (10 *
16 * 16) + (15 * 16) + 11, which equals 2,811. To allow the computer to know that you
want it to perform calculations using base 16 instead of base 10, you write 0x before the
value. So, AFB would be specified as 0xAFB.

Try running this one-line sketch, which should output 2811:

println(0xAFB);

In Processing, you can also use also the # symbol to specify a color value, as in the follow-
ing line:

color orange = #FF7700;

Each color is specified as a six-digit hexadecimal value, where the first two numbers spec-
ify the red component, the next two the green, and the final two the blue. For example,
the colors red, green, and blue are specified as #FF0000, #00FF00, and #0000FF. Of course,
you can any put legal hexadecimal characters (0 through 9 and A through F) in any of the
six slots to create up to 16,777,215 different colors.

The seven functions red(), brightness(), blue(), saturation(), green(), hue(), and
alpha() extract specific values out of a color. For example, if I want the blue component
of the color 0xFFE56D, I can use this simple code:

color c = 0xFFE56D;
print(blue(c));

I can use the exact same structure for most of the functions within this section. Here’s
code to extract the saturation of a color:

color c = 0xFFE56D;
print(saturation(c));

Curiously, if you look at what the API has to say about the red() function, there’s a myste-
rious blurb in the Description section: “The red() function is easy to use and understand,
but is slower than another technique. To achieve the same results when working in
colorMode(RGB, 255), but with greater speed, use the >> (right shift) operator with a bit
mask” (see http://processing.org/reference/red_.html).

Right shift operator, bit mask—what is this stuff? Unfortunately, there’s not much else to
go on in the API. It seems there may be some pretty scary stuff lurking beneath the surface

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

728

617xAppA.qxd 4/26/07 10:57 AM Page 728

http://processing.org/reference/red_.html

of this part of the API. These mysterious terms relate to bitwise operations. Bitwise opera-
tions are low-level operations useful for squeezing some extra performance out of a
sketch, but they’re also a little (actually more than a little) confusing to use. I cover bitwise
operations further in Appendix B.

Processing has a convenient data type called color that encapsulates the 32 bits of infor-
mation making up a color (8 bits for alpha, 8 bits for red, 8 bits for green, and 8 bits for
blue). You can declare a variable of type color using the following syntax:

color c

In the Image section of the API, which I’ll look at next, is a function named get(). get()
returns a value as a color data type based on a specific pixel’s color. Another way to cre-
ate a color from scratch is to use the color() function. (I realize it gets confusing when a
number of different commands/data types share common names). Finally, you can create
a color by directly assigning a hexadecimal value to a color variable. Following are three
statements that generate a color three different ways: through the use of get(), through
the use of the color() function, and through direct assignment using hexadecimal nota-
tion. I also include a fourth direct assignment statement that includes an alpha component
in the hexadecimal notation.

color c1 = get(50, 50);
color c2 = color(200, 100, 50);
color c3 = #FF33DD;
// this last statement explicitly specifies alpha and RGB values
color c4 = 0xFFFF33DD;

The Creating & Reading subsection also includes two color-blending functions:
blendColor() and lerpColor(). blendColor(), the more complex of the two functions,
utilizes a blending mode, declared as an argument passed to the function, along with the
two colors to blend. lerpColor() uses a simpler numeric ratio for blending two colors.
Here’s an example that uses both functions, including blendColor()’s different blending
modes (see Figure A-16):

/* blendColor and lerpColor
Ira Greenberg, October 12, 2006 */

size(210, 490);
background(100);
noStroke();
smooth();
color c1 = color(200, 10, 200);
color c2 = color(200, 200, 10);

//blend
color c_add = blendColor(c1, c2, ADD);
color c_subtract = blendColor(c1, c2, SUBTRACT);
color c_darkest = blendColor(c1, c2, DARKEST);
color c_lightest = blendColor(c1, c2, LIGHTEST);

PROCESSING LANGUAGE API

729

A

617xAppA.qxd 4/26/07 10:57 AM Page 729

//lerp
color c_lerp_25 = lerpColor(c1, c2, .25);
color c_lerp_5 = lerpColor(c1, c2, .5);
color c_lerp_75 = lerpColor(c1, c2, .75);

color[] cols = {
c_add, c_subtract, c_darkest,
c_lightest, c_lerp_25, c_lerp_5, c_lerp_75

};

for (int i=0; i<cols.length; i++){
fill(c1);
ellipse(35, 35+70*i, 70, 70);
fill(cols[i]);
ellipse(105, 35+70*i, 70, 70);
fill(c2);
ellipse(175, 35+70*i, 70, 70);

}

Figure A-16. BlendColor and LerpColor sketch

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

730

617xAppA.qxd 4/26/07 10:57 AM Page 730

Image
The Image section relates very directly to the information I covered in the Color section, as
an image after all is a just a collection of colored pixels. In general, the image functions
allow you to load and alter images. In Java, loading images and altering them is real work
(especially down at the pixel level). Processing, as usual, simplifies this entire process, while
still giving you enough low-level access to act directly upon the pixel data. Processing also
includes its own image data type, called PImage, that encapsulates many of the features,
which makes working with images in Processing so easy. Yet, for all its ease of use,
Processing’s imaging capabilities are surprisingly powerful.

The Image section of the API is divided up into essentially two categories, with the PImage
data type and createImage() function standing alone. The two categories are Loading &
Displaying and Pixels. Be aware that PImage includes a bunch of methods with the same
names as some of the functions in the Pixels section. For instance, following is an example
that uses the PImage method get() and the function get() in the same sketch. Even
though these commands are both called get(), they are fundamentally different. The
get() method requires a PImage object to call it—as in myImage.get()—while the get()
function works all by itself. The subtlety of this distinction requires an understanding of
OOP, which is covered in Chapter 8.

You’ll need an image named portrait.jpg in the data directory of this sketch to run this
example. I suggest making the image 400 by 400 pixels.

size(400, 400);
PImage img = loadImage("portrait.jpg");
image(img, 0, 0);
println("image method before = " + img.get(50, 50));
println("function before = " + get(50, 50));
image(img, -140, -140);
println("image method after = " + img.get(50, 50));
println("function after = " + get(50, 50));

Here’s the output generated by running the sketch:

image method before = -263171
function before = -263171
image method after = -263171
function after = -5686717

Your values will be different, since your image will be different than mine—but notice how
the output changes for the function, but not for the method. What’s happening is that the
PImage get() method references the image data stored in the PImage object independ-
ently from its display on the screen, while the get() function returns pixel values at a spe-
cific point on the screen. Since I drew the image at two different places on the screen, the
two get() function calls give two different values. However, the two get() method calls
refer to the same pixel in the stored PImage object.

PROCESSING LANGUAGE API

731

A

617xAppA.qxd 4/26/07 10:57 AM Page 731

Pixels

The Pixels section includes functions that operate at the pixel level. In addition to func-
tions that provide access to the entire pixel array of the display, there are two simple yet
powerful functions for blending and filtering image data that provide programmatically
controlled Photoshop-like capabilities. If you don’t want to use these cool included func-
tions for doing things like blurs, posterization, image masking, and compositing, you can
easily spin your own, as well; just grab the image pixels using the loadPixels() function,
do some bit shifting, and then just call updatePixels() to rewrite the pixel data to the
screen. In addition to using the get() function or the PImage get() method to access the
color of a pixel, it is also possible (and faster) to access the pixels[] array directly. Similar
to the two get() commands just discussed, there are two pixels[] arrays in Processing—
one represents the contents of the display window and the other is a property within the
PImage class. Similar to the get() method, this pixels[] array property requires a PImage
object to be accessed (e.g., myImage.pixels), and the array data only relates to the PImage
object, independent of the display window. Here’s an example that uses both get() com-
mands and pixels[] arrays. This example also uses the portrait.jpg image, which should
be in the sketch’s data directory.

size(400, 400);
//create a Pimage and load an external image
PImage img = loadImage("portrait.jpg");
//PImage method get() works even without drawing image to the screen
println("PImage get() method = " + img.get(50, 50));
//PImage pixels[] array may also be accessed without drawing ➥

the image to the screen
println("PImage pixel array = " + img.pixels[50*width+50]);
//draw the image to the screen
image(img, 0, 0);
// display window get() function works without calling loadPixels();
println("get() function = " + get(50, 50));
loadPixels();
// loadPixels() must be called prior to accessing display window ➥

pixels[] array directly
println("pixel array = " + pixels[50*width+50]);

It is confusing that these two arrays have the same name but function differently. As I
mentioned, you can access the pixel values of a PImage object directly, even prior to draw-
ing the image to the screen, using object-oriented dot syntax, as in myImage.pixels.
However, to access the pixel values of the display window, you must first call
loadPixels(), as I did in the preceding example. With regard to the two get() com-
mands, neither command requires loadPixels() to be called prior to being used. Once
loadImage() has been called, the PImage get() method can access pixel values within the
image. However, to access the image pixel value using the display window get() function,
you need to draw the image to the screen using the image() command.

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

732

617xAppA.qxd 4/26/07 10:57 AM Page 732

Loading & Displaying

The Loading & Displaying section includes two functions that make working with images in
Processing a joy: loadImage() and image(). loadImage("imageName") expects a single
String argument, which should be the name of the file you want to load, residing in the
sketch’s data directory. It is critical that you first load your image files into Processing by
selecting Add File from the Sketch menu. When you select Add File, your loaded image will
be placed in a data subdirectory, within the current sketch main directory. If you don’t
already have a data directory, it will be created for you. If you’ve successfully run the last
few examples, you already know how to do this.

It is recommended that you do all your image loading in the setup() structure, not in
draw(). After you load an image using loadImage(), you won’t see it until you render it to
the screen. This is another one of those things that’s not so simple to do in Java, but
incredibly simple to achieve in Processing—just call image(). This function can take a
bunch of arguments, including a PImage object reference and the x, y, width, and height
properties of the image.

This subsection also includes basic tinting functions and a simple utility function called
imageMode() that gives you two options for specifying image measurements in the display
window when you call the image() function. The default CORNER argument option allows
you to specify x, y, width, and height properties, while the CORNERS argument makes the
third and fourth measurement arguments (that were width and height) specify the posi-
tion of the bottom-right point of the image. In both cases, when passing arguments that
control width and height, you can scale and load the images simultaneously. Be aware that
you can scale the images both proportionally and non-proportionally based on the ratio of
your arguments.

As an example, I created a simple progressive tiling sketch that loads an image, and then
continuously shrinks the image as it tiles it through the display window (see Figure A-17).
Be aware that there is the possibility of generating an infinite loop with this example—one
of Zeno’s paradoxes, in which a float value keeps approaching a discrete value, but never
reaches it. You can read about Zeno’s paradoxes at http://en.wikipedia.org/wiki/
Zeno%27s_paradox. If you test this, please remember to first add your image file into the
data directory using the Add File command. (This sketch uses the image vail.jpg.)

/*
Progressive Tile
Ira Greenberg, November 12, 2005
*/

size(480, 480);
background(255);
PImage img = loadImage("vail.jpg");
float x = 0, y =0;
float w = 240*.5;
float h = w;
for (int i=0; i<height; i+=h){
for (int j=0; j<width; j+=w){
image(img, j, i, w, h);

PROCESSING LANGUAGE API

733

A

617xAppA.qxd 4/26/07 10:57 AM Page 733

http://en.wikipedia.org/wiki/

}
// avoid infinite loop
// Zeno's paradox waiting to happen
if (w>5){
w*=.81;
h*=.81;

}
}

Figure A-17. Progressive Tile sketch

Rendering
This section includes the PGraphics data type and the createGraphics() function.
Together, these elements provide low-level access into Processing’s graphics and rendering
context—sort of the meat (or tempeh, for vegan readers) and potatoes of the Processing
API. PGraphics is one of Processing’s core, base classes, and it has a rich set of properties
and methods, which you can learn more about at http://dev.processing.org/
reference/core/javadoc/processing/core/PGraphics.html. One of the main uses for

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

734

617xAppA.qxd 4/26/07 10:57 AM Page 734

http://dev.processing.org/

these elements is the creation of an off-screen image, also sometimes referred to as an
image buffer. Beyond drawing to the display window, you can also use the
createGraphics() function to generate a PGraphics object that you can draw directly
into. You can then output this off-screen image to the screen, or even save it to a file.

The next example uses these two structures to generate an off-screen image that will
eventually be turned into a tiled background (see Figure A-18). The sketch allows a user to
draw within the display window. The drawing is simultaneously output to the screen (using
Processing’s built-in graphics context) and written to an off-screen buffer (using a
PGraphics object created with the createGraphics() function). When the user releases
the mouse, the off-screen image is scaled, positioned, and drawn to the screen as a tiled
fill pattern. Notice in the sketch code that the two PGraphics methods beginDraw() and
endDraw() are used, in a sense, as entry and exit portals for drawing to the off-screen
PGraphics object.

/* Tile Designer
Ira Greenberg, October 11, 2006
draw to off-screen buffer
to create a tiled background */

PGraphics p;
int tiles = 10;
float strokeWt = 2.75;
float scaleFactor;
boolean isRecordable = false;

void setup() {
size(400, 400);
background(0);
smooth();
float tileWidth = width/tiles;
scaleFactor = tileWidth/width;

}

void draw() {
// write to off-screen buffer
if (isRecordable){
p.line(pmouseX, pmouseY, mouseX, mouseY);

}
// preview drawing of tile
if (mousePressed){
stroke(255);
line(pmouseX, pmouseY, mouseX, mouseY);

}
}

void mousePressed(){
p = createGraphics(width, height, JAVA2D);
noStroke();

PROCESSING LANGUAGE API

735

A

617xAppA.qxd 4/26/07 10:57 AM Page 735

fill(0);
rect(0, 0, width, height);
isRecordable = true;
p.beginDraw();
p.background(0);
p.stroke(255);
p.strokeWeight(strokeWt/scaleFactor);

}

void mouseReleased(){
p.endDraw();
isRecordable = false;
// scale tile
scale(scaleFactor);
for (int i=0; i<tiles; i++){
for (int j=0; j<tiles; j++){
// draw off-screen image
image(p, i*width, j*height);

}
}

}

Figure A-18. Tile Designer sketch

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

736

617xAppA.qxd 4/26/07 10:57 AM Page 736

Typography
Processing utilizes multiple approaches to rendering typography in your sketches, includ-
ing both raster- and vector-based solutions. Historically for graphic designers, typography
on the Web has required a cost-benefit analysis between using common but ubiquitous
fonts (i.e., native fonts, which are likely to be installed on most users’ systems) and using
more involved, memory-intensive, or unpredictable solutions. Processing sketches are
widely distributed as applets on the Web, so there are some similar trade-offs when using
typography in your sketches.

The Typography section is divided into four sections:

PFont

Loading & Displaying

Attributes

Metrics

PFont

PFont is Processing’s custom font data type. When using type in Processing, you first need
to declare a PFont object. This object is then assigned a reference to a specific font. For
example, assuming you have a font named Verdana-24.vlw in the data directory of your
current sketch, you can render type in Processing using the following:

PFont f = loadFont("Verdana-24.vlw");
textFont(f);
text("Hello", 19, 55);

Processing’s VLW format is a custom bitmapped font format, which relies on a brute-force
approach to incorporating typography into sketches—characters are described as images,
rather than with a scalable vector format. The benefit of this arrangement is that fonts not
installed on a user’s system can still be rendered in Processing, which would not be the
case if Processing depended only upon installed native fonts.

Although the VLW format solves the missing typeface problem, it is not without its own
challenges. When a typeface is converted to the VLW format, it should be specified at the
exact point size it will be rendered at or it may not render clearly. This means that if you
use the same font at varying sizes throughout your sketch, you’ll want to create a number
of separate VLW fonts for the different sizes (even though it’s the same font). Sketch per-
formance is also negatively impacted when the VLW fonts are not created at the specified
rendering sizes in your sketch.

Before you completely write off typography in Processing, you should note that it’s possi-
ble to use vector-based typography in Processing as well. You can ask Processing to use
native (scalable vector) fonts, assuming the user has the specific font installed on their sys-
tem, by including the following command in your sketch:

hint(ENABLE_NATIVE_FONTS);

PROCESSING LANGUAGE API

737

A

617xAppA.qxd 4/26/07 10:57 AM Page 737

Processing can also render TTF (TrueType) and OTF (OpenType) font vector formats, as
long as the font is installed in your sketch’s data directory. Thus, it is possible to distribute
your sketch on the Web or directly to another user with the specific TTF or OTF font
included in the sketch’s data directory. However, there are legal/copyright issues involved
in distributing fonts like this, as the Processing reference states: “Only fonts that can legally
be distributed should be included with a sketch” (see http://processing.org/
reference/createFont_.html).

Finally, type in Processing can also be rendered in 3D space, although there is some qual-
ity loss for this very cool capability. If quality is critical, use the textMode(SCREEN) com-
mand, which forces the type rendering to the front of the display window, increasing
rendering quality.

Loading & Displaying

The Loading & Displaying subsection has four main functions that allow fonts to be dis-
played in Processing, as follows (please note that the Processing language reference lists
text() first, but I’ll discuss it last):

text()

createFont()

loadFont()

textFont()

createFont() dynamically converts a font installed on your computer to the VLW format
used by Processing. This function works similarly to the Create Font command in the Tools
menu. However, the createFont() function doesn’t write the converted VLW font to disk
the way the Create Font command does. While the createFont() function is listed in the
Processing online reference as an advanced feature offering precise control, the reference
states that “On most occasions you should create fonts through selecting ‘Create Font . . .’
from the Tools menu.” For more info on this advanced feature, please refer to
http://processing.org/reference/createFont_.html.

To load existing VLW fonts installed in the data directory, use the loadFont() function,
which expects a string of the full font name. No path is necessary if the VLW font is
installed at the root level of the data directory. textFont() allows you to set the current
font, as long as it’s been loaded with loadFont(). Finally, the text() function is what you
call to actually add some type to the screen. text() has numerous forms with regard to
arguments you can pass it, including x, y, z, width, and height.

The following typography example I created rotates two text strings in 3D space (see
Figure A-19). I created one of the fonts dynamically and loaded the other out of the
sketch’s data directory. In creating the font dynamically, I needed to make sure that I used
a font installed on my computer (I specified Helvetica). If you’re not sure what fonts you
currently have installed, run the following line of code in Processing:

println(PFont.list());

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

738

617xAppA.qxd 4/26/07 10:57 AM Page 738

http://processing.org/
http://processing.org/reference/createFont_.html

This will output a list of all the fonts currently installed on your computer. In the line of the
sketch that reads font2 = createFont("Helvetica", 32);, you can replace Helvetica
with any font you have installed.

In addition to createFont(), I also used the loadFont() command:

font = loadFont("Garamond-32.vlw");

Before I could use loadFont(), I needed to first use the CreateFont command from the
Tools menu. I selected Garamond and a size of 32, and left the smooth box checked and
the All Characters box unchecked. If you don’t have the font Garamond, pick another font,
but be sure to change the name in the following sketch. The Tools ➤ CreateFont command
automatically creates and installs the VLW font in your current sketch’s data directory.

/*
Orbiting Text
Ira Greenberg, November 14, 2005
*/
PFont font;
String s = "Spinning Word";
PFont font2;
String s2 = "flipping Word";
float ang = 0, ang2 =0;
void setup(){
size(400, 400, P3D);
//load text from data directory
font = loadFont("Garamond-32.vlw");
//dynamically create text and specify size as the second argument
font2 = createFont("Helvetica", 32);

}

//rotates text in 3D space
void draw(){
background(255);
translate(width/2, height/2, 50);
pushMatrix();
rotateY(radians(ang));
textFont(font, 32);
fill(45, 78, 28);
text(s, -textWidth(s)/2, 0, 100);
popMatrix();

pushMatrix();
rotateX(radians(ang2));
textFont(font2, 24);
fill(250, 125, 28);
text(s2, -textWidth(s2)/2, 0, 0);
popMatrix();
ang+=3;
ang2-=10;

}

PROCESSING LANGUAGE API

739

A

617xAppA.qxd 4/26/07 10:57 AM Page 739

Figure A-19. Orbiting Text sketch

Attributes

The Attributes subsection includes five functions, textMode(), textSize(), textAlign(),
textLeading(), and textWidth(), which respectively refer to model or screen mode (for
3D), font size, alignment (left, center, or right), leading (the distance between lines of
text), and a function for returning the width of a character or text string.

Metrics

The Metrics subsection includes two functions for returning the actual height of a line of
text. textDescent() returns the distance of any descending parts of the fonts below the
baseline, and textAscent() does the same for any parts above the baseline. Adding these
two values together gives you the total height of the line.

Math
This section is one of the largest in the API and perhaps the scariest one for creative
coders. However, you’ve used large parts of it in this book already, as math is (unavoidably)
the underlying language of coding. Also, many of the functions within this section are
actually designed to simplify the mathematical demands of programming. So, I’ll cruise
through most of this stuff pretty swiftly. The Math section is divided into the following five
subsections:

Operators

Bitwise Operators

Calculation

Trigonometry

Random

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

740

617xAppA.qxd 4/26/07 10:57 AM Page 740

“Operators” will hopefully sound pretty familiar by now. Operators are the basic math
symbols used to do mathematical operations. I’ve been using the most common four (+, -,
+, and /) throughout the book, so I’ll assume you know what these basic operators do. If
not, you can always refer to the “Operators” section of Chapter 3. These symbols can be
used in conjunction with = for assignment operations, as in speed+=.5. I also cover assign-
ment operations in detail in Chapter 3. % is a strange operator to many people, so it may
need a little more clarification. You might remember that % is called the modulus operator,
and it used to find the remainder of a division operation. For example, 5 % 3 = 2 and 6 %
2 = 0. In the first example, 2 is the remainder of the division; in the second expression,
there is no remainder, so it equals 0. Two other operators that may need a little further
clarification are the increment and decrement operators (++ and --). I’ve used these
throughout the book as well, so you are probably familiar with how they basically work.
What I haven’t covered are the pre and post options when using them. I’ve mostly been
using them on the right side of the operand, as in speed++, but it is perfectly valid to write
the statement as ++speed. However, there is a subtle difference in how these two forms
work. For example, in the following code snippets, the pre increment expression outputs a
7 and the post increment a 6. Why?

Here’s the pre increment code:

int val = 6;
print(++val); //outputs 7

And here’s the post increment version:

int val = 6;
print(val++); //outputs 6

The pre increment performs the incrementation before the print function returns a value,
and the post version does it afterward. If you run a second print statement on the variable,
as follows, you’ll see that it now says 7:

int val = 6;
println(val++); //outputs 6
print(val); //outputs 7

Bitwise Operators

Bitwise operators act at the bit level (down at the zeros and ones), and are especially use-
ful for efficiently manipulating the individual RGBA color components of pixels. The four
bitwise operators included in Processing are: >> (right shift), << (left shift), & (bitwise AND),
and | (bitwise OR). In addition, there are a few more bitwise operators in Java that you can
use in Processing but that are not covered within the Processing API. I cover bitwise oper-
ations in detail in Appendix B.

Calculation

The Calculation section includes 15 very handy functions. Some of the functions round val-
ues based on different rules. For example, ceil() always rounds up, floor() always

PROCESSING LANGUAGE API

741

A

617xAppA.qxd 4/26/07 10:57 AM Page 741

rounds down, and round() rounds the normal way—to whichever value is closer. There is
a function to calculate distance (dist()), square roots (sqrt()), maximums (max()), and
minimums (min()). Many of these functions can be considered convenience functions, in
the sense that it’s possible to use other existing code structures in Processing to derive
your own routines for these functions. That said, it really doesn’t make a whole lot of
sense to re-create perfectly fine (and very likely more efficient) existing code.

Trigonometry

Trigonometry rocks! I know this might sound like a shocking and absurd statement to
many of you (or you’ve already written me off as a major geek and have come to expect
it). Trig allows you to do very cool things with code that would be a major pain without it.
Some of these things include wave generation, firing projectiles/aiming, 2D and 3D rota-
tions, and any type of organic motion. I cover trig in Chapter 4, in the section entitled “The
Joy of Math,” as well as in Appendix B; and (in case you haven’t noticed), I’ve also been
using it in many of the code examples throughout the book.

The Trigonometry section includes nine functions: the basic three and their inverses (sin(),
cos(), tan(), asin(), acos(), and atan()); two useful utility functions (degrees() and
radians(), which convert between these different units of measure); and atan2(), a vari-
ation on atan(). Remember that trig functions expect angles in radians, not degrees.
Without the radians() function, you’d have to take all your angles, multiply them by pi,
and then divide by 180 to convert to radians; it’s much simpler to write radians(angle in
degrees). The atan2() function is really handy for aiming and shooting stuff on the
computer—two things my seven-year-old son can’t seem to get enough of (in spite of his
peacenik, granola-eating parents’ best intentions).

Random

The Random section includes five functions involved in random number generation. In
practically every piece of software art I create, I include some random processes.
Randomization brings an organic quality to the coding process, as well as a sense of con-
tinuous discovery. Processing has two random generators: random() and noise().
random() is the far simpler function, and the one I use most often. It works by receiving
either one or two arguments, as in

random(1)

or

random(1, 10);

The first case generates a random float value between 0 and the argument (in this case,
1). The second version generates a random float value between the two arguments (1
and 10). If you need the returned value to be an integer, you’ll need to convert the result
using a statement such as the following:

round(random(1, 10));

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

742

617xAppA.qxd 4/26/07 10:57 AM Page 742

The noise() function is an advanced function based on Perlin noise, developed by Ken
Perlin. Ken Perlin is a professor at NYU’s Media Research Laboratory (within the
Department of Computer Science) who actually won an academy award for his develop-
ment of Perlin noise. The problem with using pure random numbers for generating
textures, motion, or any type of organic effect is the overly even distribution of the ran-
domness. It’s a paradox, but pure randomness is not quite random enough in a sense.
Perlin addressed this issue by creating more harmonically structured and pleasing noise
that utilizes controllable, semi-random number generation in combined octaves of varying
frequencies, generating noise patterns that have both high and low peaks within the ran-
dom distribution (it sounds complicated because it is). Perlin’s breakthrough allowed for
all kinds of procedural textures and fractal-like structures to be developed, including vir-
tual clouds, oceans, and mountains.

There are also two seed functions within the Random section: noiseSeed() and
randomSeed()—one for each generator. The seed functions, when passed a constant, allow
the generators to produce repeatable random patterns. For example, when you run the
following sketch, the first loop utilizes a seed to generate a repeating value, while the sec-
ond loop generates a random value each iteration of the loop:

println("using a seed");
for (int i=0; i<5; i++){
randomSeed(0);
println(random(1, 10));

}
println("without a seed");
for (int i=0; i<5; i++){
println(random(1, 10));

}

Constants
The Constants section includes three constants: HALF_PI, TWO_PI, and PI. If you haven’t
realized it by now, pi is a very significant number, especially in trigonometry; enough said.
And that concludes the core API.

Processing libraries
In addition to the core language, there are seven core Processing libraries. These libraries
extend Processing’s capabilities into more specific areas, such as video, networking, serial
communication, and JavaScript. In addition to the core libraries, there are (as of this writ-
ing) over 40 user-contributed libraries, each with its own API. These libraries extend
Processing in areas including sound control, physics, motion detection, and database con-
nectivity, just to name a few.

A detailed description of Processing’s libraries are beyond the scope of this book, which
focuses on the core language. It is likely that in future releases of Processing, only minor

PROCESSING LANGUAGE API

743

A

617xAppA.qxd 4/26/07 10:57 AM Page 743

new functionality will be added directly to the core. Instead, Processing’s growth will hap-
pen externally, through user-contributed libraries. The most up-to-date information about
Processing’s libraries, including their respective APIs, can be found at http://processing.
org/reference/libraries/index.html. Information on how to go about creating a library
(which requires a working knowledge of Java) can be found in the howto.txt document
located in the libraries subdirectory within your Processing application directory. Please
note that libraries cannot be created from within Processing itself.

Finally, as you progress in coding, there are times you’ll want to refer to the Java API
directly, or even take a look under the hood at Processing’s source code. The Java API
(Standard Edition, version 1.4.2) can be found at http://java.sun.com/j2se/1.4.2/
docs/api/. The Processing source code, as well as information relating to Processing’s
overall development, is at http://dev.processing.org.

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

744

617xAppA.qxd 4/26/07 10:57 AM Page 744

http://processing
http://java.sun.com/j2se/1.4.2/
http://dev.processing.org

617xAppA.qxd 4/26/07 10:57 AM Page 745

617xAppB.qxd 4/24/07 2:40 PM Page 746

B MATH REFERENCE

617xAppB.qxd 4/24/07 2:40 PM Page 747

Appendix B includes mathematical concepts and code examples that didn’t quite fit within
earlier sections of the book, but nonetheless could be useful and hopefully interesting for
creative coding.

Algebra
We use the term literate to describe a person fluent in the use of a natural language. The
term numerate describes a similar fluency with math, and algebra is first and foremost at
the core of that fluency. Programming and algebra have a close relationship, as they both
utilize expressions composed of symbols. Following are some handy rules and procedures
fundamental to algebra and programming.

Adding negative numbers

Adding two negatives results in a larger negative:

Here’s another (simpler) way to write the previous expression:

Subtracting negative numbers

Subtracting by a negative is like adding:

Multiplying negative numbers

Multiplying two negatives creates a positive:

Dividing by zero

You can’t do it!

Multiplying fractions

Multiply the two numerators and two denominators:

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

748

617xAppB.qxd 4/24/07 2:40 PM Page 748

After multiplying, you can reduce the fraction to its lowest terms:

Adding fractions

The following gives an example of adding two fractions.

First, find the least common multiple of the denominator. In this case, 12 is the lowest
common multiple of 3 and 4. Then, multiply the numerators by the same factor needed to
make the denominators 12:

Finally, add the numerators, put the sum over the common denominator, and reduce:

Dividing fractions

Flip the numerator and denominator in the bottom fraction (which is called its reciprocal)
and then multiply the original fraction in the numerator by this reciprocal.

Here’s a general form of the process:

And here’s a concrete example:

Working with negative exponents

Make the negative exponents positive by moving them to the other side of the fraction.
Here’s a general form of the process:

MATH REFERENCE

749

B

617xAppB.qxd 4/24/07 2:40 PM Page 749

Here’s an example:

Understanding the exponential-logarithm relationship
(they’re inverse)

Here’s an exponential statement in a general form:

This last expression is equivalent to the following logarithmic statement (also in a general
form):

Here’s an example:

Understanding the relationship between radicals and
fractional exponents

The square root of a value and that value raised to the 1/2 power are equivalent. Here’s
the relationship in a general form:

Here’s an example:

The relationship holds for a radical to any root. Here’s the relationship expressed in a gen-
eral form:

Here’s an example:

Multiplying and dividing exponents

When multiplying, if the bases are the same and the exponents are different, add the
exponents. Here’s the rule in a general form:

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

750

617xAppB.qxd 4/24/07 2:40 PM Page 750

Here’s an example:

When dividing, if the bases are the same and the exponents are different, subtract the
exponents. Here’s the rule in a general form:

Here’s an example:

When multiplying, if the bases are different and the exponents are the same, raise the
product of the two bases to the exponent. Here’s the rule in a general form:

Here’s an example:

When dividing, if the bases are different and the exponents are the same, raise the prod-
uct of the two bases to the exponent. Here’s the rule in a general form:

Here’s an example:

When raising a base to two powers, raise the base to the product of the two powers.
Here’s the process in a general form:

Here’s an example:

Raising a base to a power of 0 equals one.

Geometry
Drawing anything on the computer ultimately comes down to working with points, lines,
curves, shapes, and so forth, so dealing with geometry is unavoidable. However, unlike the
vague memories (perhaps nightmares) you may have of perplexing geometry proofs, for
the purpose of basic creative coding, you really just need some simple rules and a list of
handy formulae.

MATH REFERENCE

751

B

617xAppB.qxd 4/24/07 2:40 PM Page 751

Pythagorean theorem

I suspect most of you remember something about the Pythagorean theorem. It is a simple
equation for figuring the lengths of sides of a right triangle. The side opposite the right
angle is the hypotenuse, which we commonly refer to as c, and the other sides are labeled
a and b. The way the sides relate is as follows:

Although the Pythagorean theorem is relatively simple, it is crucially important to our
work in computer graphics, so it’s worth memorizing.

Distance formula

The distance formula relates directly to the Pythagorean theorem, and we use it to find
the length of any line on the Cartesian coordinate system. Finding the length of vertical
and horizontal lines is easy, as their distance is just the difference between either the
x (horizontal line) or y (vertical line) components of the two points at either end of
the line (x2 – x1 or y2 – y1). Diagonal lines are harder to measure and require the distance
formula. The distance formula is the following:

x2 and x1 are the two x components of the two points at either end of the line you’re trying
to measure, and y2 and y1 are obviously the y components. The trick is to put the line in a
form you can easily solve for—and that is as part of a right triangle (as shown in Figure B-1).
Make the line you’re attempting to measure the hypotenuse of a right triangle, with one of
its legs parallel to the x-axis and the other leg parallel to the y-axis. Now, if you know the
distance of the two new sides you added to the triangle, you can easily solve for c, the
hypotenuse. The distances of a and b respectively are simply the values x2 – x1 and y2 – y1.
Thus, just stick these expressions in the hypotenuse theorem, solving for c, and you get the
distance formula.

Area of a triangle

The area of a triangle equals one half times the length of a base times the corresponding
height:

Area of a rectangle

The area of a rectangle equals its length times its width:

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

752

617xAppB.qxd 4/24/07 2:40 PM Page 752

Figure B-1. Using a right triangle to solve for distance

Area of a parallelogram

The area of a parallelogram equals its base times its height:

Area of a trapezoid

The area of a trapezoid equals 1/2 times its height, times the sum of its bottom base and
its top base (Figure B-2 shows an example):

Figure B-2. Trapezoid

MATH REFERENCE

753

B

617xAppB.qxd 4/24/07 2:40 PM Page 753

Perimeter of a rectangle

The perimeter of a rectangle equals two times its length plus two times its width:

Area of a circle

The area of a circle equals pi times the radius squared:

Circumference of a circle

The circumference of a circle equals two times pi times its radius:

Area of any non-intersecting polygon

There are times when you need to find the area of a shape (an irregular polygon) that’s
not a rectangle, circle, triangle, or other polygon with a handy area formula. One approach
is to break the shape into smaller triangles and sum up their combined areas. However,
there’s an easier solution that works for all non-intersecting polygons, using the shape’s
vertices. This approach, shown in Figure B-3, also lends itself very well to programming.

Figure B-3. Calculating the area of an irregular polygon

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

754

617xAppB.qxd 4/24/07 2:40 PM Page 754

Here’s how the process works: pick a point on the polygon and begin moving in a coun-
terclockwise fashion around the shape. Assuming the first point you choose is (xstart, ystart)
and the last point before you close the shape is (xn, yn), you multiply the start x value with
the next vertex’s y value and subtract that same vertex’s x value multiplied by the start y
value. You continue this process all the way around the shape. Obviously, the last point will
be the first point (xstart, ystart), since you’re dealing with a closed shape. Finally, you take half
of the entire value to get the area. Here’s the process in a generalized equation form:

Trigonometry
The trig functions are central to graphics programming. However, if you’re anything like
me, you probably have a hazy memory of how and why they are used. Perhaps you
remember the mnemonic device soh-cah-toa, used to remember the relationships
between the trig functions and a right triangle (illustrated in Figure B-4).

Figure B-4. The relationship of trig functions to a right triangle

Please note that if you happen to do the rotation in the wrong direc-
tion, and move in a clockwise fashion around the polygon, you’ll get
the same area, but as a negative value.

MATH REFERENCE

755

B

617xAppB.qxd 4/24/07 2:40 PM Page 755

soh stands for “sine equals opposite over hypotenuse.” “Opposite” refers to the
side opposite the angle.

cah stands for “cosine equals adjacent over hypotenuse.” “Adjacent” is the side
next to the angle.

toa refers to “tangent equals opposite over adjacent.”

You should also notice in the figure that tangent equals sine(θ) over cosine(θ). You may
also remember that sine and cosine are similar when you graph them, both forming peri-
odic waves—only the cosine wave is shifted a bit (90° or pi/2) on the graph, which is tech-
nically called a phase shift. I fully realize that it is a difficult to deal with this stuff in the
abstract. Fortunately, there is another model used to visualize and study the trig functions:
the unit circle (shown in Figure B-5).

Figure B-5. The unit circle

The unit circle is a circle with a radius of 1 unit in length—hence its imaginative name.
When you work with the unit circle, you don’t use the regular and trusted Cartesian coor-
dinate system; instead you use a polar coordinate system. The Cartesian system works
great in a rectangular grid space, where a point can be located by a coordinate, such as
(x, y). In a polar coordinate system, in contrast, location is specified by (r, θ), where r is the
radius and θ (the Greek letter theta) is the angle of rotation. The unit circle has its origin
at its center, and you measure angles of rotation beginning at the right-middle edge of the
unit circle (facing 3 o’clock) and moving in a counterclockwise direction around it.

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

756

617xAppB.qxd 4/24/07 2:40 PM Page 756

In Figure B-5, the point p is at 45° or pi/4. You can use pi also to measure around the unit
circle, as illustrated in the figure. Halfway around the circle (180°) is equal to pi radians,
and all the way around the circle is equal to 2pi radians and also 0 radians, since a circle is
continuous and ends where it begins. The number pi is a constant that is equal to the cir-
cumference of a circle divided by its diameter, and is approximately 3.142. Pi is probably
most famous for its non-repeating decimal expression, as it is an irrational number.
Irrational numbers, as opposed to rational numbers, can’t be put into an exact fractional
form. If you divide a circle’s circumference by its diameter, you’ll never get the remainder
to 0, nor will the number after the decimal point ever repeat.

In the polar system, you use radians to measure angles, instead of degrees. The angle of
rotation in radians is commonly referred to as θ (the Greek letter theta). The arc length
of this rotation is calculated by r*θ where r is the radius. In a unit circle, with a radius of 1,
θ is equal to the arc length of rotation (arc s in Figure B-5). It’s nice to know the arc length,
but most of the time (in computer graphics), you really just want to know the location of
a point in relation to the unit circle. For example, if I wanted to rotate a point around the
unit circle, I’d need to know how to place and move the point in a circle. With the unit
circle, this is an incredibly easy task and precisely the kind of thing trig is used for.

There is a really simple relationship between the trig functions and the unit circle. Notice
in Figure B-5 that from point p on the ellipse, a right triangle is formed within the unit cir-
cle. This should immediately make you think of good old Pythagoras. Notice also that r
(the radius) is the hypotenuse of the right triangle. In addition, you now also know that
with the trig functions, you can use theta and any one side (opposite, adjacent, or
hypotenuse) to solve the rest of the triangle. The big payoff of these relationships, for our
purposes, is that to translate point p in the polar coordinate system to the Cartesian coor-
dinate system (the system used by our monitors), you would use these simple expressions:

These seemingly humble little expressions are very powerful and can be exploited for all
sorts of expressive and organic purposes.

Here’s how you actually use the trig functions in Processing:

float x = cos(radians(angle)) * radius;
float y = sin(radians(angle)) * radius;

Expressing pi, or at least trying to understand its irrational nature, has fascinated
people for a long time. An extreme example of this fascination is the work of Japanese
scientist Yasumasa Kanada (http://en.wikipedia.org/wiki/Yasumasa_Kanada), who
in 2002 calculated pi out to over 1.24 trillion places. Check out also the work of the
Chudnovsky brothers (http://en.wikipedia.org/wiki/Chudnovsky_brothers), who
not only previously held the pi-crunching world record, but also applied their mathe-
matical prowess in the service of art, on a complex restoration project of the Hunt of
the Unicorn tapestries (http://en.wikipedia.org/wiki/The_Hunt_of_the_Unicorn),
hanging in the Cloisters, in New York City.

MATH REFERENCE

757

B

617xAppB.qxd 4/24/07 2:40 PM Page 757

http://en.wikipedia.org/wiki/Yasumasa_Kanada
http://en.wikipedia.org/wiki/Chudnovsky_brothers
http://en.wikipedia.org/wiki/The_Hunt_of_the_Unicorn

Notice that there is a function call (radians(angle)) inside each of the trig function calls.
Remember that theta is measured in radians, in the polar coordinate system. However, in
the Cartesian coordinate system, you work in degrees. To convert between radians and
degrees and vice versa, you can use the following expressions:

Or better yet, just use Processing’s handy conversion functions:

theta = radians(angle)
angle = degrees(theta)

Lastly, I include an example that clearly demonstrates how the unit circle and sine function
relate. A while back I came across a Java applet on the Web that showed this relationship
(sorry, but I don’t remember the link), and I thought it was interesting, so I created my own
version in Processing (shown in Figure B-6):

/* Sine Console
Ira Greenberg, October 23, 2005 */

float px, py, px2, py2;
float angle, angle2;
float radius = 100;
float frequency = 2;
float frequency2 = 2;
float x, x2;

// used to create font
PFont myFont;

void setup(){
size(600, 200);
background (127);
// generate processing font from system font
myFont = createFont("verdana", 12);
textFont(myFont);

}

void draw(){
background (127);
noStroke();
fill(255);
ellipse(width/8, 75, radius, radius);
// rotates rectangle around circle
px = width/8 + cos(radians(angle))*(radius/2);
py = 75 + sin(radians(angle))*(radius/2);
rectMode(CENTER);
fill(0);
//draw rectangle

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

758

617xAppB.qxd 4/24/07 2:40 PM Page 758

rect (px, py, 5, 5);
stroke(100);
line(width/8, 75, px, py);
stroke(200);

// keep reinitializing to 0, to avoid
// flashing during redrawing
angle2 = 0;

// draw static curve - y = sin(x)
for (int i=0; i<width; i++){
px2 = width/8 + cos(radians(angle2))*(radius/2);
py2 = 75 + sin(radians(angle2))*(radius/2);
point(width/8+radius/2+i, py2);
angle2 -= frequency2;

}

// send small ellipse along sine curve
// to illustrate relationship of circle to wave
noStroke();
ellipse(width/8+radius/2+x, py, 5, 5);
angle -= frequency;
x+=1;

// when little ellipse reaches end of window
// reinitialize some variables
if (x>=width-60) {
x = 0;
angle = 0;

}

// draw dynamic line connecting circular
// path with wave
stroke(50);
line(px, py, width/8+radius/2+x, py);

// output some calculations
text("y = sin x", 35, 185);
text("px = " + px, 105, 185);
text("py = " + py, 215, 185);

}

MATH REFERENCE

759

B

617xAppB.qxd 4/24/07 2:40 PM Page 759

Figure B-6. Sine Console sketch

Bitwise Operations
If you look at what the Processing language reference has to say about the red() function,
there’s a mysterious blurb under the description section:

“The red() function is easy to use and understand, but is slower than another technique.
To achieve the same results when working in colorMode(RGB, 255), but with greater
speed, use the >> (right shift) operator with a bit mask.”

The terms right shift operator and bit mask can be generally grouped under the heading
of bitwise operations. I briefly mentioned bitwise operations in Chapter 10 and in
Appendix A, but next I’ll provide a detailed account of how they work and why you might
want to learn them.

As part of my research for the book, I did a web search on bitwise operations, and was sur-
prised at how poorly they were explained—including in my trusted Wikipedia. There are
plenty of bitwise operation examples, but I had trouble finding a really clear elucidation—
especially for new programmers. Thus, I have taken this challenge on, as a personal mis-
sion, to demystify the mass confusion and escalating anxiety over bitwise operations (at
least in their relation to Processing and color).

First of all, what the heck are bitwise operations, and why are they in Processing in the first
place, especially if they’re not easy to use? Bitwise operations are super-low-level mathe-
matical operations, down at the binary or bit level. Rather than dividing 4 by 2 like 4/2, I
could get the same answer (2) using a bitwise operation, which would look like 4>>1, or
even 4^6. Yikes, why would I want to do that?! Well, most of the time I wouldn’t. However,
there are some good reasons to break out bitwise operations (as well as some really geeky
low-level reasons that most of us Processing types are not gonna want/need to do). Color

A word of caution: Bitwise operations can be daunting for beginners (actually even
experienced coders) and are an advanced topic. Though they can be difficult to get
your head around, bitwise operators are also powerful and highly efficient processing
tools and certainly worth (eventually) learning about.

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

760

617xAppB.qxd 4/24/07 2:40 PM Page 760

manipulation is one area in which bitwise operations are pretty handy, and why I believe
they were included in Processing.

OK, but I still haven’t really told you anything about bitwise operations. To begin to under-
stand them, you need to think a little about how numbers are represented on the com-
puter, and to do that you need to go all the way down to the periodic table and the
element silicon. (Oh boy.)

Semiconductors

I suspect by now, most of you realize computers groove on zeros and ones. Why? Well, this
is actually a pretty interesting story (that I will very highly abridge). The brain of the com-
puter, or the CPU, is made up of a lot of little data processing units called transistors; you
can actually buy CPUs now that have over 1 billion transistors etched onto a 1-inch-square
silicon chip, with wiring over a thousand times thinner than a human hair. (Which maybe
offers some insight into the famous question, “How many angels can fit on the head of a
pin?”) Angels aside, transistors are like little switches that open and close, controlling how
electricity flows.

Silicon, a really common and cheap element (think sand on the beach), has one very sig-
nificant property. Its outer shell (we’re on the periodic table now, down at the atomic
level) has four measly electrons that all bond with other nearby silicon atoms, forming
crystal lattice structures.

Because all four of silicon’s outer electrons form these perfect bonds, there are no free
electrons roaming around, which is not a good thing in regard to electricity, as electricity
requires these free electrons to flow. So silicon, unlike a metal such as copper, is not con-
sidered a conductor. However, it’s not considered an insulator either (like rubber, for
instance). Instead, silicon is classified as a semiconductor. You’ve probably heard the term
semiconductor before, as the entire computer industry is built on semiconductors. So if
silicon can’t conduct electricity, why do we use it, and what the heck does this all have to
do with color?

There is a process called doping (no, I’m not contesting Lance Armstrong’s seventh Tour
de France win) that allows silicon to be developed into a controllable conductive material.
The controllable part is what is key here. Using doping, it’s possible, applying the right
amount of current to the silicon transistors, to cause them to conduct electricity; you can
think of the process almost like pushing on a hinged gate—the gate stays shut until
enough force is exerted on it. These relatively simple and inexpensive gates are the basis
of computing, and ultimately why we have bitwise operations.

Since the gates can only either be open or closed, you can use just two values to represent
the different possible states of the gate: 1 for open and 0 for closed. A single transistor

A somewhat valuable by-product of this tendency to form crystal lattice
structures is the diamond, made from carbon, which is right above silicon on
the periodic table, and has a similar property.

MATH REFERENCE

761

B

617xAppB.qxd 4/24/07 2:40 PM Page 761

being either open or closed wouldn’t give us much logic to work with, but if you take all
the transistors on a CPU, and begin coding logic based on series of these gates being open
or closed, well, the possibilities are limitless. And since the core processing logic at the
chip level is based on this binary (zeros and ones) system, bitwise operations (also based
on a binary system) are really efficient, which means large amounts of data can be
processed more quickly. This speed benefit is the main reason it’s worth learning to
directly manipulate bits with regard to graphics computing.

Color data structure

Besides the silicon story, there is another practical reason why bitwise operations work
well with color, and it relates to how color is stored and structured in memory.

Color information is stored in what’s referred to as a packed 32-bit integer, representing
alpha, red, green, and blue. The reason the integer is referred to as “packed” is because
the components—alpha (A), red (R), green (G), and blue (B)—are divided up into distinct,
delineated 8-bit sections. The following line shows how the color is actually stored as an
integer (the letter of the color is used to show the place in the integer):

AAAAAAAARRRRRRRRGGGGGGGGBBBBBBBB

In actuality, of course, the values of each of the bits can only be 0 or 1. Remember, a 32-
bit integer is just a binary (base 2) number to 32 places. Also, alpha by default is set to
100% when you create a color (which equals all ones for its eight bits). So, for example, the
color purple at 100 percent alpha would be represented like this: 11111111 11111111
00000000 11111111. (I separated the 32 bits into four 8-bit groups just to help you visual-
ize where each of the components is stored in the continuous 32-bit string). Likewise, the
color red would be 11111111 11111111 00000000 00000000, and blue would be 11111111
00000000 00000000 11111111. If this still isn’t clear, maybe this list will help (please note
that the bits are counted from right to left):

Alpha: Bits 25 through 32

Red: Bits 17 through 24

Green: Bits 9 through 16

Blue: Bits 1 through 8

What is confusing about the color integer (at first glance) is that the 8 bits controlling
alpha seem to be on the wrong side of the bit string, since alpha is normally specified as
the fourth argument when you create an (RGBA) color, as in color c = color(255, 127,
0, 255). However, in the integer, alpha is specified in the first 8 bits. I’m also using the
default value for alpha, which is 100 percent, which is why all the places (where alpha is
specified) are 1.

OK, but that still doesn’t explain why the value of eight ones is equal to 100 percent alpha?
The trick to converting a binary value (like eight ones) back to our more familiar decimal
(base 10) system is to think about how numbers are represented, which is easiest for us to
do in our base 10 system. For example, what’s the difference between the numbers 52,
479, and 100,000? The key to answering this question is found in the number of places in

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

762

617xAppB.qxd 4/24/07 2:40 PM Page 762

the number, as shown in the following equations—remember that any number raised to
the 0 power is equal to 1—that is, n0 = 1):

Now let’s go back to the alpha setting in base 2:

The 255 probably rings a bell, as it’s the highest value any of the individual RGBA compo-
nents can have.

Bitwise operations to the rescue

Referring back to the Processing reference, if you call the function float r =
red(myColor); by passing in a color argument (which I’m calling myColor), the red value is
pulled out of the color and returned as a float value, which I’m assigning to the float
variable r. Well, a faster way to get the red value is to perform a bitwise operation on the
color. Now you may say, big deal, computers are fast. This is way too confusing to warrant
the little savings in time. However, imagine now you have an image that is 1,500 pixels
times 1,000 pixels (or a total of 1,500,000 pixels) and you want to do a series of manipula-
tions to all the pixels in the image, and maybe you even want to animate it—well, pro-
cessing time is now a huge deal, and the bitwise operators may very well save the day.

Again, here’s the expression float r = red(myColor); handled as a bitwise operation:

float r = myColor >> 16 & 0xFF;

I know this expression must look odd (and maybe even scary) to many of you—it totally
did to me. There are two distinct processes occurring on the integer in this little line of
code. The first process involves the bits of the integer being shifted 16 places to the right
(using >> 16), and after that, a bitwise AND operation (using & 0xFF) is performed, yield-
ing the isolated red value. I’ll look at each process separately.

Shifting bits

Shifting bits 16 places to the right literally means moving all the bits over 16 places. There
are two different bitwise shift operators in Processing: >> and <<. The first (>>) shifts bits
to the right and the second (<<) shifts them to the left. So for example, if the number 64

MATH REFERENCE

763

B

617xAppB.qxd 4/24/07 2:40 PM Page 763

(expressed as 1000000 in binary) has its bits shifted 1 place to the right, using the expres-
sion 64 >> 1, then the binary result will be 100000, which equals 32 in decimal (26).

It’s no coincidence that shifting to the right 1 bit halved the number. In fact, this is an
excellent use for bit shifting. As you might suspect, shifting to the left 1 bit doubles the
number. Here’s a simple example in Processing that outputs some results verifying this:

int val1 = 1000;
int val2 = 32044;
int val3 = -2275686;
println("val1 = " + val1);
println("val1 >> 1 = " + (val1>>1));
println("val1 << 1 = " + (val1<<1));
println("---------------------");
println("val2 = " + val2);
println("val2 >> 1 = " + (val2>>1));
println("val2 << 1 = " + (val2<<1));
println("---------------------");
println("val3 = " + val3);
println("val3 >> 1 = " + (val3>>1));
println("val3 << 1 = " + (val3<<1));

The sketch outputs the following:

val1 = 1000
val1 >> 1 = 500
val1 << 1 = 2000

val2 = 32044
val2 >> 1 = 16022
val2 << 1 = 64088

val3 = -2275686
val3 >> 1 = -1137843
val3 << 1 = -4551372

Working with Processing’s color data type (which as I described earlier is a packed 32-bit
integer) is a little trickier. Most of the complexity involves how the 32-bit integer evaluates
to a decimal value. For example, run the following sketch, the output of which may sur-
prise many of you:

color c1 = color(255, 255, 255, 128);
color c2 = color(255, 255, 255, 127);

println ("c1 in binary = " + binary(c1));
println ("c1 in decimal = " + c1);
println ("---");
println ("c2 in binary = " + binary(c2));
println ("c2 in decimal = " + c2);

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

764

617xAppB.qxd 4/24/07 2:40 PM Page 764

Here’s the output:

c1 in binary = 10000000111111111111111111111111
c1 in decimal = -2130706433

c2 in binary = 1111111111111111111111111111111
c2 in decimal = 2147483647

Look at the output closely. Notice that c1’s binary bit string (32 digits) is actually 1 digit
longer than c2’s (31 digits). (If you don’t feel like counting all the ones, just take my word
for it.) Also, and more bewildering, c1’s decimal value is negative while c2’s is positive.
Why?

Both c1 and c2 have identical RGB values. However, their alpha values are 128 and 127,
respectively. So all the variations between their binary bit strings and decimal values are
somehow caused by this slight variation (probably not even visibly noticeable) in their
alpha values. Why again? The long answer is not simple, so I’ll give a “good enough”
answer (and of course provide a link to a more detailed explanation).

Processing’s (and Java’s) 32-bit integer type needs to account for positive and negative val-
ues (and 0). There are various ways of coding these values as a binary bit string. The most
efficient and common approach is using what’s referred to as a two’s complement system.
The very basic way the two’s complement system works is as follows: to create a positive
number, you simply encode the value using standard binary conversion, as you looked at
earlier. So for example, the number 8 in decimal becomes 23, or 1000 in binary. To create
a negative number, you need to first create a positive binary equivalent of the number,
and then invert all the bits (zeros become ones and ones become zeros), and then add 1.
So to express –8 in a two’s complement system, first you need to specify 8 as a positive
binary number, which you know is 1000. However, 1000 is not the full 32-bit representa-
tion of 8, as Processing discarded the 28 zeros to the left of the number. Normally this
would be fine, as these zeros on the left side of the number don’t change its actual value.
But to understand the two’s complement system, you need to account for these bits.
Here’s the full 32-bit binary representation of 8 (with the 28 zeros added on):

00000000000000000000000000001000

So to calculate –8, first you invert all the bits:

11111111111111111111111111110111

And then you add 1:

11111111111111111111111111111000

Simple, right? OK, I know this stuff is pretty confusing. If the two’s complement stuff isn’t
doing it for you, just remember one final rule about it: if the leftmost digit of the entire bit
string (referred to as the signed bit) is a zero, the value will be positive, and if the signed
bit is a one, the number will be negative. To confirm this, try looking at the binary equiva-
lent of some positive and negative numbers in Processing (or just take my word for it).

If this exciting two’s complement discussion really did it for you, check out http://
en.wikipedia.org/wiki/Two's_complement.

MATH REFERENCE

765

B

617xAppB.qxd 4/24/07 2:40 PM Page 765

http://en.wikipedia.org/wiki/Two's_complement

Let’s now return to the initial expression listed in the Processing reference that sparked
this discussion:

float r = myColor >> 16 & 0xFF;

You’ll remember that this expression is a way of getting just the red component of the
color and a faster alternative to Processing’s red() function. Let’s assume myColor is
#FF00FF (purple) and 100 percent alpha (which you’ll remember is the default). The bit
string of this color integer is as follows:

11111111 11111111 00000000 11111111
(alpha) (red) (green) (blue)

Again, I divided the 32-bit string into 4 bytes, just to show how the packed integer repre-
sents the different color components. As I specified, the four 8-bit groups, from left to
right, represent the alpha, red, green, and blue components, respectively. Remembering
what I discussed a few paragraphs back, can you guess whether this integer would evalu-
ate to a positive or negative value? The answer is negative, since the signed (leftmost) bit
is a one. To test this, run println(#FF00FF);, which should output -65281. This specific
value is not terribly useful. (I remember being pretty confused the first time I ran a
println() on one of my colors and it came up with this huge negative value.) What is
worth remembering is that the sign of the number is based on the leftmost bit (1 is nega-
tive and 0 is positive).

Next, let’s shift the bits of the original purple color 16 places to the right. Here is the orig-
inal bit string:

11111111 11111111 00000000 11111111

Shifting the bits 16 places to the right, it becomes the following:

11111111 11111111 11111111 11111111

The 16 bits on the left side of the number move to the right 16 places. The original 16 bits
on the right side move over as well, but since there are no places to their right, they are
discarded. You may be wondering then why the original 16 places on the left, after the
shifting takes place, remain ones instead of becoming zeros. This is a good question, which
originally confused me as well. The reason for this relates to the signed bit (the leftmost
bit), which you’ll remember was a one in the original purple color. When bits are shifted to
the right in a two’s complement system, any empty positions on the left side, where the
bits were shifted away from, as in this example, are filled with the value of the signed bit.
That’s why in the last example, the left 16 bits were replaced with ones instead of zeros.
Here’s one more example in Processing:

color c1 = color(255, 255, 0, 127);
println("c1 = " + c1);
println("binary(c1) = " + binary(c1));
println("show 32 bits = 0" + binary(c1));
println("binary(c1>>16) = " + binary(c1>>16));
println("show 32 bits = 00000000000000000" + binary(c1>>16));

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

766

617xAppB.qxd 4/24/07 2:40 PM Page 766

This sketch outputs the following:

c1 = 2147483392
binary(c1) = 1111111111111111111111100000000
show 32 bits = 01111111111111111111111100000000
binary(c1>>16) = 111111111111111
show 32 bits = 00000000000000000111111111111111

Notice that I explicitly added zeros to the left of two of the binary outputs (labeled show
32 bits) just to reveal the actual 32 bits of data. Again, the zeros on the left of the num-
ber don’t change the number’s value (and thus normally aren’t output when you call
println()), but seeing them does make it easier to visually compare the different binary
bit strings. The color I began with, c1, had an alpha of 127, giving the color integer a
positive value (2147483392) since the signed bit was a zero. Thus, when I shifted all the bits
16 places to the right, the 16 places emptied on the left side of the number were filled
with zeros—again following the rule that the signed bit controls what these values
should be.

Bitwise operators

In addition to bit shifting, the original expression float r = myColor >> 16 & 0xFF; con-
tains a bitwise operator (&) as well as what’s referred to as a bit mask (0xFF).

Bitwise operators are similar to other operators you know about (+, *, -, etc.), only bitwise
operators work directly on binary numbers. There are four bitwise logical operators in
Java, two of which are included in Processing. However, as Processing really is Java, you can
use all four in Processing, even though the Processing language reference only covers two
of them. As I mentioned, these operators work on binary values (directly with the bits). So
if I write 4 | 6, using the bitwise OR operator (which I’ll explain shortly), the numbers 4
and 6 will be evaluated as their binary equivalents (100 and 110, respectively). This is great
for the computer, which loves (assuming it could actually feel) dealing at the bit level, but
kind of lousy for us squishy bio-forms, who are not used to doing fast base 2 calculations.
It helps to see the bitwise operators in action to get a better sense of how they work.

The four logical bitwise operators are &, |, ^, and ~.

& is the bitwise AND operator; it works by evaluating the parallel bits of two binary num-
bers. If the two parallel bits are both 1, then the result for that place is a 1. All other results
evaluate out to 0 for that bit position.

The following example compares the parallel bits of the binary values of 4 and 6 (which
are listed next) using the bitwise AND operator:

Please note, when shifting to the left, places emptied on the
right (due to the shifting) are always filled with zeros.

MATH REFERENCE

767

B

617xAppB.qxd 4/24/07 2:40 PM Page 767

Here is the operation expressed in base 2 (remember, only when both parallel bits are 1 is
the result 1; otherwise it’s 0):

100
& 110
100

Surprisingly, this result is still 4 when you convert it back to base 10. Pretty odd, huh?

Here’s an example that compares the parallel bits of the binary values of 126 and 3498,
again using the bitwise AND operator:

And here’s the operation expressed in base 2:

000001111110
& 110110101010
000000101010

The simplifies to 101010 if zeros on the left are removed.

| is the bitwise OR operator, also called inclusive OR. It operates by evaluating whether
either of the two parallel bits is a one, in which case it evaluates to a one; otherwise the
result is a zero. (You can also think about this as two parallel zeros equals a zero.)

This next example compares the parallel bits of 4 and 6 using the OR operator:

And here’s the operation expressed in base 2:

100
| 110
110 = 6

This example compares the parallel bits of the binary values of 126 and 3498, again using
the bitwise OR operator:

And here’s the operation expressed in base 2:

000001111110
| 110110101010
110111111110

While adding zeros to the left of the number has no effect, adding zeros to
the right of a binary number will change the value, so don’t do it.

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

768

617xAppB.qxd 4/24/07 2:40 PM Page 768

I’m not going to provide examples for the other two operators, but I’ll tell you about them.

^ is the XOR, or exclusive OR, operator. It works by comparing parallel bits, as with the first
two operators. However, XOR is looking for differences. If the parallel bits are different,
then the result is a one; otherwise the result is a zero.

~ is the bitwise complement and is a unary operator, meaning it works like a binary minus
sign on a single operand, inverting zeros to ones and vice versa.

Putting it all together

Finally returning to the original bitwise color expression, float r = myColor >> 16 &
0xFF;, you should now have some sense of what is happening in the expression. The last
mystery to solve is the bit mask 0xFF. A bit mask is just a pattern of bits used to perform
some type of operation on another binary value, using one of the bitwise operators you
just looked at. The bit mask value itself (0xFF) hopefully looks familiar to you, as it’s just a
number expressed in hexadecimal notation (base 16). Remember, colors are commonly
represented as hexadecimal values. The 0x part of 0xFF tells the compiler that the charac-
ters FF should be evaluated in base 16. Since F is the highest value in base 16 (equal to 15
in decimal), FF evaluates to 15 * 161 + 15 * 160 = 255, which you’ll remember is the same
thing as 11111111 (in base 2).

Finishing up this long discussion, you now have all the ingredients to understand the bit-
wise color expression myColor >> 16 & 0xFF. Next is a description of how the expression
actually returns the red component of a color.

I’ll begin by creating a new color:

color myColor = color(200, 190, 75, 255);

This color looks like this in binary (please note that I divided the continuous 32-bit string
into byte-sized components, for readability):

11111111 11001000 10111110 01001011

Performing the 16-bit right shift on the number yields the following:

11111111111111111111111111001000

Next I’ll use the bitwise AND operator and bit mask 0xFF (11111111 in binary). Remember,
the & operator works by comparing the parallel bits. If the bits are both 1, then the result
for that place is a one. All other results evaluate out to zero.

For those of you who actually like this bit-mathy stuff, break the binary value
11111111 into two even groups of four bits and then evaluate each sepa-
rately in base 2. Compare the results to the hexadecimal value 0xFF. Do you
see the relationship between the binary and hexadecimal values?

MATH REFERENCE

769

B

617xAppB.qxd 4/24/07 2:40 PM Page 769

11111111111111111111111111001000
& 00000000000000000000000011111111
00000000000000000000000011001000

Removing the extra zeros on the left of the number, we’re left with 11001000, which in
decimal notation is equal to 200—the value of the red component.

You can (of course) also use bitwise operations to extract the green, blue, and alpha values
from the color, using the following expressions:

int g = myColor >> 8 & 0xFF;
int b = myColor & 0xFF;
int a = myColor >> 24 & 0xFF;

Finally, to put the individual color component values back together into a packed 32-bit
integer, you’d use the left shift operator and the bitwise OR operator, which can be done
in multiple lines of code, like this:

color newColor = a << 24;
newColor |= r << 16;
newColor |= g << 8;
newColor |= b;

Better yet, it can be done as one line of code, like this:

color newColor = (a << 24) | (r << 16) | (g << 8) | b;

Here’s a simple Processing example you can run that confirms all this:

// create original myColor
color myColor = color(200, 175, 100, 200);
println("myColor = " + myColor);
println("myColor in binary = " + binary(myColor));

// extract myColor ARGB components
int a = myColor >> 24 & 0xFF;
println("alpha = " + a);
int r = myColor >> 16 & 0xFF;
println("red = " + r);
int g = myColor >> 8 & 0xFF;
println("green = " + g);
int b = myColor & 0xFF;
println("blue = " + b);

// build newColor from myColor components
color newColor = (a << 24) | (r << 16) | (g << 8) | b;
println("newColor = " + newColor);
println("newColor in binary = " + binary(newColor));

Well, I imagine for some of you this whole bitwise discussion has been rather unpleasant.
Hopefully, you now have a better sense about what lurks behind the deceptively

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

770

617xAppB.qxd 4/24/07 2:40 PM Page 770

simple-looking paint bucket tool in your favorite paint program. You don’t need to use bit-
wise operations, as Processing has the component property functions red(), green(),
blue(), and alpha(); but there may be times when the bitwise operations will really come
in handy. Here’s a final Processing sketch that illustrates one of the things you can do with
bitwise operations (shown in Figure B-7). (Please note this example requires the use of an
external image, which needs to be added to the sketch’s data directory.)

/*
Color Variations Filter Using
Bitwise Operations
Ira Greenberg, November 11, 2005
revised: April 3, 2007
*/

/*change display size to accommodate
the size of your image */
size(360, 600);

/*remember to add an image into
the sketch data directory before
using loadImage() and also to update
the name of the image below. */
PImage img = loadImage("robin_and_sophie.jpg");
image(img, 0, 0);
// pixel array
int[]pxls = new int[width*height];
// holds shifted colors
color[]newCol = new int[width*height];
// keep track of pixels
int pxlCounter = 0;

/* loop gets color components out
of color integer using bitwise operators
and shifts color components before
rebuilding pixel array- effect is similar
to Photoshop's variations filter */
for (int i=0; i<width; i++){
for (int j=0; j<height; j++){
pxls[pxlCounter] = get(i, j);
int r = pxls[pxlCounter] >> 16 & 0xFF;
int g = pxls[pxlCounter] >> 8 & 0xFF;
int b = pxls[pxlCounter] & 0xFF;
int a = pxls[pxlCounter] >> 24 & 0xFF;
/* conditionals check where we are in the image
min() functions keep color component values in
range 0-255 to avoid psychadelic artifacting */
//left column, top row(red+)
if (i<=width/3 && j<=height/3){
r = min(r*2, 255);

MATH REFERENCE

771

B

617xAppB.qxd 4/24/07 2:40 PM Page 771

} //left column, middle row(green+)
else if (i<=width/3 && j> height/3 && j<=height*.667){
g = min(g*2, 255);

} //left column, bottom row(blue+)
else if (i<=width/3 && j>height*.667 && j<height){
b = min(b*2, 255);

}
//middle column, top row(value-)
if (i>width/3 && i<=width*.667 && j<=height/3){
r*=.4;
g*=.4;
b*=.4;

} //middle column, middle row(normal)
else if (i>width/3 && i<=width*.667 && j>height/3 && ➥

j<=height*.667){
// leave pixels alone in middle box

} //middle column, bottom row(value+)
else if (i>width/3 && i<=width*.667 && j<height){
r = min(r*2, 255);
g = min(g*2, 255);
b = min(b*2, 255);

}
//right column, top row(yellow+)
if (i>width*.667 && j<=height/3){
r = min(r*2, 255);
g = min(g*2, 255);

} //right column, middle row(purple+)
else if (i>width*.667 && j>height/3 && j<=height*.667){
r = min(r*2, 255);
b = min(b*2, 255);

} //right column, bottom row(orange+)
else if (i>width*.667 && j<height){
r = min(r*2, 255);
g = min(int(g*1.5), 255);

}
// put colors back together
newCol[pxlCounter] = (a << 24) | (r << 16) | (g << 8) | b;
/*The counter needs to be incremented each
iteration of the loop, and I'm doing it
within the array brackets. Since that's the last
place it's used in the loop, it's ok to do this*/
set(i, j, newCol[pxlCounter++]);

}
}

PROCESSING: CREATIVE CODING AND COMPUTATIONAL ART

772

617xAppB.qxd 4/24/07 2:40 PM Page 772

Figure B-7. Color variations filter using bitwise operations

MATH REFERENCE

773

B

617xAppB.qxd 4/24/07 2:40 PM Page 773

617xIndex.qxd 4/30/07 1:41 PM Page 774

INDEX

617xIndex.qxd 4/30/07 1:41 PM Page 775

SYMBOLS AND NUMERICS
/* and */ notation for comments, 60
// notation for comments, 60
symbol, color values, 728
~ (bitwise complement), 769
<< and >> (shifting bits), 763–767
& (bitwise AND operator), 767, 769
^ (bitwise XOR operator), 769
| (bitwise OR operator), 768
? . . . : statement see ternary operator
1D Collision Using Conservation of Momentum sketch, 557
1D Collision with Swapping Velocities sketch, 554
24-bit color, 113
2D Collision Using Conservation of Momentum sketch, 559
2D Primitives section, Processing API, 692
32-bit color, 114
3D coding, 616–672

see also coding 3D
3D engine, 618
3D Math, 109
3D modes

OPENGL mode, 166–169
P3D mode, 164–165

3D Primitives section, 696
3D rotations, 635–646
3D shapes

simple vs. complex polygons, 371
48-bit color, 114
8-bit alpha component, 114
8-bit color, 114

A
AARON, 16
abacus, Roman, 9
ABC computer, 11
abridged Processing API see Processing API
abs function, 439, 453
abstract classes, 333
abstract keyword

abstract class declaration, 470
instantiation of classes, 333
object-oriented approach to color/imaging, 469

abstract methods, 334
LinearGradient class implementing, 474
object-oriented approach to color/imaging, 471
RadialGradient class implementing, 475

accelerated motion, 129
acceleration

Acceleration Calculations sketch output, 495
acceleration with gravity sketch, 494

acceleration curve, 127
accelX/accelY variables

soft-body dynamics, 520
springing, 506

access modifiers, 312
Add File command, Sketch menu, 154

Drawing Application example, 594

INDEX

776

ADD mode, blend function, 463
addition

operator precedence, 121
additive color model, 406
aesthetics and computation, 5–8

reason for creating DBN, 8
affine transformations, 352

resetting affine transformation matrix, 355
AffineTransform class, Java, 352
After Effects, 118
algebra

adding fractions, 749
adding negative numbers, 748
algebraic expression for lines, 123
associative/non-associative properties of operators,

121–122
dividing by zero, 748
dividing fractions, 749
exponential-logarithm relationship, 750
history of, 120
implementing algebraic expressions in Processing, 121
math for graphics, 120–122, 748–751
multiplying algebraic expressions, 122
multiplying and dividing exponents, 750
multiplying fractions, 748
multiplying negative numbers, 748
negative exponents, 749
operator precedence, 121
relationship between radicals and fractional exponents,

750
subtracting negative numbers, 748

algorithms, 40
algorithmic tree, 45–53
branching algorithm, 47
recursion, 46

aliasing/anti-aliasing, 215
alignment

textAlign function, 740
All Character option

Create Font dialog box, 155
alpha function, 422
alpha transparency see transparency
ambient function, 720
ambient light, 720
Analog Clock sketch, 709
analog computers, 14
and (logical and) operator

Bouncing Ball program, 80
conditional operators, 74
Logical Operators section, 689

AND bitwise operator (&), 767, 769
Angel, Dr. Edward, 108
angle of incidence, 525
angles

measuring with radians, 757

617xIndex.qxd 4/30/07 1:41 PM Page 776

animation, 117–119, 482–486
see also motion
After Effects, 118
asteroid shower animation, 535–551
default frames per second, 79
Final Cut Pro, Apple, 119
Flash, 118
frame rate, 117
function controlling animation in Processing, 79
graphics, 108
in-betweens, 118
keyframes, 118
LightWave, 118
persistence of vision, 117
reasons to use Processing for, 119
static images and, 79

anti-aliasing
aliasing compared in illustration, 215
description, 698
lines and curves, 245
noSmooth function, 215
Smooth option, Create Font dialog, 155
supersampling, 214
using smooth function, 214–219

APIs
Processing API, 676–743

append function, 575, 682
examples using, 683–684
shape builder and animator example, 578

Applet class
inheritance, 321

applet subdirectory, 150
applets, 150

Java applets, 37, 38
what applets can/can’t do, 710

arc, 268
arc function, 268–272

arcs with bounding boxes sketch, 344, 345
arguments, 269
creating circles with, 269
example illustrating pie shape feature, 344
pie chart, 270
Subtractive ColorWheel sketch, 406

Archive Sketch command, Tools menu, 157
arguments, 34

commas separating, 60
description of use of term, 97
functions with arguments, 60
functions without arguments, 61
parameters and, 209
parentheses defining functions, 60

arithmetical progression, 247
Array Functions section, Processing API, 682
arrayCopy function, 446
ArrayList class, Java, 682

INDEX

777

arrays, 83–85
accessing values in, 85
adding values to end of, 682
adding values/arrays into, 682
altering length of, 682
appending data to, 683–684
array declarations, 84
changing size of arrays, 682
composite data types, 680
copying array of elements from, 682
data types, 84
deleting values from end of, 682
elements of, 85
mail merge program, 89
Many Bouncing Balls program, 93
multidimensional arrays, 213
pixels[] array, 430
size restriction on, 84
zero-indexing of, 85

Arrays class, Java, 682
art

code artists, 14–24
history of computer art, 8–14
The Computer in Art, 13

assignment operator, 75–76
equals (equal to) operator and, 43, 75
shortcut syntax, 76, 184

asteroid shower
developing animation, 535–551

Asteroid Shower sketch, 551
atan2 function, 742

2D collisions, 560
asteroid shower animation, 535
easing, 504

Atanasoff, John, 11
Attributes (shape) section, Processing API, 698
Attributes (typography) section, Processing API, 740
Auto Format command, Tools menu, 155
AWT components, 590
axis

getAxis/setAxis methods, 474
Aztec stone of the sun, replica of, 6

B
Babbage, Charles, 10, 11
background function, 484, 724

Bouncing Ball program, 79
collision detection, 489
description, 61
setting background color, 177

Ball class, 154, 552, 555
basic mode, 158
beautify, Auto Format command, 155
beginDraw function, 735
beginRecord function, 710

617xIndex.qxd 4/30/07 1:41 PM Page 777

beginShape function, 209
applying vertex function, 219
arguments, 699
bezier() vs. bezierVertex() sketch, 287
calling vertex function, 210, 698, 699
creating custom 3D cube, 628
creating line strips, 220
extrusion example, 656
plotting shapes, 358, 359
polygon creation sketch, 229
QUAD_STRIP mode, 372
QUADS mode, 369, 370
TRIANGLES mode, 368, 369
TRIANGLE_FAN mode, 372
TRIANGLE_STRIP mode, 372

BEVEL constant, 228
Bézier curve

connecting Bézier curves together, 279
cubic Bézier curve, 278
description, 693
interpolating Bézier curve within convex hull, 277
showing anchor and control points, 274

bezier function, 273–298
Bézier Ellipse sketches, 292–294
creating elliptical plots, 290
parameters, 281

bezierDetail function, 298
bezierPoint function, 298
bezierTangent function, 298
bezierVertex function, 284, 287, 698

creating hybrid shapes, 368
billiard ball physics, 552
binary machine code, 13
binary operators, 76
binary values, converting to decimal, 762
biographies, code artists, 14–24
bit mask, 769
bitwise complement (~), 769
bitwise operations, 443–448, 729, 760–773

color functions, 423
color variations filter using, 773
Contrast sketch, 448
description, 760
image using, 444
performing bitwise operations on color, 763
shifting bits, 763–767
signed bit, 765
Tint sketch, 446
two’s complement system, 765

bitwise operators, 767–769
AND (&), 767, 769
bitwise complement (~), 769
left shift (<<), 763
OR (|), 768
right shift (>>), 728, 763
XOR (^), 769

INDEX

778

Bitwise Operators section, Processing API, 741
black-box design see encapsulation
blend function, 452, 459–467

ADD mode, 463
BLEND mode, 463
DARKEST mode, 460, 463
display window or PImage, 459
LIGHTEST mode, 463, 468
SUBTRACT mode, 463, 464, 465, 466

blend method, PImage, 460
BLEND mode, blend function, 463
blend sketch, 461, 462, 463
BlendColor and LerpColor sketch, 730
blendColor function, 419, 420, 729
blendColor sketch, 420
blind spot of the eye, 117
block comment tags, 60
blue component

color data structure, 762
specifying color value, 728

blue function, 422, 423, 728
blur

gradient blur effect, 348
Triangle Blur sketch, 348

BLUR argument, filter function, 458, 459
BLUR Filter sketch, 458
boolean data type, 65
boolean keyword, 577
Boolean logic, 79, 685
Bouncing Ball programs, 76, 90
boundaries

checkBoundaryCollision function, 552
collision detection, 487

bounding boxes, 344, 345
Box class, 302
box function

see also rectangles
coding in 3D, 618, 647, 696
creating custom 3D cube, 627
Extrusion Example sketch, 651
rotations, 637

Box Springs sketch, 705
boxes

Extrusion Example sketches, 655
braces, curly braces { }, 61
branching algorithm, 47
break statements

fades creating space, 192
switch statements, 82

brightness function, 422, 423, 728
browsers

Java applets, 150
Brunelleschi, Filippo, 8
brush tool, 591, 598
BufferedImage class, Java, 112

32-bit color, 114
class structure, 112

617xIndex.qxd 4/30/07 1:41 PM Page 778

handling pixel and image data, 113
pixel buffer, 113
Processing hiding complexity of, 114
raster graphics, 115
translucency, 114

buffers
pixel buffer, 113

bugs
see also debugging
description, 44
history of term “software bug”, 13

BurritoRecipe class
class declaration, 308
constructors, 309–311
methods, 311–318
OOP example, 303–318
printRecipe method, 312
Processing implementation, 314
properties, 308–309

Burton, Ed, 516
buttons

adding interface elements, 579–590
detecting mouse events on, 579
Final Interactive Button sketch, 582–590
First Button sketch, 579–580
Interactive Button sketch, 580–582

buttons, toolbar, 149–150
bytecode, 37

Java code, 145
bytes

saveBytes function, 710
unique values from a single byte, 65, 66

C
Calculation section, Processing API, 741
camelback notation, 63
Camera section, Processing API, 719
Cartesian coordinate system, 109

converting from polar to, 228
case sensitivity

variable names, 65
case statement

Conditionals section, Processing API, 689
casting

type casting, 67
Catmull-Rom spline implementation, 281
ceil function, 741
CENTER mode

ellipse function, 342
rect function, 341

centerX/centerY variables
soft-body dynamics, 519

CENTER_RADIUS mode
ellipse function, 342

characters
illegal characters, 63

checkBoundaryCollision function, 552

INDEX

779

checkCollisions function, 99
checkGroundCollision function, 537, 540, 541, 543, 545,

550, 551
checkObjectCollision function, 552, 554, 556, 558
checkOverInitialNode function, 575, 576
checkWallCollision function, 536, 540, 545, 550, 551
Chinnathambi, Kirupa, 534
chromatic intensity property, 402
circles

area of circle, 754
circumference of circle, 754
creating circles with arc(), 269

class constants, 470
class declaration, OOP, 308
class keyword, 304

creating classes, 379
class properties, 308, 325
classes

see also Java classes
abstract class declaration, 470
abstract classes, 333
abstract methods, 471
adding custom classes, 159
assigning object reference to extended class, 323
class constants, 470
class declaration, 308
continuous programming mode, 159
data types and, 325
description, 302, 303, 378
Door class, 382–386
getter and setter methods, 472
Gradient class, 469
House class, 391–396
inheritance, 302, 320–323
instance properties, 471
interacting with, 302
LinearGradient class, 472
multiple constructors, 305
naming conventions/rules, 304, 321
object-oriented programming, 58
organizing classes using multiple tabs, 478
packages, 321
packages solving same name class problem, 154
Processing using libraries of, 303
public interface, 391
RadialGradient class, 474
Roof class, 389
using classes in Processing, 317
Window class, 386–389

clear button
Drawing Application example, 591, 593, 600, 602

clicks
see also mouse events
detecting multiple mouse clicks, 612
mousePressed function, 566
mouseReleased function, 567

617xIndex.qxd 4/30/07 1:41 PM Page 779

clipping planes, frustum, 719
clocks

Analog Clock sketch, 709
CLOSE argument, endShape function, 699

line loops, 226
plotting shapes, 359

Close, Chuck, 111
code

debugging code, print function, 61
printing code, 152
representing lines with, 174–237
structuring code, 32

code art, interactivity with, 564
code artists, 14–24
code layout

Auto Format command, Tools menu, 155
code libraries

organizing into packages, 154
coding

see also Processing programs
algorithmic tree, 45–53
arrays, 83–85
case sensitivity of variable names, 65
comments, 60
conditional statements, 76–83
curly braces { }, 61
dot (.) syntax, 62
Format for Discourse command, 157
functions, 96–103
learning from coding mistakes, 44
literals, 64
loops, 85–96
operators, 72–76
programming modes, 158
structure in coding, 58
switch statements, 81–82
text editor, Processing window, 147
use of indentation, 62
variables, 65–72
whitespace, 60

coding in 3D, 616–672
3D engine, 618
3D rotations, 635–646
3D transformations, 618–624
computer optimization for rendering, 651
constructing brick tower, 647–650
creating custom cube, 625–635
Cube class, 626–634
cube to pyramid to cone to cylinder, 657–662
extrusion, 650–657
lathing, 663
P3D rendering engine, 616
perspective, 618
Point3D class, 625–626
Processing built-in 3D support, 616

INDEX

780

rotation of rectangle around XYZ axes, 639
software options, 616
sphereDetail function, 696
Spinning 3D Stuff sketch, 697
spinning cube, 616
toroids, 662–671

Cohen, Harold, 16
collapse panes buttons, Processing window, 150
Collections framework, Java, 39
collision detection, 487–491

asteroid shower animation, 536, 550
checkCollisions function, 99
detectCollision function, 689
falling random bouncing strands, 252
moving box across screen, 99

Collision Detection and Timeout sketch, 491
collisions

1D collisions, 552–556
accounting for mass, 555
using Conservation of Momentum sketch, 557
with Swapping Velocities sketch, 554

2D collisions, 557–561
non-orthogonal 2D collisions, 557
using Conservation of Momentum sketch, 559

applying vectors in collisions, 525
asteroid shower animation, 535–551
checkBoundaryCollision function, 552
checkObjectCollision function, 552
handling non-orthogonal collisions, 532–534

by rotating coordinates, 532
inter-object collisions, 552–561
law of reflection, 525–532
object collisions, 520–534
orthogonal collisions, 521, 525
orthogonal vs. non-orthogonal collisions, 525

color
24-bit color, 113
48-bit color, 114
8-bit color, 114
accessing individual color component values, 422
Alpha sketch, 407
bits per pixel, 400
bitwise operations, 443–448
brightness vs. darkness of, 402
changing color of points, 174
chromatic intensity property, 402
Color Shift sketch, 401
controlling alpha transparency, 406–408
dithering, 114
Fade-Spin sketch, 408
fades creating space, 191–195
generating a color, 729
horizontal and vertical fade to black, 193
horizontal fade to black, 191
hue property, 402

617xIndex.qxd 4/30/07 1:41 PM Page 780

importance of color, 400–401
indexed color, 114
object-oriented approach to, 468–478
performing bitwise operations on, 763
Rotated Triangle sketch, 403
setting background color, 177
setting color mode, 415–419
specifying color value, 728
Subtractive ColorWheel sketch, 405
theory of color, 401–408
true color, 114
value property, 402
web safe palette, 114

Color Banding with pixels[] sketch, 431
Color Component Functions sketch, 423
color components

bitwise operations, 444
INVERT argument, 453

color data structure, 762
color data type, 729

creating arrays, 404
Drawing Application example, 595
primitive data types, 679

color function, 402
accessing individual color component values, 422

color functions in Processing, 419–423
bitwise operations, 423

color mode
Multi Modes sketch, 418
setting color mode, 415–419

color model, additive/subtractive, 406
Color Modes RGB/HSB sketch, 416
color palettes

dithering, 114
Drawing Application example, 592, 595
web safe palette, 66, 114

Color Picker command, Tools menu, 156
Color section, Processing API, 724–730
Color Shift sketch, 401
Color Static sketch, 432
color variations filter using bitwise operations, 773
color wheel

Subtractive ColorWheel sketch, 405
colorMode function, 726

accessing individual color component values, 422
Drawing Application example, 595
Multi Modes sketch, 418
setting color mode, 415, 417

columns
calculating columns based on number of points, 179

commands, Processing window
Edit menu, 152
File menu, 151
Help menu, 157
Sketch menu, 154
Tools menu, 155

INDEX

781

comments
block comment tags, 60
commenting out a single line, 60
Structure section, Processing API, 677

compilers
history of computers, 13
jikes Java compiler, 145
just-in-time compilers, 38

compiling, 37
hidden file tabs, 148
Run button, toolbar, 149

complete Processing API see Processing API
components

color components, 444
display window, 409

composite data types, 680
Composite section, Processing API, 680
Compositing sketch, 436
composition, OOP, 323–336

has-a relationship, 324
House class using, 391

compression
lossless compression, 115
lossy compression, 115
LZW compression, 115

computation, aesthetics and, 5–8
computer art, history of, 8–14
computer graphics see graphics
Computer in Art, The, 13
computer-aided design, graphics, 108
computers

analog computers, 14
dumb machines, 41

concatenation operator (+), 313
conditional expressions

collision detection, 488
is not equal to (!=), 313

conditional operators, 74
conditional statements, 76–83

see also if . . . else syntax
Boolean logic, 79, 685
switch statements, 81–82
ternary operator, 83

Conditionals section, Processing API, 689
cones

cube to pyramid to cone to cylinder, 657–662
conservation of momentum, law of, 555
constants, 308

class constants, 470
magic numbers, 178
naming conventions/rules, 325

Constants section, Processing API, 743
constrain function, 448
constructors, OOP, 305, 380

BurritoRecipe class, 309–311
creating your own constructors, 380
multiple constructors, 305

617xIndex.qxd 4/30/07 1:41 PM Page 781

naming conventions/rules, 309
parameters, 310

continuity
curves in geometry, 126

continuous mode, 159–161
continuous radial gradient program, 88
Contrast sketch (using bitwise operations), 448
Control section, Processing API, 684–691
Conversion section, Processing API, 681
coordinate systems, graphics, 109–111

3D coordinate system, 111
Cartesian coordinate system, 109
local vs. world coordinates, 111
origin, 109
polar coordinate system, 228
registration point, 110

Coordinates section, Processing API, 719
Copy command, Edit menu, 153
CORNER mode

imageMode function, 733
rect function, 341

CORNERS mode
imageMode function, 733
rect function, 341

Cornish, Dr. Neil, 130
cos function

creating curves using trig, 256
Drawing Application example, 598
translating rotations, 535

cosine
mnemonic for trig functions, 756

cosine wave, phase shift, 756
Create Font command, Tools menu, 155, 582
Create Font dialog box, 155
create method, Cube class, 627, 628

creating custom 3D cube, 628–631
create method, SpinnyCube class, 646
createFont function, 738

Drawing Application example, 592, 594
createGradient function, 426
createGraphics function, 734, 735
createPredatoryTriangle function, 504
createRect function, 641
createSpring function, 513
Creating & Reading section, Processing API, 728
crenellation

constructing 3D brick tower, 647, 649
cross-platform functionality, Java, 144
Csuri, Charles, 23
Cube class

constructing brick tower, 647–650
constructors, 627
create method, 627, 628
creating custom 3D cube, 626, 628–631, 634
rotation of cube around XYZ axes, 642

Cube to Pyramid to Cone to Cylinder sketch, 660, 661

INDEX

782

cubes
creating custom 3D cube, 625–635
cube to pyramid to cone to cylinder, 657–662
Cubes Contained Within a Cube sketch, 634
drawing cubes sketch, 166
multiple translations example, 620
rotation of cube around XYZ axes, 642
spinning 3D cube, 616
Two Rotating Custom Cubes sketch, 631

cubic curve, 266
curves in geometry, 124
number of turning points in, 125
plot of cubic curve, 267
Processing generating, 125

Cubic Grid sketch, 624
curly braces { }, 61

Bouncing Ball program, 79
using in functions, 34

cursor function, 582
cursor PNG images, 594
cursors

built-in cursor icons, 582
Environment section, Processing API, 678

curve function, 273–298
Bézier Ellipse sketch, 292, 293, 294
creating elliptical plots, 290
Curve Ellipse sketch, 297
curve() vs. curveVertex(), 289
description, 693
parameters, 281
spline curve using curve function, 281

curveDetail function, 298
curveEllipse function, 298
curvePoint function, 298
curves

arc function, 268–272
Bézier curves, 693

showing anchor and control points, 274
bezier function, 273–298
connecting Bézier curves together, 279
controlling curvature, 283
creating curves using polynomials, 262–267
creating curves using trig, 255–262
creating first curve, 246–255
creating hybrid shapes, 365
cubic Bézier curve, 278
cubic curve, 266
curve created from points, 247
curve function, 273–298
curves as particle waves, 260
curveTightness function, 283
damping effect on curves, 257
falling random bouncing strands, 252
falling random strands, 250

617xIndex.qxd 4/30/07 1:41 PM Page 782

generating curve with second-degree polynomial, 264,
265

generating parabola with quadratic curve, 266
interpolating Bézier curve within convex hull, 277
lines and curves, 242–255
pie chart, 270
Processing’s curve functions, 267–298
repeating distorted sine curve, 134
repeating sine curve, 132
spline curve using curve function, 281, 693
vector graphics, 116

curves in geometry, 124–131
acceleration curve, 127
continuity, 126
cubic curve, 124
deceleration curve, 127
number of turning points in curves, 124
quadratic curve, 124
secant lines, 128
smoothness, 126

Curves section, Processing API, 693
Curves sketch, 695
curveTightness function

controlling curvature using, 283
soft-body dynamics, 520

curveVertex function, 287, 298
creating hybrid shapes, 368
curve() vs. curveVertex(), 289
soft-body dynamics, 520
specifying curves, 698

custom functions see functions, list of
Cut command, Edit menu, 153
cylinders

constructing 3D brick tower, 647–650
cube to pyramid to cone to cylinder, 657–662

D
damping effect on curves, 257
damping variable, 495
DARKEST mode, blend function, 460, 463
data conversion, 681
data hiding, 319–320

public properties in Processing, 320
Data section, Processing API, 678–684
data types

arrays, 84
boolean, 65
classes as, 313, 325
color data type, 729
Data section, Processing API, 678
declaring primitive variable type, 65
declaring variables, 67
double data type, 309
dynamically typed languages, 67
float, 179, 309

INDEX

783

int, 65
interfaces as, 331
PGraphics, 734
PImage, 433, 731
Point, 346
primitive types, 313, 679
Processing type and anti-aliasing, 215
statically typed languages, 67
strict typing, 66–72
String, 61, 65
type casting, 67
type conversions, 67

data visualization, 108
Davis, Joshua, 23
day function, 708
DBN (Design By Numbers)

origin of Processing, 30
reason for creating, 8

debugging
see also bugs
logic errors, 81
message area indicating errors, 147
println function, 426
text area, Processing window, 147

deceleration curve, 127
decimal values, 309
decision statements see conditional statements
Deck, Andy, 23
declaring variables, 66
decrement operator, 741
degrees, converting between radians and, 758
deltaX/deltaY variables

asteroid shower animation, 538, 539
easing, 500, 504
springing, 506

Descartes, René, 109
deselectBtns function, 600, 602
design, computer-aided, 108
Design By Numbers see DBN
design patterns

common OOP implementations, 657
detectCollision function

Population Explosion sketch, 689
development environments, 144–170
Digital Landfill, 18
directionX/directionY variable

reflection, 530, 531
vectors, 522

directories
Examples directory, 151
opening directory of current sketch, 154
Sketchbook directory, 151

display of information, graphics, 108
display size, setting, 177
display window

blend function, 459
components, 409

617xIndex.qxd 4/30/07 1:41 PM Page 783

functions, 440
loadPixels function, 451

DisplayMode class, Java, 111
distance formula

Pythagorean theorem, 752
dithering, 114
division

modulus operator, 73
operator precedence, 121

do . . . while loop, 86–87
Door class

creating a neighborhood, 382–386
creating Door object, 386
Drawing a Door sketch, 385
methods, 382, 384
properties, 382
using Door objects in House class, 391, 393, 394

doping, 761
dot (.) syntax, 62
dot product calculation, 531
dots per inch (dpi)

printing images, 116
double data type, 309
double keyword, 309
downloads, Processing, 59
dragging mouse

mouseDragged function, 568
draw function

adding fading to sketch, 491
asteroid shower animation, 550
Bouncing Ball program, 78, 79, 80
continuous mode introducing, 159
controlling animation in Processing, 79
Drawing Application example, 595, 598, 600
event detection, 140
Final Interactive Button example, 587
Many Bouncing Balls program, 95
moving box across screen, 98
shape builder and animator example, 575
threads in animation, 484

drawDoor method, 382, 384
drawEdge function, 575, 576
drawEllipse function, 293
drawHouse method, 393, 394
drawing application

Processing creating, 590–603
raster-based approach, 590
vector-based approach, 590

Drawing Application sketch, 591
drawing methods

vertices, 112
drawing modes see modes
drawNode function, 575, 576
drawPoly function, 377
drawRectangle function, 96, 97
drawTable function, 205, 209
drawWindow method, 389

INDEX

784

Dürer, Albrecht, 8
dynamically typed languages, 67
dynamics, soft-body, 516–520

E
easing, 500–505
Edit menu, Processing window, 152–153

commands, 152
Copy command, 153
Cut command, 153
Find command, 153
Find Next command, 153
Paste command, 153
Redo command, 152
Select All command, 153
Undo command, 152

editors
text editor, Processing window, 147

elements
accessing values in arrays, 85
adding interface elements, 579–590

ellipse function, 61
arguments, 269
Bouncing Ball program, 79
changing default mode, 693
default mode, 342
default origin, 341
stepped radial gradient program, 72

ellipseMode function, 342, 343
arguments, 693
drawing arcs, 269

ellipses
Curve Ellipse sketch, 297
curveEllipse function, 298
ellipses with bounding boxes sketch, 344
Ravenous Ellipse sketch, 502

elliptical plots
creating elliptical plots, 290
creating elliptical spline plot, 295

else keyword
Conditionals section, Processing API, 689

else statement see if . . . else syntax
emissive function, 720
encapsulation, 319–320

description, 302
encapsulating procedural complexity, 378
tessellate function, 378

encrypt function, 438
encryption

Image Encryption sketch, 439
VERY_HIGH option, 439

end caps for lines
joining lines, 200
strokeCap function, 198, 199
strokeJoin function, 228

endDraw function, 735

617xIndex.qxd 4/30/07 1:41 PM Page 784

endRecord function, 710
endShape function

applying vertex function, 219
calling vertex function, 210, 698, 699
CLOSE argument, 699

line loops, 226
creating custom 3D cube, 628
bezier() vs. bezierVertex() sketch, 287
extrusion example, 656
plotting shapes, 358, 359
polygon creation sketch, 229

ENIAC computer, 12
enumerated types

switch statements, 82
Environment section, Processing API, 678
environmental properties, accessing, 678
equal to operator

confusion with assignment operator, 75
relational operators, 73

equals method, Java, 681
equals operator

assignment operator compared, 43
eraser

Drawing Application example, 591
errors

debugging logic errors, 81
debugging using text area, 147
message area indicating, 147
“No accessible method” error, 148
OutOfMemoryError, 433
“Type . . . was not found” error, 148

escape sequences, 380
Event class, Java, 140
event loop

Bouncing Ball program, 80
events

description, 564
event detection, 139
event handling, 140
focus events, 139
higher/lower levels of detection, 564
interactivity and events, 564–613
key event detection, 605
keyboard events, 139, 603–611
menu events, 139
mouse events, 139, 565–590
polling, 139
types of event, 139
window events, 139

Ewing, Ric, 362
Examples directory

Sketchbook submenu, File menu, 151
exception handling, 378
executing code

Run/Stop buttons, toolbar, 149
exponential notation, 130
exponentials, 749, 750

INDEX

785

Export Application command, File menu, 152
Export button, toolbar, 150
Export command, File menu, 152
Export section

Getting Started command, Help menu, 157
Extended option

Reference command, Help menu, 158
extends keyword

inheritance, 322
object-oriented approach to color/imaging, 469

extrusion, 650
coding in 3D, 650–657
Extrusion Example sketch, 651

hollow box version, 655
solid box version, 655
wireframe box version, 656

F
Fade-Spin sketch, 408
fadeScreen function, 159
fading

adding fading to sketch, 491
fades creating space, 191–195
horizontal and vertical fade to black, 193
horizontal fade to black, 191

Fading sketch, 492
FAQs

Frequently Asked Questions command, 158
Feed, 19
Fermat, Pierre de, 109
File menu, Processing window, 150–152

commands, 151
Export Application command, 152
Export command, 152
New command, 151
Page Setup command, 152
Print command, 152
Save As command, 152
Save command, 152
Sketchbook command, 151

files
compiling sketches with hidden files, 148
file names, 148
opening file navigator, 154
saving files, 467
tabs indicating in Processing window, 147
using invalid suffix, 148

Files section, Processing API, 710
fill function

changing rendering state color, 726
creating arrays, 404
description, 61, 403, 724
Drawing Application example, 597
stepped radial gradient program, 72
TRIANGLES mode, beginShape(), 369
using 24-bit color, 113

617xIndex.qxd 4/30/07 1:41 PM Page 785

filter function, 452–459
BLUR argument, 458, 459
GRAY argument, 457
INVERT argument, 452, 454
OPAQUE argument, 459
POSTERIZE argument, 458
THRESHOLD argument, 456

filters
BLUR Filter sketch, 458
code art, 4
From Neg to Pos sketch, 455
GRAY Filter sketch, 457
imaging filters, 448–467
INVERT Filter sketch, 452
POSTERIZE Filter sketch, 458
problem with Photoshop filter, 5
THRESHOLD Filter sketch, 456

Final Cut Pro, Apple, 119
final keyword, Java, 199

class constants, 470
Door class, 383
scribble plotter sketch, 218
static variables, 308

Find command, Edit menu, 153
Find in Reference command, Help menu, 158
Find Next command, Edit menu, 153
Flanagan, Mary, 20
Flash, 118

history of Flash, 37
Float class, Point2D

programming algorithmic tree, 47
float data type, 309

rounding on converting float to int, 184
using float type to return float, 179, 662

float function
bug in using, 681

float keyword, 309
floor function, 741
flowers

Triangle Flower sketch, 351, 352
FlyThrough sketch, 724
focus events, 139
focused property, 678
fonts

Create Font command, Tools menu, 155
createFont function, 738
incompatibility of installed fonts, 155
loadFont function, 738, 739
PFont section, Processing API, 737
textFont function, 738

for loop, 87–89
continuous radial gradient, 88
curly braces { }, 62
doubly randomized particle line, 182
Drawing Application example, 597
for-each loop, 89

INDEX

786

HoneyComb sketch, 688
how and when for loops render, 486
local scope, 87, 88
mail merge program, 90
Many Bouncing Balls program, 94, 95
multiple points in line sketch using, 178–179
multiple randomized particle lines, 183
printRecipe method, 314
springing, 510

for-each loop, 89
Format for Discourse command, Tools menu, 157
formatting code layout

Auto Format command, Tools menu, 155
fractions

adding fractions, 749
dividing fractions, 749
multiplying fractions, 748

fragment function, 437
frame rate

animation, 117
default, 538

frameRate function, 79
frames

Interactive Toroid sketch, 668
saveFrame function, 467, 710

frames per second
default, 79

frameworks, 39
Franceschini, Amy, 23
Franke, Herbert W., 15
Frequently Asked Questions command, 158
From Neg to Pos sketch, 455
frustum, camera, 719
Fry, Ben, 5, 8, 22
full stop character

dot (.) syntax, 62
function signature, 209
functions, 96–103

see also functions, list of; methods
3D functions, 647
adding custom functions, 159
arguments, 34

functions without arguments, 61
color functions, 419–423
continuous programming mode, 159
curly braces { }, 34, 62
curve functions, 267–298
description, 32
display window functions, 440
interface and implementation of, 319
magic numbers, 102
methods and, 305
multiple versions of, 100
naming conventions, 63
parameterized, 102
parentheses defining, 60

617xIndex.qxd 4/30/07 1:41 PM Page 786

pixel functions, 429–432
procedural languages, 32, 62
procedural programming, 58, 302
program to draw gray rectangle, 33
recursion, 347
return values, 261
time functions, 491
use of identical keywords for property, 678
writing custom functions, 97, 205

functions, list of
see also functions
abs, 439
alpha, 422
ambient, 720
append, 575, 578, 682
arc, 268–272, 344, 406
arrayCopy, 446
atan2, 535, 742
background, 61, 177
beginDraw, 735
beginRecord, 710
beginShape, 209
bezier, 273–298
bezierDetail, 298
bezierPoint, 298
bezierTangent, 298
bezierVertex, 284, 287, 368
blend, 452, 459–467
blendColor, 419, 420
blue, 422, 423
box, 647
brightness, 422, 423
ceil, 741
checkBoundaryCollision, 552
checkCollisions, 99
checkGroundCollision, 537
checkObjectCollision, 552
checkOverInitialNode, 575
checkWallCollision, 536
color, 402
colorMode, 417, 726
constrain, 448
cos, 256
createFont, 592, 738
createGradient, 426
createGraphics, 734, 735
createPredatoryTriangle, 504
createRect, 641
createSpring, 513
cursor, 582
curve, 267–298
curveDetail, 298
curveEllipse, 298
curvePoint, 298

INDEX

787

curveTightness, 283, 520
curveVertex, 287, 289, 298, 368
day, 708
deselectBtns, 600
detectCollision, 689
draw, 78, 159, 484
drawEdge, 575
drawEllipse, 293
drawNode, 575
drawPoly, 377
drawRectangle, 96, 97
drawTable, 205, 209
ellipse, 61, 342
ellipseMode, 342, 343
emissive, 720
encrypt, 438
endDraw, 735
endRecord, 710
endShape, 210, 698, 699
fadeScreen, 159
fill, 61, 113
filter, 452–459
float, 681
floor, 741
fragment, 437
frameRate, 79
get, 436, 437
getXMotion/getYMotion, 101
green, 422, 423
Hide, 148
hour, 708
hue, 422, 423
image, 434, 733
imageMode, 733
int, 428, 681
isInitialNode, 577
join, 682
keyPressed, 603
keyReleased, 603
lerp, 420
lerpColor, 420, 422
line, 116, 196–199
link, 707
loadFont, 738, 739
loadImage, 433, 732, 733
loadPixels, 429, 431, 732
loop, 491
makePoly, 230
makeRect, 213
makeSprocket, 363
makeWaves, 261
max, 223, 475
millis, 491, 708
min, 223

617xIndex.qxd 4/30/07 1:41 PM Page 787

minute, 708
modelX/modelY/modelZ, 720
month, 708
mouseDragged, 568
mouseMoved, 569
mousePressed, 566
mouseReleased, 567, 568
moveShape, 575, 578
nf, 682
noCursor, 678
noFill, 699
noise, 743
noiseSeed, 743
noLoop, 491
noSmooth, 215, 698
noStroke, 61
paintOutlines, 159
param, 707
parameterized, 102
pixel, 429–432
plot, 262
point, 242
popMatrix, 409, 622–624
pow, 265
print, 61
println, 61, 380
printMatrix, 357
pushMatrix, 409, 622–624
quad, 354
radians, 228, 742
random, 34, 742
randomSeed, 743
rect, 97, 112, 341
rectMode, 110, 341, 342
red, 422, 423
repaint, 484
resetMatrix, 355, 409
rotate, 350, 619
rotateVertices, 641
rotateX, 618
round, 742
saturation, 422, 423
save, 467, 710
saveBytes, 710
saveFrame, 467, 710
saveStrings, 710
scale, 352
screenX/screenY/screenZ, 720
scribble, 215, 218
second, 708
seed, 743
set, 424
setEllipse, 293
setGradient, 426

INDEX

788

setParticles, 261
setRandomStyle, 140
setSpring, 513
setup, 78, 159
shape, 295, 340–378
shapeVertex, 295
shininess, 720
shorten, 682
sin, 256, 411, 413
size, 60
smooth, 214–219
specular, 720
sphere, 647
sphereDetail, 670, 696
splice, 682
split, 682
status, 707
stroke, 174
strokeCap, 198, 199, 698
strokeJoin, 228, 698
strokeWeight, 198, 698
subset, 578, 682
tan, 535
tessellate, 378
text, 738
textAlign, 740
textAscent, 740
textDescent, 740
textFont, 738
textLeading, 740
textMode, 738, 740
textSize, 740
texture, 699
textureMode, 549, 699
textWidth, 740
time, 491
tint, 442
translate, 350, 409, 618
triangle, 345
triBlur, 347
trim, 682
updatePixels, 431, 732
vertex, 209–214, 219
vertexCurve, 281
year, 708

G
geometric progression, 248
geometry

area of circle, 754
area of non-intersecting polygon, 754
area of parallelogram, 753
area of rectangle, 752
area of trapezoid, 753

617xIndex.qxd 4/30/07 1:41 PM Page 788

area of triangle, 752
circumference of circle, 754
curves, 124–131
distance formula, 752
history of, 123
lines, 123
math for graphics, 123–131, 751–755
perimeter of rectangle, 754
points, 123
Pythagorean theorem, 752

gestalt, 42
get function, 436, 437, 731

Drawing Application example, 597, 600
Image Encryption sketch, 437
returning value as color data type, 729

get method, PImage, 440, 731
get methods

accessing private property, 319
BurritoRecipe class example, 303
Environment section, Processing API, 678
getter methods, OOP, 472
private keyword on properties, 312
Processing approach, 382

getClickCount method, 612
getters see get methods
Getting Started command, Help menu, 157
getXMotion/getYMotion functions, 101
global environment properties

Environment section, Processing API, 678
global scope, 87

initializing properties, 310
this keyword, 383
variables in loops, 183

global variables, 70
Drawing Application example, 592
Many Bouncing Balls program, 93
shape builder and animator example, 575

glyphs
incompatibility of installed fonts, 155

Goldberg, Ken, 23
gradient blur effect, 348
Gradient class

object-oriented approach to color/imaging, 469
gradients, 424–429

continuous radial gradient, 88
LinearGradient class, 472–474
Linear Gradient sketch, 425
Mask the Sky with Gradient sketch, 450
pixel gradients, 424
Radial Gradient sketch, 427
RadialGradient class, 474–478
ROY G BIV sketch, 417
set function, 424
setGradient function, 426
stepped radial gradient program, 68
Wave Gradient sketch, 429

INDEX

789

graphic formats, 115–117
raster/vector graphics, 115

graphical user interfaces see GUIs
graphics, 108–141

3D on 2D surface, 109
animation, 108, 117–119
computer-aided design, 108
controlling graphics context, 726
coordinate systems, 109–111
createGraphics function, 734, 735
data visualization, 108
display of information, 108
drawing methods, 112
image refresh rate, 111
images, 111–113
interactivity, 139–141
math for graphics, 119–138

algebra, 120–122
curves, 124–131
geometry, 123–131
lines, 123
points, 123
trigonometry, 131–138

pixels, 113–115
points, 174–176
rectMode function, 110
registration point, 110
simulation, 108
vector graphics, 116–117

Graphics class, 726
Graphics object, 409
paint method, 726

graphics context, controlling, 726
gravity

acceleration with gravity sketch, 494
GRAY argument, filter function, 457
GRAY Filter sketch, 457
grayscale, 400
greater than operators, 73
green component

color data structure, 762
specifying color value, 728

green function, 422, 423, 728
grids

coding a grid, 185
grid generated from points, 187
grid with spaced-out points, 188

vertical lines generated from points, 185
Ground class

asteroid shower animation, 535, 538, 540
GUIs (graphical user interfaces), 108

Processing GUI libraries, 590
Processing IDE, 144–170

Gunter, Edmund, 9

617xIndex.qxd 4/30/07 1:41 PM Page 789

H
haptics, 108
has-a relationship, 324
HATCHING constant, 218, 219
HCI (human-computer interaction), 108
Hébert, Jean-Pierre, 23
height property

stepped radial gradient program, 70
helix

Interactive Toroid sketch, 668, 670
Hello Earth program, 59
Help menu, Processing window, 157–158

Find in Reference command, 158
Frequently Asked Questions command, 158
Getting Started command, 157
Reference command, 158
Troubleshooting command, 158
Visit Processing.org command, 158

hexadecimal color values
Color Picker dialog, 156

hexadecimal system, 728
hidden files

compiling sketches with, 148
Hide function, 148
high-level languages, 31

meaning of higher-level, 13
Hodos, 17
Hopper, Commodore Grace M., 12
horizontal and vertical fade to black, 193
horizontal axis, 109
horizontal fade to black, 191
horizontal line, equation for, 243
horizontal lines generated from points, 187
hour function, 708
House class

creating a neighborhood, 391–396
drawHouse method, 393, 394
using composition, 391

houses
creating a neighborhood, 381–396
Door class, 382–386
Roof class, 389
Window class, 386–389

HSB (hue, saturation, brightness)
Color Modes RGB/HSB sketch, 416
Color Picker dialog, 156
colorMode function, 726
setting color mode, 415

hue function, 422, 423, 728
hue property, 402
hybrid approach

structuring a program using Processing, 33
Hybrid Shape sketch, 366, 368
hybrid shapes, creating, 365–368
Hybrid Springy Dude sketch, 518

INDEX

790

I
icons

built-in cursor icons, 582
IDE (integrated development environment)

Processing as IDE, 30
Processing IDE, 144–170

identifiers
naming conventions, 63

if keyword, 79
if . . . else syntax, 80–81

alternative execution paths, 80
Boolean logic, 79
Bouncing Ball program, 79
collision detection, 488
Conditionals section, Processing API, 689
curly braces { }, 62

if statement without, 201
Drawing Application example, 598, 601
Final Interactive Button example, 587
if . . . else . . . if statement, 81
invalid syntax for, 202
logical flow of programs, 74
nested if statements, 313
springing, 511, 513
switch statements as alternative, 81

Image (output) section, Processing API, 710
image buffer, 735
Image Encryption sketch, 439
image file formats

raster graphics, 115
image function, 733

drawing image to screen, 434
loading and resizing images, 435
rendering PImage object to screen, 195

image mapping
P3D mode, 164
using default image mapping, 549
uv coordinates, 549

Image section, Processing API, 731, 734
Image Tiling sketch, 435
ImageMap sketch, 701
imageMode function, 733
images, 111–113

24-bit color, 113
adding same name image into data directory, 432
animation, 117–119
bitwise operations, 444
BufferedImage class, Java, 112
DisplayMode class, Java, 111
frame rate, 117
handling pixel and image data, 113
Image Encryption sketch, 439
image manipulation, 432–443
Image Tiling sketch, 435
Load an Image sketch, 433

617xIndex.qxd 4/30/07 1:41 PM Page 790

loadImage function, 433, 732, 733
Loading & Displaying (image) section, 733
loading images, 432
Loading Images with set() sketch, 434
mapping image onto surface of shape, 699
PImage data type, 731
PImage methods, 440–443
pixels, 113–115
printing images, 115
Processing image types, 432
refresh rate, 111
vector graphics, 116
working with large images, 433

imaging, 423–478
bitwise operations, 443–448
gradients, 424–429
imaging filters, 448–467
object-oriented approach to, 468–478
saving files, 467

implements keyword, 327
multiple inheritance of interface, 332

Import Library command, Sketch menu, 154
in-betweens, animation, 118
Integer class, Java

parseInt method, 707
incidenceVectorX variable, 531
incidenceVectorY variable, 531
increment operator, 741
indentation in code, creating, 62
index.html file

applet subdirectory, 150
indexed color, 114
infinite loops, 86

recursion, 347
inheritance, OOP, 320–323

applying inheritance, 321–323
assigning object reference to extended class, 323
extends keyword, 322
initializing properties in superclass, 322
introduction, 302
is-a relationship, 324
multiple inheritance, 326
multiple inheritance of interface, 326, 331
Object class, 321
object-oriented approach to color/imaging, 469
OOP inheritance diagram, 320
super keyword, 322
using properties from superclasses, 322

initializing variables, 66
Input section, Processing API, 702–709
instance properties, OOP

object-oriented approach to color/imaging, 471
properties declaration, 308
static properties compared, 308

instance variables
this keyword, 384

INDEX

791

instances of classes see objects
instantiation, OOP, 680

creating Door object, 386
int data type, 65

memory allocation for, 66
rounding on converting float to int, 184
using float type to return float, 179, 662

int function, 428
bug in using, 681

integers
converting strings to integers, 707

interactivity, 139–141, 564–613
adding interface elements, 579–590
code art, 564
creating drawing application, 590–603
event detection, 139
event handling, 140
interactivity simplified by Processing, 564–565
keyboard events, 603–611
mouse events, 565–590

interfaces, 326–328
see also GUIs
adding interface elements, 579–590
data types and, 331
description, 326
implements keyword, 327
interacting with classes, 302
interface to and implementation of functions, 319
multiple inheritance of, 326, 331
polymorphism with interfaces, 331–336
Processing application interface, 146
public interfaces, 302
reasons for using, 328

interpolation, 420
INVERT argument, filter function, 452, 454
INVERT Filter sketch, 452
is not equal to (!=) expression, 313
is-a relationship, 324
isInitialNode function, 577, 578
Iteration section, Processing API, 685

J
JAR (Java Archive) file, 150
Java

appending data to array, 683
bytecode, 145
Collections framework, 39
cross-platform functionality, 144
equals method, 681
exception handling, 378
final keyword, 199
history of, 36–39
how Java works, 37
interactivity simplified by Processing, 564
jikes compiler, 145

617xIndex.qxd 4/30/07 1:41 PM Page 791

MouseListener interface, 564, 565
multiple inheritance of interface, 326, 331
outline of language processes, 31
paint method, 726
parseInt method, 707
polymorphism in, 329
Processing and, 31, 38
Rectangle method, 112
static keyword, 383

Java applets, 37, 38
see also applets

Java classes
see also classes
AffineTransform, 352
ArrayList, 682
Arrays, 682
BufferedImage, 112
DisplayMode, 111
Event, 140
Graphics, 726
Integer, 707
MouseAdapter, 565
Point, 123
Vector, 682

Java Development Kit (JDK), 144
Java file, applet subdirectory, 150
Java graphics programs see sketches
Java mode

programming modes, Processing IDE, 162
public properties in Processing, 320

Java runtime environment (JRE), 144
.java suffix, 148
Java Virtual Machine see JVM
java.awt.* package, 725
JAVA2D mode, 162–163
javax.swing.* package, 725
jikes compiler, 37, 145
jitter variable, mouseMoved function, 569
JOGL, 166
join function, 682
just-in-time compilers, 38
JVM (Java Virtual Machine)

browsers running Java applets, 150
bytecode, 145
event handling, 140
how Processing IDE works, 144
polymorphism in Java/Processing, 329
processing bytecode, 37

K
keyboard events, 139, 603–611

detecting key presses and releases, 603
key event detection, 605

Keyboard section, Processing API, 705
keyboard shortcuts, 149
keyCode property, keyboard events, 604

INDEX

792

keyframes, animation, 118
keyframing model, 482
keyPressed function, 603, 604

key detection code, 705
motion painting application, 610

keyPressed variable, 605
keyReleased function, 603
keystroke events see keyboard events
keywords

abstract, 333
boolean, 577
class, 304
double, 309
else, 689
extends, 322
final, 199, 308, 470
float, 309
if, 79
implements, 327
new, 84, 309
null, 313
private, 312, 319
public, 319
reserved keywords, 65
static, 308, 470
super, 322
this, 311, 473
true, 86
use of identical keywords for function and property, 678
void, 99, 305
while, 86

Klima, John, 23
Klingemann, Mario, 23, 452
Kolam art, 7
Kurzweil, Ray, 16

L
languages see programming languages
Laposky, Ben, 14
lathing

coding toroids in 3D, 663
law of conservation of momentum, 555
law of reflection, 525–532
leading

textLeading function, 740
Leavitt, Ruth, 23
Legrady, George, 18
lerp function, 420
LerpColor and BlendColor sketch, 730
lerpColor function, 420, 422, 729
lerpColor sketch, 421
less than operators, 73
Levin, Golan, 23
libraries

organizing code libraries into packages, 154
Processing GUI libraries, 590

617xIndex.qxd 4/30/07 1:41 PM Page 792

Processing libraries, 743
Processing using libraries of classes, 303

Lichtenstein, Roy, 111
light, ambient, 720
LIGHTEST mode, blend function, 463, 467
Lights section, Processing API, 719
Lights, Camera section, Processing API, 718–724
LightWave, 118
line function, 196–199

2D and 3D versions, 196
arguments, 242
drawing 2D/3D lines with, 197
Drawing Application example, 598
vector graphics, 116

line number, Processing window, 147
Linear Gradient sketch, 425
linear motion, 129
LinearGradient class

getAxis/setAxis methods, 474
object-oriented approach to color/imaging, 472–474

lines, 174–237
see also line function
algebraic expression for lines in geometry, 123
applying vertex function, 219
coding a grid, 185

grid generated from points, 187
grid with spaced-out points, 188

concentric maze sketch, 222, 223
creating hybrid shapes, 365
creating line strips, 220–226
creating lines with pixels, 195–196
creating table structure, 202–209
creating triangle, 226, 227
drawing natural (imperfect) lines, 179–184

doubly randomized particle line, 181
multiple randomized particle lines, 183
randomized point line, 180

end caps for, 198, 199
equation for horizontal line, 243
equation for vertical line, 243
fades creating space, 191–195
generating diagonal line with first-degree polynomial,

263
joining lines, 200–202

effect of various end caps, 200
strokeJoin function, 228

line loops, 226–229
line strip sketch, 221
lines and curves, 242–255
maze tile sketch, 224, 226
multiple points in line sketch, 176

using for loop, 178–179
using while loop, 177–178

points considered as lines, 174
radians function, 228

INDEX

793

secant lines, 128
slope, 243
smooth() reducing stroke weight of fine lines, 215
vector graphics, 116
vertex function, 209–214
vertical lines generated from points, 185

LINES mode
applying vertex function, 219

lines per inch (LPI)
printing images, 116

link function, 707
listeners

MouseListener interface, Java, 564, 565
literals, 64
loadFont function, 738, 739
loadImage function, 433, 732, 733
Loading & Displaying (image) section, 733
Loading & Displaying (typography) section, 738
Loading Images with set() sketch, 434
loading.gif file, applet subdirectory, 150
loadPixels function, 429, 431, 432, 732

display window functions, 451
display window pixel data, 441

local scope, 87
for loop, 87, 88
initializing properties, 311
this keyword, 383
variables in loops, 183

local variables, 70
local vs. world coordinates, 111
logarithms

exponential-logarithm relationship, 750
logic errors, debugging, 81
logical and operator see and (logical and) operator
logical not operator, 689
Logical Operators section, Processing API, 689
logical or operator see or (logical or) operator
loop function, 491
loops, 85–96

do . . . while loop, 86–87
for loop, 87–89

multiple points in line sketch using, 178–179
for-each loop, 89
HoneyComb sketch, 688
infinite loops, 86
Iteration section, Processing API, 685
line loops, 226–229
noLoop function, 491
recursion, 46
Using Loop to Create Rectangles sketch, 686
while loop, 85–86

multiple points in line sketch using, 177–178
lossless/lossy compression

raster graphics, 115
Lovelace, Ada, 10
low-level language, 31

617xIndex.qxd 4/30/07 1:41 PM Page 793

M
Mac keyboard shortcuts, 149
machine code, 13
Maeda, John, 5, 8, 19
magic numbers, 102, 178

creating table structure, 205
mail merge program, 89–90
makePoly function

method overloading, 362
plotting shapes, 359
polygon creation sketch, 230, 362

makeRect function
drawing lines, 213
scribble plotter sketch, 215, 218, 219

makeSprocket function, 363–365
makeWaves function, 261
Many Bouncing Balls program, 90, 96
mapping

ImageMap sketch, 701
UV mapping, 699

Mark 1 computer, 11
mask method, PImage, 448
Mask the Sky sketch, 449
Mask the Sky with Gradient sketch, 450
masks

mask like alpha channel, 449
pixel array mask, 450

mass
1D collisions, 555

Material Properties section, Processing API, 720–724
math for graphics, 119–138

3D Math, 109
algebra, 120–122, 748–751
bitwise operations, 760–773
geometry, 123–131, 751–755

curves, 124–131
lines, 123
points, 123

multiplying algebraic expressions, 122
operator precedence, 121
properties of operators, 121–122
trigonometry, 131–138, 755–760
x and y axis directions, 109

Math section, Processing API, 740–743
matrices, 712

affine transformations, 352
managing transformation matrices, 714
matrix stack, 714
pushing and popping matrices, 409–415
resetting affine transformation matrix, 355
Transformation Matrix sketch, 410

matrix stack, 714
max function, 223, 224, 475
maze

concentric maze sketch, 222, 223
maze tile sketch, 224, 226

INDEX

794

members of classes, OOP, 308
memory

working with large images, 433
memory addresses

classes as data types, 313
menu events, 139
menus, Processing window, 150–158
message area, Processing window, 147

collapse panes buttons, 150
resizing window panes, 150

method overloading see overloading
method overriding see overriding
method signatures, 209

multiple constructors, 305
methods

see also functions
abstract methods, 334
blend method, PImage, 460
calling methods, 62
class constructors, 309
constructors, 305
create method, Cube class, 627, 628
create method, SpinnyCube class, 646
description, 62, 302
drawDoor method, 382, 384
drawHouse method, 393, 394
drawing methods, 112
drawWindow method, 389
equals method, Java, 681
functions and, 305
get method, PImage, 440, 731
getClickCount method, 612
getter methods, 472
mask method, PImage, 448
overloaded method, 628
paint method, Graphics class, 726
parseInt method, Integer class, 707
printRecipe method, 312
public keyword, 319
Rectangle method, Java, 112
set method, PImage, 440
setKnob method, Door class, 382, 384
setter methods, 472
sleep method, Thread class, 484
spinnyRotateXYZ method, 646
subclasses overriding methods, 331
void keyword, 305

Metrics section, Processing API, 740
millis function, 491, 708
min function, 223, 224
minute function, 708
MITER constant

joining lines using strokeJoin(), 228
modelX/modelY/modelZ functions, 720

617xIndex.qxd 4/30/07 1:41 PM Page 794

modes
ellipseMode function, 342, 343
multimode capability of Processing, 144
programming modes, 158–162

basic mode, 158
continuous mode, 159–161
Java mode, 162

QUADS mode, beginShape(), 369, 370
QUAD_STRIP mode, beginShape(), 372
rectMode function, 110, 341, 342
rendering modes, 162–169

JAVA2D mode, 162–163
OPENGL mode, 166–169
P2D mode, 162
P3D mode, 164–165

shape modes, 368–374
state change following rectMode call, 342
textMode function, 740
TRIANGLES mode, beginShape(), 368, 369
TRIANGLE_FAN mode, beginShape(), 372
TRIANGLE_STRIP mode, beginShape(), 372

modulus operator, 73, 184, 741
Mohr, Manfred, 23
moiré patterns, 134, 136
momentum, law of conservation of, 555
monitor screen resolution, 115, 678
month function, 708
Moock, Colin, 23
motion

see also animation
accelerated motion, 129
adding fading to sketch, 491
collision detection, 487–491
collisions

handling non-orthogonal collisions, 532–534
easing, 500–505
elapsed time, 491
inter-object collisions, 552–561

1D collisions, 552–556
2D collisions, 557–561

law of reflection, 525–532
linear motion, 129
object collisions, 520–534
object interactions, 500–520
simulating physics, 492–499
soft-body dynamics, 516–520
speed, 128
springing, 505–511

simulating spring behavior, 511–516
vectors, 521–522

applying vectors in collisions, 525
normalizing vectors, 523–525

Motion Painter sketch, 611
motion sketch, 497, 499

INDEX

795

mouse events, 139, 565–590
adding interface elements, 579–590
detecting mouse events on buttons, 579
detecting multiple mouse clicks, 612
detecting which mouse button is pressed, 566
Final Interactive Button sketch, 582–590
First Button sketch, 579–580
Interactive Button sketch, 580–582
mouse click/drag/move detection, 565
mouse move events, 589, 590
mouse press events, 566, 588
mouse release detection, 565
mouse release events, 567, 589
Processing creating drawing application, 590–603

Mouse section, Processing API, 702
MouseAdapter class, Java, 565
mouseButton system variable, 566
mouseDragged function, 568, 702
MouseListener interface, Java, 564, 565
mouseMoved function, 569, 702

automatic syntax color highlighting, 568
Drawing Application example, 600
Final Interactive Button example, 589, 590

mousePressed function, 566
automatic syntax color highlighting, 568
detecting mouse events on buttons, 580
Drawing Application example, 599, 600
Final Interactive Button example, 588
shape builder and animator example, 578
Tile Designer sketch, 735

mousePressed variable, 566, 598, 702
mouseReleased function, 567, 568

automatic syntax color highlighting, 568
Drawing Application example, 600
Final Interactive Button example, 589
Tile Designer sketch, 736

mouseX variable, 702
moveShape function, 575, 578, 579
Moving Along a Vector sketch, 524
moving mouse see mouseMoved function
Multi Modes sketch, 418
multidimensional arrays, 213
multiple inheritance of interface, 326, 331
multiple translations example, 620
multiplication

multiplying algebraic expressions, 122
operator precedence, 121
shortcut assignment operation, 184

Musgrave, Ken, 23

N
Nakamura, Yuko, 23
naming conventions/rules

camelback notation, 63
case sensitivity of variable names, 65
class constructors, 309

617xIndex.qxd 4/30/07 1:41 PM Page 795

classes, 304, 321
constant names, 325
file names, 148
identifiers, 63
illegal characters, 63
invalid suffixes for sketches, 148
legal names, 63, 65
reserved keywords, 65
sketches, 149
variables in loops, 183

Napier, John, 9
Napier, Mark, 18, 564
navigation

opening file navigator, 154
negative numbers, 748
neighborhoods, creating, 381–396

Door class, 382–386
House class, 391–396
Neighborhood sketch, 396
Roof class, 389
Window class, 386–389

Nematode sketch, 411, 413, 415
net.flag

interactivity with code art, 564
New button, toolbar, 149
New command, File menu, 151
new keyword

class constructors, 309
creating objects, 379
memory allocation for arrays, 84

newline escape sequence, 380
nf function, 682
Ngan, William, 23
Nimoy, John, 23
“No accessible method” error, 148
noCursor function, 678
noFill function, 699
noise function, 743
noiseSeed function, 743
noLoop function, 491
non-orthogonal collisions

see also orthogonal collisions
handling, 532–534
handling by rotating coordinates, 532
Multiple Ground Segments sketch, 545
non-orthogonal 2D collisions, 557
orthogonal vs. non-orthogonal collisions, 525
Reflection sketch, 529
Rotated Coordinates sketch, 541

NORMALIZED mode, 549
normalizing vectors, 523–525
noSmooth function, 215, 698
noStroke function, 61, 71, 94
not (logical not) operator, 689
not equal to operator, 73
null keyword

using with “is not equal to”, 313

INDEX

796

number line, 109
numbers

adding fractions, 749
adding negative numbers, 748
converting binary value into decimal, 762
dividing by zero, 748
dividing fractions, 749
exponential notation, 130
exponential-logarithm relationship, 750
formatting numbers into strings, 682
functions rounding numbers, 741
hexadecimal system, 728
magic numbers, 178
multiplying and dividing exponents, 750
multiplying fractions, 748
multiplying negative numbers, 748
negative exponents, 749
subtracting negative numbers, 748

O
Oak, 36
Object class inheritance, 321
object reference

assigning to extended class, 323
object-oriented programming see OOP
object singletons, 678
objects, 33, 302, 303

see also OOP
BurritoRecipe class example, 303
checkObjectCollision function, 552
constructors creating, 305
inter-object collisions, 552–561
methods and, 62
object collisions, 520–534

vectors, 521–534
object interactions, 500–520

easing, 500–505
springing, 505–516

properties and, 62
octagon sketch

plotting shapes, 359
offset printers, 115
On, Josh, 23
online property, 678
OOP (object-oriented programming), 302–336

abstract keyword, 333, 469
applying OOP to shape creation, 378–381
BurritoRecipe class example, 303–318
calling methods in, 62
classes, 58, 302
composition, 323–336
curves as particle waves, 261
data hiding, 319–320
description, 34, 58, 302
design patterns for common implementations, 657

617xIndex.qxd 4/30/07 1:41 PM Page 796

drawing rectangle with OOP sketch, 381
encapsulation, 319–320
extends keyword, 469
final keyword, 470
inheritance, 320–323

Object class, 321
OO approach to color/imaging, 469
OOP inheritance diagram, 320

instances of classes, 302
instantiation, 680
interface to and implementation of functions, 319
interfaces, 326–328

polymorphism with interfaces, 331–336
method overriding, 726
methods of classes, 302
object-oriented approach to color/imaging, 468–478

abstract class declaration, 470
abstract methods, 471
class constants, 470
getter and setter methods, 472
Gradient class, 469
instance properties, 471
LinearGradient class, 472–474
organizing classes using multiple tabs, 478
RadialGradient class, 474–478

object singletons, 678
objects, 33, 378

assigning object reference to extended class, 323
creating objects, 379

polymorphism, 329–331
polymorphism with interfaces, 331–336

procedural OOP (poop) approach, 39–40
Processing and Java, 31
Processing OOP program to draw rectangle, 35
programming language types, 32
properties of classes, 302
static keyword, 470
structuring a program using Processing, 33
this keyword, 473

OPAQUE argument, filter function, 459
Open button, toolbar, 149
Open command

Sketchbook submenu, File menu, 151
OPENGL rendering mode, 166–169

box and sphere functions, 696
mapping image onto surface of shape, 699

operations
bitwise operations, 729

operator precedence, 72, 121
operators, 72–76

assignment operators, 75–76
shortcut assignment operation, 184

associative/non-associative properties of, 121–122
binary operators, 76
bitwise operators, 443–448, 767–769

INDEX

797

concatenation operator (+), 313
conditional operators, 74

logical and operator, 74
logical or operator, 74

decrement operator, 741
increment operator, 741
Logical Operators section, 689
modulus operator, 73, 184, 741
relational operators, 73–74

equal to operator, 73
greater than operators, 73
less than operators, 73
not equal to operator, 73

Relational Operators section, 685
ternary operator, 83
unary operators, 76

Operators section, Processing API, 741
or (logical or) operator, 74, 80

Logical Operators section, 689
OR bitwise operator (|), 768
Orb class

asteroid shower animation, 536, 540
Orbiting Text sketch, 740
orbs

asteroid shower animation, 535–551
order of transformations example, 620
origin, coordinate system

ellipse function, 341
rect function, 341
x and y axis directions, 109

orthogonal collisions, 521, 525
see also non-orthogonal collisions
asteroid shower animation, 537, 538

oscillons, analog computers, 14
OTF (OpenType) font vector format, 738
OutOfMemoryError

working with large images, 433
Output section, Processing API, 710–712
overloaded method, 628
overloading

makePoly function, 362
multiple versions of functions, 100
Window class, 388

overriding, 726
abstract methods, 334
subclasses overriding methods, 331

Overview section
Getting Started command, Help menu, 157

P
P2D mode, 162
P3D mode, 164–165

argument defining rendering mode, 618
asteroid shower animation, 548, 549
Attributes section functions, 698
box and sphere functions, 696

617xIndex.qxd 4/30/07 1:41 PM Page 797

coding in 3D, 616
mapping image onto surface of shape, 699

packages
classes and, 321
java.awt.* package, 725
javax.swing.* package, 725
organizing code libraries into, 154

Page Setup command, File menu, 152
paint method, Graphics class, 726
Painting Stripes sketch, 485, 487
paintOutlines function, 159
palettes see color palettes
parabola with quadratic curve, 266
parallelogram, area of, 753
param function, 707
parameterized function, 102
parameters

arguments and, 209
class constructors, 310
description of use of term, 97

parentheses
curly braces { }, 61
operator precedence, 121
parentheses defining functions, 60
properties of operators, 122

parseInt method, Integer class, 707
particle waves, curves as, 260
particles see points
Paste command, Edit menu, 153
patterns

see also wave patterns
Puff sketch, 137, 139

.pde suffix, 147
pencil tool, 591, 598
Penner, Robert, 23
period character

dot (.) syntax, 62
Perlin, Ken, 23, 743
persistence of vision, 117
perspective, 719

coding in 3D, 618
P3D mode, 164

Peters, Keith, 23, 532, 552
PFont section, Processing API, 737
PGraphics data type, 734
Photoshop filter, problem with, 5
Physical Language Workshop (PLW), 20
physics, simulating, 492–499
pi, 757
Pickett circular slide rule, 9
pie charts, 270

pie wedge shapes within table structure, 271
PImage data type, 433, 434, 731

arrayCopy function, 446
bitwise operations, 446
blend method, 459, 460
get method, 440

INDEX

798

mask method, 448
methods, 440–443
pixels[] array property, 440
rendering object to screen, 195
returning color of PImage, 436
set method, 440

Pitaru, Amit, 23
pixel array mask, 450
Pixel Array Mask sketch, 451
pixel buffer, 113
pixel functions, 429–432
pixel gradients, 424
pixels, 113–115

24-bit color, 113
bits per pixel for color, 400
Color Banding with pixels[] sketch, 431
Color Static sketch, 432
creating lines with pixels, 195–196
description, 109
display window functions, 440
handling pixel and image data, 113
INVERT argument, 453
loadPixels function, 429, 431, 732
performing bitwise operations on color, 763
pixels[] array, 430, 440
points in geometry, 123
registration point, 110
returning color of single pixel, 436
updatePixels function, 431, 732
vector graphics, 116

Pixels array (single white pixel) sketch, 430
Pixels section, Processing API, 732
pixels[] array, 430, 440
pixels[] array property, PImage, 440, 732
Pixilate sketch, 441
platforms

porting programs, 38
Platforms section

Getting Started command, Help menu, 157
plot function, 262
plotters

point recorder/plotter sketch, 211
scribble plotter sketch, 215, 218

plotting shapes, 358–365
using Point class, Java, 346

pmouseX/pmouseY variable, 500
Pockets Full of Memories, 18
Point class, Java, 123

asteroid shower animation, 548
Bézier curve showing anchor/control points, 274
data types, 346
plotting, 346

point function, 242
point of inflection, 266
Point3D class

coding toroids in 3D, 663
constructing 3D brick tower, 647

617xIndex.qxd 4/30/07 1:41 PM Page 798

creating custom 3D cube, 625–626
cube to pyramid to cone to cylinder, 657
rotation of cube around XYZ axes, 642

pointers
reference variables, 679

points, 174–176
calculating columns based on number of, 179
changing color of, 174
coding a grid, 185

grid generated from points, 187
grid with spaced-out points, 188

curve created from, 247
drawing natural (imperfect) lines, 179–184

doubly randomized particle line, 181
multiple randomized particle lines, 183
randomized point line, 180

fades creating space, 191–195
multiple points in line sketch, 176

using for loop, 178–179
using while loop, 177–178

point recorder/plotter sketch, 211
points considered as lines, 174
points in geometry, 123
randomized particle spray, 181
single-point sketch, 174
three point sketch, 175
two point sketch, 175
vertex function, 209–214
vertical lines generated from, 185

POINTS mode, 210
polar coordinate system

converting from polar to Cartesian, 228
measuring angles with radians, 757
unit circle, 228

polling
event detection, 139

Polygon class
applying inheritance, 321–323

polygons
area of non-intersecting polygon, 754
generating polygon sketch, 162
generating regular polygon, 647
makePoly function, 230, 359
plotting shapes, 358, 359
polygon creation sketch, 229
Polygon Creator sketch, 362
polygon with second radius (polystar), 230, 235, 237
polygonal table structure, 230, 232
rotating concentric 3D polygons sketch, 164
simple and complex polygons, 370
spiral built of, 230, 233, 234

polyhedrons
Interactive Toroid sketch, 669

polymorphism, OOP, 329–331
with interfaces, 331–336

INDEX

799

polynomials
see also quadratic curves
cubic curve, 266
first-degree polynomial, 262
generating curves using, 262–267
plot of cubic curve, 267
second-degree polynomial, 263, 264, 265
third- and higher-degree polynomial, 266

polystar
polygon with second radius, 230, 235, 237

popMatrix function
altering matrix stack, 714
creating custom 3D cube, 634
Fade-Spin sketch, 409
multiple translations example, 622–624
pushing and popping matrices, 409
single axis 3D rotation, 637

Population Explosion sketch, 691
porting programs, 38
POSTERIZE argument, filter function, 458
POSTERIZE Filter sketch, 458
pow function, 265
precedence of operators, 72
Present command, Sketch menu, 154
primitive data types, 679
Primitive section, Processing API, 679
primitive variables, 65–72, 380, 679
primitives (primitive shapes), 340

2D Primitives section, 692
3D Primitives section, 696

Print command, File menu, 152
print function, 710

argument type, 61
debugging code, 61
mail merge program, 90

printing, 152
printing images

offset printers, 115
println function, 61, 710

debugging, 81, 426
mail merge program, 90
newline escape sequence, 380

printMatrix function, 357
printRecipe method, 312
private keyword

accessing private property, 319
changing property values, 312
data hiding, 319

procedural languages
functions, 32, 62
procedural OOP (poop) approach, 39–40
procedural programming, 58
Processing and Java, 31
programming language types, 32

procedural programming, 302
structuring a program using Processing, 33

617xIndex.qxd 4/30/07 1:41 PM Page 799

procedures see functions
Processing

3D rotations, 635–646
affine transformations, 352
approach to get and set methods, 382
as programming language, 31
bytecode, 145
coding in 3D, 616–672
color functions in Processing, 419–423
creating classes, 379
curve functions, 267–298
default frame rate, 538
downloading, 59
drawing methods, 112
events and interactivity, 564–613
exception handling, 378
explicitly setting registration point, 110
filters and blends, 448–467
framework described, 39
graphics, 108–141
GUI libraries, 590
handling huge files, 433
how Processing works, 144–146
image manipulation, 432–443
image types, 432
imaging, 423–478
imaging filters, 448–467
interactivity simplified by Processing, 564–565
Java and, 31, 38
Java applet and, 37
keyboard events, 603–611
libraries of classes, 303
lines, 174–237
mouse events, 565–590
multimode capability, 144
multiple inheritance of interface, 326, 331
object-oriented approach to color/imaging, 468–478
origin of Processing, 30
outline of language processes, 31
PImage data type, 731
polymorphism in, 329
Processing window, 146–158
programming modes, 158–162
public/private properties, 320
reasons to use for animation, 119
rendering modes, 162–169
saving files, 467
scope, 305
setting display size, 177
shape functions, 340–378
structuring a program using, 33
targeting properties, 312
type and anti-aliasing, 215
using classes in, 317

INDEX

800

VLW format, 737
x and y axis directions, 109

Processing API, 676–743
2D Primitives section, 692
3D Primitives section, 696
Array Functions section, 682
Attributes (shape) section, 698
Attributes (typography) section, 740
Bitwise Operators section, 741
Calculation section, 741
Camera section, 719
Color section, 724–730
complete (extended) API, 677
Composite section, 680
Conditionals section, 689
Constants section, 743
Control section, 684–691
Conversion section, 681
Coordinates section, 719
Creating & Reading section, 728
Curves section, 693
Data section, 678–684
Environment section, 678
Files section, 710
Image (output) section, 710
Image section, 731–734
Input section, 702–709
introduction, 676–677
Iteration section, 685
Keyboard section, 705
Lights section, 719
Lights, Camera section, 718–724
Loading & Displaying (image) section, 733
Loading & Displaying (typography) section, 738
Logical Operators section, 689
Material Properties section, 720–724
Math section, 740–743
Metrics section, 740
Mouse section, 702
Operators section, 741
Output section, 710–712
PFont section, 737
Pixels section, 732
Primitive section, 679
Random section, 742
Reference command, Help menu, 158
Relational Operators section, 685
Rendering section, 734–736
Setting section, 725
Shape section, 691–701
String Functions section, 682
Structure section, 677
Text Area section, 710
Time & Date section, 708

617xIndex.qxd 4/30/07 1:41 PM Page 800

Transform section, 712–718
Trigonometry section, 742
Typography section, 737–740
Vertex section, 698
viewing options, 676
Web section, 707

Processing discourse board, 157
Processing environment, 144–170
Processing files, 150
Processing framework, 39
Processing functions see functions, list of
Processing IDE, 30, 144–170
Processing libraries, 743

Import Library command, 154
importing PDF library, 712

Processing modes see modes
Processing programs

see also coding; Processing programs, list of
arrays, 83–85
conditional statements, 76–83
functions, 96–103
functions with arguments, 60
functions without arguments, 61
how Processing IDE works, 145
literals, 64
logical flow of programs, 74
loops, 85–96
operators, 72–76
parentheses defining functions, 60
semicolons in, 60
statements, 60
switch statements, 81–82
variables, 65–72

Processing programs, list of
see also Processing sketches
algorithmic tree, 45–53
Bouncing Ball program, 76, 90
continuous radial gradient program, 88
drawing black rectangle, 32

Java applet version of, 38
OOP version of, 35

drawing rectangle, 96, 97
Hello Earth program, 59
mail merge program, 89–90
Many Bouncing Balls program, 90, 96
moving box across screen, 98
stepped radial gradient program, 68

Processing sketches, 144
see also sketches; Processing programs, list of
.pde suffix, 147
1D Collision Using Conservation of Momentum, 557
1D Collision with Swapping Velocities, 554
2D Collision Using Conservation of Momentum, 559
Acceleration Calculations sketch output, 495
acceleration with gravity, 494

INDEX

801

Alpha, 407
Analog Clock, 709
arcs with bounding boxes, 344, 345
Asteroid Shower, 551
Bézier Ellipse, 292, 294
bezier() vs. bezierVertex(), 287
blend function using SUBTRACT mode, 464, 465, 466
blend, 461, 462, 463
BlendColor and LerpColor, 730
blendColor, 420
BLUR Filter, 458
Box Springs, 705
Button, 579, 580
Collision Detection and Timeout, 491
Color Banding with pixels[], 431
Color Component Functions, 423
Color Modes RGB/HSB, 416
Color Shift, 401
Color, 727
Color Static, 432
Compositing, 436
concentric maze, 222, 223
Contrast (using bitwise operations), 448
create triangle, 227
Cube to Pyramid to Cone to Cylinder, 660–661
Cubes Contained Within a Cube, 634
Cubic Grid, 624
Curve Ellipse, 297
curve() vs. curveVertex(), 289
Curves, 695
Disintegrating Quad Wall, 356
Drawing a Door, 385
Drawing Application, 591
drawing cubes, 166
drawing rectangle with OOP, 381
drawing shapes, 159
Drawing Some Roofs, 391
Drawing Some Windows, 388
ellipses with bounding boxes, 344
Extrusion Example, 651

hollow box version, 655
solid box version, 655
wireframe box version, 656

Fade-Spin, 408
Fading, 492
FlyThrough, 724
From Neg to Pos, 455
generating polygon, 162
GRAY Filter, 457
grid sketches, 185, 188
HoneyComb, 688
horizontal and vertical fade to black, 193
horizontal fade to black, 191
how Processing IDE works, 145

617xIndex.qxd 4/30/07 1:41 PM Page 801

Hybrid Shape, 366, 368
Hybrid Springy Dude, 518
Image Encryption, 439
Image Tiling, 435
ImageMap, 701
incorporating AWT or Swing components, 590
Interactive Button, 580–582

Final Interactive Button, 582–590
First Button, 579, 580

Interactive Toroid
helix variation, 668
picture frame variation, 668
polyhedron variation, 669
toroid variation, 667
wireframe sphere variation, 667

INVERT Filter, 452
Java bytecode, 145
lerpColor, 421
line strip, 221
Linear Gradient, 425
Load an Image, 433
Mask the Sky, 449
Mask the Sky with Gradient, 450
maze tile, 224, 226
moiré pattern, 134
motion, 497, 499
Motion Painter, 611
Moving Along a Vector, 524
moving rectangle across screen

with acceleration, 129
with constant speed, 128

Multi Modes, 418
multiple points in line, 176
Neighborhood, 396
Nematode, 411, 413, 415
Non-orthogonal Collision Based on Rotated

Coordinates, 541
Non-orthogonal Collision with Multiple Ground

Segments, 545
Non-orthogonal Reflection, 529
octagon, 359
Orbiting Text, 740
orthogonal vs. non-orthogonal collisions, 525
Painting Stripes, 485, 487
PImage blend method LIGHTEST mode, 468
Pixel Array Mask, 451
Pixels array (single white pixel), 430
Pixilate, 441
point recorder/plotter, 211
polygon creation, 229
Polygon Creator, 362
polygon with second radius (polystar), 230, 235, 237
polygonal table structure, 230, 232
Population Explosion, 691

INDEX

802

POSTERIZE Filter, 458
progression of pie wedge shapes within table structure,

271
Progressive Tile, 734
Puff, 137, 139
Quad (quadrilateral), 355
Quads, Simple/Complex, 371
quadratic and cubic curves, 125
Radial Gradient, 427
Random Bounded Quads, 370
Random Triangles, 369
randomized pie wedge texture, 272
Ravenous Ellipse, 502
Ravenous Triangle, 504
Red Saturation, 442
repeating distorted sine curve, 134
repeating sine curve, 132
Rotated Triangle, 403
rotating concentric 3D polygons, 164
rotation of rectangle around XYZ axes, 641
ROY G BIV, 417
scribble plotter, 215, 218
shape builder and animator, 574
Single Axis 3D Rotation, 637
single-point, 174
sketch with background() commented out, 484
Spinning 3D Stuff, 697
Spinning Cube, 617
spiral built of polygons, 230, 233, 234
Subtractive ColorWheel, 405
Table Explode, 207, 208
Table Layout, 203, 205
Tesselated Plane, 377
three point, 175
THRESHOLD Filter, 456
Tile Designer, 736
Tint, 443
Tint (using bitwise operations), 446
Toy Truck, 354
Transform Example 1, 713
Transform Example 2, 718
Transformation Matrix, 410
Triangle Blur, 348
Triangle Flower, 351, 352
triangle, 346
Triangle Spin, 350
Triangle Zoom, 347
TRIANGLE_FAN, 375
TRIANGLE_STRIP Mode, 373
TRIANGLE_STRIP Spiral, 374
two point, 175
Two Rotating Custom Cubes, 631
Using Loop to Create 10 Rectangles, 686
Wave Gradient, 429

617xIndex.qxd 4/30/07 1:41 PM Page 802

Weight on a Spring, 513, 516
Worm, 509
Yin Yang Fade, 194
Yin Yang, 190

Processing window, 146–158
areas of window explained, 147–150
collapse panes buttons, 150
Edit menu, 152–153
File menu, 150–152
Help menu, 157–158
line number, 147
menus explained, 150–158
message area, 147
resizing entire window, 150
resizing window panes, 150
Sketch menu, 153–154
tabs, 147
text area, 147
text editor, 147
toolbar, 149
Tools menu, 155–157

Processing.org
Visit Processing.org command, 158

programming
see also coding
bytecode, 37
equals vs. assignment, 43
object-oriented programming (OOP), 58, 302–336
procedural programming, 58, 302
programming modes, 162

programming languages
dynamically typed languages, 67
high-level language, 31
low-level language, 31
object-oriented type, 32
porting programs, 38
procedural type, 32
Processing as, 30, 31
Processing Language API, 676–743
statically typed languages, 67
universal programming language, 37

programming modes, Processing IDE, 158–162
basic mode, 158
continuous mode, 159–161
Java mode, 162

programming structures
arguments, 34
curly braces, 34
variables, 34

programs see Processing programs
Progressive Tile sketch, 734
PROJECT constant, 199
properties

accessing environmental properties, 678
accessing private property, 319

INDEX

803

BurritoRecipe class, 303, 308–309
description, 62, 302, 304
encapsulation, 319
getters and setters, 311
initializing properties in superclass, 322
instance properties, 308, 471
private keyword, 312, 319
properties declaration, 308–309
public properties in Processing, 320
static properties, 308
use of identical keywords for function, 678
using properties from superclass, 322

Prudence, Paul, 23
public interface of class, 391, 394
public keyword, 319
Puff sketch, 137, 139
pushMatrix function

altering matrix stack, 714
creating custom 3D cube, 634
Fade-Spin sketch, 409
multiple translations example, 622–624
pushing and popping matrices, 409
single axis 3D rotation, 637

pyramids
cube to pyramid to cone to cylinder, 657–662
Cube to Pyramid to Cone to Cylinder sketch, 660

Pythagorean theorem, 752

Q
quad function, 354, 355
quadratic curves

see also polynomials
curves in geometry, 124
generating parabola with, 266
number of turning points in, 124
Processing generating, 125

quadrilaterals
Disintegrating Quad Wall sketch, 356
Quad sketch, 355
Random Bounded Quads sketch, 370
Simple/Complex Quads sketch, 371

QUADS mode, beginShape(), 369, 370
number of vertex commands, 371
Random Bounded Quads sketch, 370

QUAD_STRIP mode, beginShape(), 372
questions

Frequently Asked Questions command, 158
quotes

quotation marks and whitespace, 201
string literals, 64

R
Radial Gradient sketch, 427
RadialGradient class, 474–478
radians function, 228, 742

617xIndex.qxd 4/30/07 1:41 PM Page 803

radians, converting between degrees and, 758
radicals, relationship with fractional exponents, 750
random function, 34, 742

drawing natural (imperfect) lines, 179–184
doubly randomized particle line, 181
multiple randomized particle lines, 183, 184
randomized point line, 180

grid generated from points, 187
mail merge program, 90
Many Bouncing Balls program, 94
Puff sketch example, 138
randomized particle spray, 181
scribble plotter sketch, 218

Random section, Processing API, 742
randomSeed function, 743
RAPUNSEL project, 20
raster graphics, 115
raster-based approach, 590
Ravenous Ellipse sketch, 502
Ravenous Triangle sketch, 504
Reas, Casey, 5, 8, 21
records

beginRecord/endRecord functions, 710
rect function, 97, 101, 112

adding fading to sketch, 492
changing default mode, 693
default origin, 341
drawing 2D rectangle and rotating, 618
drawing modes, 341
transformations, 714

Rectangle method, Java, 112
rectangles

see also box function
area of, 752
drawing black rectangle, 32
drawing grey rectangle, 33
drawing OOP version of, 35
drawing with OOP sketch, 381
moving on screen, 42
perimeter of, 754
rotation around XYZ axes, 639

rectMode function, 110
arguments, 693
drawing modes, 341, 342
state change, 342

recursion, 347
programming algorithmic tree, 46

red component
color data structure, 762
specifying color value, 728

red function, 422, 423, 728
Red Saturation sketch, 442
Redo command, Edit menu, 152
Reference command, Help menu, 158
reference variables, 380, 679

using in House class, 391, 393, 394

INDEX

804

reflection, law of, 525–532
registration point, 110
Reichardt, Jasia, 13
relational operators, 73–74

logical flow of programs, 74
Relational Operators section, Processing API, 685
relationships

has-a relationship, 324
is-a relationship, 324

releasing mouse
mouseReleased function, 567

rendering
computer optimization for 3D rendering, 651
how and when for loops render, 486
rendering PImage object to screen, 195

rendering modes, 162–169
argument defining, 618
JAVA2D mode, 162–163
OPENGL mode, 166–169
P2D mode, 162
P3D mode, 164–165

Rendering section, Processing API, 734–736
repaint function, 484
reserved keywords

legal names, 65
Structure section, Processing API, 677

resetMatrix function
Fade-Spin sketch, 409
resetting affine transformation matrix, 355, 357

resizing windows, 150
resolution of monitor screen, 115
resolution independence, 117
return types, 209

void return type, 209
writing custom functions, 97

return values, 305
Processing functions, 261

RGB (red, green, blue)
Color Modes RGB/HSB sketch, 416
Color Picker dialog, 156
colorMode function, 726

right shift (>>) bitwise operation, 728
Roman abacus, 9
Roof class

creating a neighborhood, 389
Drawing Some Roofs sketch, 391
using Roof objects in House class, 391, 393, 394

rotate function, 350
affine transformations, 352
creating custom 3D cube, 628
drawing 2D rectangle and rotating, 619

Rotated Triangle sketch, 403
rotateVertices function, 641
rotateX function, 618
rotations

3D rotations, 635–646
drawing 2D rectangle and rotating, 618

617xIndex.qxd 4/30/07 1:41 PM Page 804

rotation of rectangle around XYZ axes, 639, 641
single axis 3D rotation, 635
Single Axis 3D Rotation sketch, 637

ROUND constant
end caps for lines, 199
joining lines using strokeJoin(), 228

round function, 742
rounding

converting float to int, 184
ROY G BIV sketch, 417
Rozin, Daniel, 23
Run button, toolbar, 149
Run command, Sketch menu, 154

S
sand mandala, 7
saturation function, 422, 423, 728
Save As command, File menu, 152
Save button, toolbar, 149
Save command, File menu, 152
save function, 467, 710
saveBytes function, 710
saveFrame function, 467, 710
saveStrings function, 710
scale function, 352
scatter variable, mouseMoved(), 569
Schmidt, Karsten, 23, 452
Schwartz, Lillian, 15
scope, 305

global scope, 87
initializing properties, 310
local scope, 87
properties, 305
variables, 70, 183, 305

screen images
saving screen image data, 710

screen property, 678
screen resolution, monitor, 115
screenX/screenY/screenZ functions, 720
SCRIBBLE constant, 218
scribble function, 215, 218
scribble plotter sketch, 215, 218
searching

Find in Reference command, 158
secant lines, 128
second function, 708
seed functions, 743
Select All command, Edit menu, 153
semantics, 58
semicolons in Processing programs, 60
semiconductors, 761
set function

creating linear gradient, 424
creating radial gradient, 428
creating wave gradient, 429
Loading Images with set() sketch, 434

set method, PImage, 440

INDEX

805

set methods
accessing private property, 319
BurritoRecipe class example, 303
Environment section, Processing API, 678
private keyword on properties, 312
Processing approach, 382
setter methods, OOP, 472

setEllipse function, 293
setGradient function, 426
setKnob method, Door class, 382, 384
setParticles function, 261
setRandomStyle function, 140
setSpring function, 513
setters see set methods
Setting section, Processing API
setup function

Bouncing Ball program, 78, 80
continuous mode introducing, 159
Drawing Application example, 593
Many Bouncing Balls program, 94
Neighborhood sketch, 394
shape builder and animator example, 575
writing custom functions, 97, 205

Shape class
applying inheritance, 321–323
inheritance in OOP, 302

shape function, 295, 340–378
shape modes, 368–374
Shape section, Processing API, 691–701
shapes

applying OOP to shape creation, 378–381
creating hybrid shapes, 365–368
Hybrid Shape sketch, 366, 368
mapping image onto surface of, 699
plotting shapes, 358–365
primitives (primitive shapes), 340
shape builder and animator example, 570
tessellation, 374–378
transforming, 350–358

shapeVertex function, 295
shifting bits (<< and >>), 763–767
shininess function, 720
shortcuts

keyboard shortcuts for toolbar buttons, 149
assignment operation, 184

shorten function, 682
Show Sketch Folder command, Sketch menu, 154
Shredder, 18
signed bit, 765
silicon, 761
Simon, John F. Jr., 19
SIMPLICITY, 20
simulation see animation
sin function

creating curves using trig, 256
Drawing Application example, 598

617xIndex.qxd 4/30/07 1:41 PM Page 805

Nematode sketch, 411, 413
translating rotations, 535

sine
mnemonic for trig functions, 756

sine curve
repeating distorted sine curve, 134
repeating sine curve, 132

sine wave
phase shift, 756

singletons
object singletons, 678

size
textSize function, 740

size function
argument defining renderer, 618
asteroid shower animation, 548
default rendering mode, 162
setting display size, 177
sketch window, 60, 70
specifying rendering mode, 162
stepped radial gradient program, 70

Sketch menu, Processing window, 153–154
Add File command, 154
commands, 154
Import Library command, 154
Present command, 154
Run command, 154
Show Sketch Folder command, 154
Stop command, 154

sketch window
size function, 60, 70

Sketchbook command, File menu, 151
Sketchbook directory, 151
Sketchbook submenu, File menu, 151
sketches

see also Processing sketches
applet subdirectory, 150
creating new sketch, 149, 151
exporting sketches, 150, 152

as executable application, 152
getting current focus state of, 678
getting online status of, 678
hidden file tabs when compiling, 148
Java graphics programs, 144
naming conventions, 149
naming using illegal characters, 149
naming using invalid suffix, 148
opening directory of current sketch, 154
opening, 149, 151
saving, 149, 152
saving as new sketch, 152
specifying printing options, 152
tabs indicating files in Processing window, 147

sleep method, Thread class, 484
slide rule

Pickett circular slide rule, 9

INDEX

806

slider
Drawing Application example, 593, 602

slope, lines, 123, 243
smooth function

anti-aliasing using, 214–219, 698
lines and curves, 245
slightly reducing stroke weight of fine lines, 215

Smooth option
Create Font dialog box, 155

smoothness, geometric curves, 126
Sodaplay, 516
soft-body dynamics, 516–520
software development

Java Development Kit (JDK), 144
specular function, 720
specularity, 720
speed, 128
speedX/speedY variables, vectors, 521
sphere

Interactive Toroid sketch, 667, 669
sphere function

coding in 3D, 647, 696
drawing 2D sphere and rotating, 619

sphereDetail function
coding in 3D, 696
Interactive Toroid sketch, 669

spinning
Spinning 3D Stuff sketch, 697
Triangle Spin sketch, 350

spinning cube
coding in 3D, 616

spinning around x- and y-axes, 617
spinning around y-axis, 617

translate function, 618
Spinning Cube sketch, 617
SpinnyCube class

create method, 646
rotation of cube around XYZ axes, 642, 645

spinnyRotateXYZ method, 646
spirals

spiral built of polygons, 230, 233, 234
TRIANGLE_STRIP Spiral sketch, 374

splice function, 682
spline curve using curve function, 281, 693
spline plot

creating elliptical spline plot, 295
split function, 682
springing, 505–511

createSpring function, 513
Hybrid Springy Dude sketch, 518
setSpring function, 513
simulating spring behavior, 511–516
Weight on a Spring sketch, 513, 516

sprockets
makeSprocket function, 363

SQUARE constant, 199
stacks, 714

617xIndex.qxd 4/30/07 1:41 PM Page 806

standardization, 37
state change following rectMode call, 342
statements, 60

conditional statements, 76–83
declaring primitive variable type, 65
semicolons in Processing programs, 60
switch statements, 81–82

static images, animation and, 79
static keyword, 308

class constants, 470
Door class, 383

static properties, 308, 325
static variables, 383

creating constants, 308
final keyword, 308

statically typed languages, 67
status function, 707
Stop button, toolbar, 149
Stop command, Sketch menu, 154
strict typing, 66–72
string concatenator

using with print/println functions, 710
String data type, 61, 65

primitive data type or String object, 680
String Functions section, Processing API, 682
strings

combines elements in array into, 682
comparing values of two strings, 681
composite data types, 680
concatenation operator (+), 313
converting into integers, 707
creating, 680–681
formatting numbers into, 682
removing whitespace around, 682
saveStrings function, 710
separating into arrays, 682

stroke, 698
stroke function, 403, 724

change color of points, 174
Drawing Application example, 597
multiple points in line sketch, 176
slightly reducing stroke weight of fine lines, 215
TRIANGLES mode, beginShape(), 369

strokeCap function, 198, 199, 698
strokeJoin function, 228, 698
strokeWeight function, 198, 698
structure in coding, 58
Structure section, Processing API, 677
structuring code, 32
subclasses

inheritance in classes, OOP, 320
initializing properties in superclass, 322
object-oriented approach to color/imaging, 469
using properties from superclass, 322

subroutines see functions
subset function, 682

shape builder and animator example, 578

INDEX

807

SUBTRACT mode, blend function, 463, 464, 465, 466
subtraction

operator precedence, 121
shortcut assignment operation, 184

subtractive color model, 406
Subtractive ColorWheel sketch, 405
suffixes

.java suffix, 148

.pde suffix, 147, 148

.x suffix, 148
using invalid suffix, 148

super keyword, 322
superclass constructor, 646
superclasses

abstract methods, 471
inheritance in classes, 320
object-oriented approach to color/imaging, 469
using properties in, 322

supersampling
anti-aliasing, 214

surface normal
normalizing vectors and, 525

Swing components
incorporating in Processing sketches, 590

switch statements, 81–82
as alternative to if . . . else syntax, 81
break statements in, 82
Conditionals section, Processing API, 689
enumerated types, 82
value types, 82

syntax, 58
curly braces { }, 61
dot (.) syntax, 62

T
Table Explode sketch, 207, 208
Table Layout sketch, 203, 205
tables

creating table structure, 202–209
polygonal table structure, 230, 232

tabs, Processing window, 147
creating new tab, 148
Hide function, 148
indicating file type, 148
organizing classes using multiple tabs, 478

tags
block comment tags, 60

tan function, 535
Tan, Manny, 23
tangent

mnemonic for trig functions, 756
Tarbell, Jared, 21
ternary operator, 83
tessellate function, 378
Tesselated Plane sketch, 377
tessellation, shapes, 374–378

617xIndex.qxd 4/30/07 1:41 PM Page 807

text
Orbiting Text sketch, 740

Text Area section, Processing API, 710
text editor, Processing window, 147

collapse panes buttons, 150
Edit menu commands, 152
resizing window panes, 150

text function, 738
textAlign function, 740
textAscent function, 740
textDescent function, 740
textFont function, 738
textLeading function, 740
textMode function, 738, 740
textSize function, 740
texture function, 549, 699
texture mapping see image mapping
textureMode function, 549, 699
textWidth function, 740
this keyword

initializing properties, 311
local and global scope, 383
object-oriented approach to color/imaging, 473
reasons to use, 311

threads, 482
THRESHOLD argument, filter function, 456
THRESHOLD Filter sketch, 456
Tile Designer sketch, 736
tiling

Image Tiling sketch, 435
Progressive Tile sketch, 734

time
Collision Detection and Timeout sketch, 491
elapsed time, 491

Time & Date section, Processing API, 708
time functions, 491
tint function, 442
Tint sketch, 443

using bitwise operations, 446
tinting

image using bitwise operations, 444
toolbar, Processing window, 149

buttons, 149–150
Tools menu, Processing window, 155–157

Archive Sketch command, 157
Auto Format command, 155
Color Picker command, 156
commands, 155
Create Font command, 155, 582
Format for Discourse command, 157

toroids, coding in 3D, 662–671
Interactive Toroid sketch

helix variation, 668
picture frame variation, 668
polyhedron variation, 669
toroid variation, 667
wireframe sphere variation, 667

INDEX

808

toruses see toroids
towers

constructing 3D brick tower, 647–650
Transform Example 1 sketch, 713
Transform Example 2 sketch, 718
Transform section, Processing API, 712–718
Transformation Matrix sketch, 410
transformations, 350–358, 618–624, 713

affine transformations, 352
AffineTransform class, Java, 352
creating transformations, 409
drawing 2D rectangle and rotating, 618
drawing 2D sphere and rotating, 619
order of transformations example, 620
Transform Example 1 sketch, 713
Transform Example 2 sketch, 718

transistors, 761
translate function

affine transformations, 352
coding in 3D, 618
creating custom 3D cube, 628
creating transformations, 409
cumulative translations example, 621
description, 350
multiple translations example, 620
resetting affine transformation matrix, 357
transformations, 714

translucency/transparency
32-bit color and, 114
alpha function, 728
Alpha sketch, 407
bits per pixel, 400
color data structure, 762
color functions, 422
controlling alpha transparency, 406–408
fill function, 369
mask like alpha channel, 449

trapezoid, area of, 753
trees

algorithmic tree, 45–53
triangle function, 345
triangles

area of, 752
calculating vertices of, 226
create triangle sketch, 227
creating, 226, 227
Pythagorean theorem, 752
radians function, 228
Random Triangles sketch, 369
Ravenous Triangle sketch, 504
Rotated Triangle sketch, 403
Triangle Blur sketch, 348
Triangle Flower sketch, 351, 352
triangle sketch, 346
Triangle Spin sketch, 350
Triangle Zoom sketch, 347

617xIndex.qxd 4/30/07 1:41 PM Page 808

TRIANGLES mode, beginShape(), 368, 369
number of vertex commands, 371
Random Triangles sketch, 369

TRIANGLE_FAN mode, beginShape(), 372
tessellation, shapes, 374
triangulation using, 375–377

TRIANGLE_STRIP mode, beginShape(), 372
creating a spiral, 373–374
using, 372–373

triangulation, 374
TRIANGLE_FAN mode, 375–377

triBlur function, 347
trigonometry

creating curves using trig, 255–262
history of, 131
math for graphics, 131–138, 755–760
relationship of trig functions, 755
unit circle, 756

Trigonometry section, Processing API, 742
trim function, 682
Troubleshooting command, Help menu, 158
trucks

Toy Truck sketch, 354
true keyword, 86
true color, 114
TTF (TrueType) font vector format, 738
two’s complement system, 765
“Type . . . was not found” error, 148
type casting, 67, 681
type conversions, 67
types see data types
typography, 737
Typography section, Processing API, 737–740

U
unary operators, 76
Undo command, Edit menu, 152
unit circle, 227, 756
UNIVAC computer, 12
universal programming language, 37
updatePixels function, 431, 732

display window changes, 441
Ur game board, 6
user interfaces see GUIs
uv coordinates, 549
UV mapping, 699

V
Valence, 22
value property, color, 402
variables, 65–72

arrays, 83–85
case sensitivity of variable names, 65
declaring primitive variable type, 65
declaring, 66

setting data types when, 67
description, 34

INDEX

809

global variables, 70
initializing, 66
legal names, 63
local variables, 70
primitive variables, 65
reference variables, 679
scope, 70, 183, 305
static variables, 383
strict typing, 66–72
types of, 65

Vect2D class
1D collisions, 552
asteroid shower animation, 536, 540

Vect3D class, 554
Vector class, Java, 682
vector graphics, 116–117

curves, 116
description, 115
lines, 116
pixel storage, 116
resolution independence, 117

vector-based approach, drawing application, 590
vector-based typography, 737
vectors, 521–522

applying vectors in collisions, 525
asteroid shower animation, 535–551
handling non-orthogonal collisions, 532–534
inter-object collisions, 552–561
law of reflection, 525–532
Moving Along a Vector sketch, 524
normalizing, 523–525
velocity, 522

velocity see vectors
Verostko, Roman, 17
vertex function, 209–214

2D and 3D versions, 210
applying, 219
beginShape/endShape functions, 209, 210
calling vertex functions, 698
combining vertex commands, 698
disregarded extra vertex calls, 372
plotting shapes, 358
rotation of rectangle around XYZ axes, 641
using POINTS mode, 210

Vertex section, Processing API, 698
vertexCurve function, 281
vertical axis, 109
vertical line, equation for, 243
vertical lines generated from points, 185
vertices

beginShape function, 209
calculating vertices of triangle, 226
curveVertex function, 520
description, 698
drawing methods and, 112
function relating to, 209–214

617xIndex.qxd 4/30/07 1:41 PM Page 809

VERY_HIGH option, encryption, 439
Viola, Bill, 118
virtual camera, P3D mode, 164
virtual memory

Photoshop handling huge files, 433
Visit Processing.org command, Help menu, 158
visualization

see also graphics
data visualization, 108

VLW format, 737
loadFont function, 738

void keyword
checkCollisions function, 99
description, 305
writing custom functions, 97

void return type, 209

W
Wattenberg, Martin, 23
Watz, Marius, 23
Wave Gradient sketch, 429
wave patterns

moiré patterns, 134, 136
repeating distorted sine curve, 134
repeating sine curve, 132

waveforms, analog computers, 14
waves

curves as particle waves, 260
springing, 511

web safe palette, 66, 114
Web section, Processing API, 707
Weight on a Spring sketch, 513, 516
while keyword, 86
while loop, 85–86

do . . . while loop, 86
multiple points in line sketch using, 177–178
Using Loop to Create Rectangles sketch, 686

whitespace, 60
quotation marks and, 201
removing whitespace around strings, 682

Whitney, John Sr., 15
width

textWidth function, 740

INDEX

810

width property
stepped radial gradient program, 70

Wilson, Mark, 23
Window class

creating a neighborhood, 386–389
Drawing Some Windows sketch, 388
drawWindow method, 389
method overloading, 388
using Window objects in House class, 391, 393, 394

window events, 139
Windows keyboard shortcuts, 149
world coordinates

local vs. world coordinates, 111
Worm sketch, 509

X
x axis, 109
.x suffix, 148
XOR (^) bitwise operator, 769
xSpeed variable, 494, 495, 497

Y
y axis, 109
YaBB, Processing discourse board, 157
year function, 708
Yin Yang Fade sketch, 194
Yin Yang sketch, 190
ySpeed variable, 494, 495

Z
z axis, 111
Z1 computer, 11
Zeno’s paradoxes, 733
zero, dividing by, 748
zero-indexing of arrays, 85
ZIP archives

Archive Sketch command, Tools menu, 157
zoom

Triangle Zoom sketch, 347
Zuse, Conrad, 11

617xIndex.qxd 4/30/07 1:41 PM Page 810

